Screening of Klebsiella pneumoniae Isolates for Carbapenemase and Hypervirulence-Associated Genes by Combining the Eazyplex® Superbug CRE and hvKp Assays
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Antimicrobial Susceptibility Testing
4.2. Eazyplex® LAMP Assays
4.3. WGS Analysis and PCR
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lam, M.M.C.; Wick, R.R.; Watts, S.C.; Cerdeira, L.T.; Wyres, K.L.; Holt, K.E. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat. Commun. 2021, 12, 4188. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Emergence of Hypervirulent Klebsiella pneumoniae ST23 Carrying Carbapenemase Genes in EU/EEA Countries; ECDC: Stockholm, Sweden, 2021; Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Emergence-of-hypervirulent-Klebsiella-pneumoniae-ST23-carrying-carbapenemase-genes.pdf (accessed on 1 September 2021).
- Han, Y.L.; Wen, X.H.; Zhao, W.; Cao, X.S.; Wen, J.X.; Wang, J.R.; Hu, Z.D.; Zheng, W.Q. Epidemiological characteristics and molecular evolution mechanisms of carbapenem-resistant hypervirulent Klebsiella pneumoniae . Front. Microbiol. 2022, 13, 1003783. [Google Scholar] [CrossRef] [PubMed]
- Brennan, C.; DeLappe, N.; Cormican, M.; Tuohy, A.; Tobin, A.; Moran, L.; Doyle, M.; Fielding, C. A geographic cluster of healthcare-associated carbapenemase-producing hypervirulent Klebsiella pneumoniae sequence type 23. Eur. J. Clin. Microbiol. Infect. Dis. 2022. [Google Scholar] [CrossRef]
- Di Pilato, V.; Henrici De Angelis, L.; Aiezza, N.; Baccani, I.; Niccolai, C.; Parisio, E.M.; Giordano, C.; Camarlinghi, G.; Barnini, S.; Forni, S.; et al. Resistome and virulome accretion in an NDM-1-producing ST147 sublineage of Klebsiella pneumoniae associated with an outbreak in Tuscany, Italy: A genotypic and phenotypic characterisation. Lancet Microbe 2022, 3, e224–e234. [Google Scholar] [CrossRef]
- Hallal Ferreira Raro, O.; Nordmann, P.; Dominguez Pino, M.; Findlay, J.; Poirel, L. Emergence of carbapenemase-producing hypervirulent Klebsiella pneumoniae in Switzerland. Antimicrob. Agents Chemother. 2023, 67, e0142422. [Google Scholar] [CrossRef] [PubMed]
- Sandfort, M.; Hans, J.B.; Fischer, M.A.; Reichert, F.; Cremanns, M.; Eisfeld, J.; Pfeifer, Y.; Heck, A.; Eckmanns, T.; Werner, G.; et al. Increase in NDM-1 and NDM-1/OXA-48-producing Klebsiella pneumoniae in Germany associated with the war in Ukraine, 2022. Eurosurveillance 2022, 27, 2200926. [Google Scholar] [CrossRef] [PubMed]
- Ventura, A.; Addis, E.; Bertoncelli, A.; Mazzariol, A. Multiple detection of hypermucoviscous and hypervirulent strains of Klebsiella pneumoniae: An emergent health care threat. Acta Microbiol. Immunol. Hung. 2022, 69, 297–302. [Google Scholar]
- Hernández, M.; López-Urrutia, L.; Abad, D.; De Frutos Serna, M.; Ocampo-Sosa, A.A.; Eiros, J.M. First report of an extensively drug-resistant ST23 Klebsiella pneumoniae of capsular serotype K1 co-producing CTX-M-15, OXA-48 and ArmA in Spain. Antibiotics 2021, 10, 157. [Google Scholar] [CrossRef] [PubMed]
- Sękowska, A.; Bogiel, T.; Gospodarek-Komkowska, E. Evaluation of eazyplex®® SuperBug CRE Test for beta-lactamase genes detection in Klebsiella spp. and P. aeruginosa strains. Curr. Microbiol. 2020, 77, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Fliss, M.; van den Berg, C.H.S.B.; Kuijper, E.; Notermans, D.W.; Hendrickx, A.P.A.; Schoots, M.H.; Bathoorn, E. Brief report: Community-acquired Friedlander’s pneumonia and pulmonary metastatic Klebsiella pneumoniae infection caused by hypervirulent ST23 in the Netherlands. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 1133–1138. [Google Scholar] [CrossRef]
- Bernard de Lajartre, O.; Maamar, A.; Dejoies, L.; Delamaire, F. Community-acquired hypervirulent Klebsiella pneumoniae invasive infection in critically ill patients who dramatically improved. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 1275–1277. [Google Scholar] [CrossRef]
- Anantharajah, A.; Deltombe, M.; de Barsy, M.; Evrard, S.; Denis, O.; Bogaerts, P.; Hallin, M.; Miendje Deyi, V.Y.; Pierard, D.; Bruynseels, P.; et al. Characterization of hypervirulent Klebsiella pneumoniae isolates in Belgium. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 859–865. [Google Scholar] [CrossRef]
- Baron, S.A.; Pascale, L.M.; Million, M.; Briantais, A.; Durand, J.M.; Hadjadj, L.; Rolain, J.M. Whole genome sequencing to decipher the virulence phenotype of hypervirulent Klebsiella pneumoniae responsible for liver abscess, Marseille, France. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1073–1077. [Google Scholar] [CrossRef] [PubMed]
- Piazza, A.; Perini, M.; Mauri, C.; Comandatore, F.; Meroni, E.; Luzzaro, F.; Principe, L. Antimicrobial susceptibility, virulence, and genomic features of a hypervirulent serotype K2, ST65 Klebsiella pneumoniae causing meningitis in Italy. Antibiotics 2022, 11, 261. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Xia, X.; Yuan, T.; Zhu, J.; Shen, Z.; Li, M. Molecular epidemiology of antimicrobial resistance, virulence and capsular serotypes of carbapenemase-carrying Klebsiella pneumoniae in China. Antibiotics 2022, 11, 1100. [Google Scholar] [CrossRef]
- Karampatakis, T.; Tsergouli, K.; Behzadi, P. Carbapenem-resistant Klebsiella pneumoniae: Virulence factors, molecular epidemiology and latest updates in treatment options. Antibiotics 2023, 12, 234. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Mendes, R.E.; Carvalhaes, C.G.; Kimbrough, J.H.; Castanheira, M. Changing epidemiology of carbapenemases among carbapenem-resistant Enterobacterales from United States hospitals and the activity of aztreonam-avibactam against contemporary Enterobacterales (2019–2021). Open Forum Infect. Dis. 2023, 10, ofad046. [Google Scholar] [CrossRef]
- Falcone, M.; Daikos, G.L.; Tiseo, G.; Bassoulis, D.; Giordano, C.; Galfo, V.; Leonildi, A.; Tagliaferri, E.; Barnini, S.; Sani, S.; et al. Efficacy of ceftazidime-avibactam plus aztreonam in patients with bloodstream infections caused by metallo-β-lactamase-producing Enterobacterales. Clin. Infect. Dis. 2021, 72, 1871–1878. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; et al. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep. 2021, 11, 12728. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Alikhan, N.F.; Mohamed, K.; Fan, Y.; Agama Study Group; Achtman, M. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 2020, 30, 138–152. [Google Scholar] [CrossRef] [PubMed]
- Yeh, K.M.; Kurup, A.; Siu, L.K.; Koh, Y.L.; Fung, C.P.; Lin, J.C.; Chen, T.L.; Chang, F.Y.; Koh, T.H. Capsular serotype K1 or K2, rather than magA and rmpA, is a major virulence determinant for Klebsiella pneumoniae liver abscess in Singapore and Taiwan. J. Clin. Microbiol. 2007, 45, 466–471. [Google Scholar] [CrossRef] [PubMed]
No. | Source | ST | String Test | Eazyplex LAMP Results, Threshold Time (min) | Virulence Score | Carbapenemase, ESBL a | Antimicrobial Susceptibility Profile MIC (mg/L), Interpretation b | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rmpA | rmpA2 | iucC | iroC | ybt | clb | CTA c | MER c | CTV c | AZA c | CID c | ||||||
1 | Blood culture | 395-1LV | + | 8.75 | 10.5 | 10.5 | − | 6.75 | − | 4 | NDM, CTX-M1 group | >64, R | 32, R | >32/4, R | ≤1/4, S | 1, S |
2 | Blood culture | 395 | + | 8.5 | 10.75 | 11 | − | 7 | − | 4 | NDM, CTX-M1 group | >64, R | 32, R | >32/4, R | ≤1/4, S | 1, S |
3 | Joint aspirate | 2096 | − | 8.5 | 10.75 | 11 | − | 7 | − | 4 | NDM, CTX-M1 group | >64, R | 64, R | >32/4, R | ≤1/4, S | 1, S |
4 | Rectal swab | N.D. d | − | − | 13 | 11.75 | − | 6.5 | − | 4 | NDM, CTX-M1 group | >64, R | 32, R | >32/4, R | ≤1/4, S | 0.19, S |
5 | Rectal swab | N.D. | − | − | − | 12.5 | − | 7.5 | − | 4 | OXA-48,CTX-M1 group | >64, R | 32, R | 1/4, S | ≤1/4, S | 0.38, S |
6 | Urine | N.D. | − | − | − | 14 | − | − | − | 3 | OXA-48,CTX-M1 group | >64, R | 32, R | ≤1/4, S | ≤1/4, S | 0.19, S |
7 | Blood culture | 23 | + | 7.75 | 8.5 | 10.5 | 9 | 6.5 | 6.25 | 5 | − | ≤1, S | ≤0.25, S | N.D. | N.D. | N.D. |
8 | Cerebrospinal fluid | 23 | + | 8.5 | 10.5 | 10 | 9 | 6 | 6 | 5 | − | ≤1, S | ≤0.25, S | N.D. | N.D. | N.D. |
9 | Gluteal abscess | N.D. | + | 7.75 | 13 | 12 | 8.25 | 6.75 | 6 | 5 | − | 1, S | ≤0.25, S | N.D. | N.D. | N.D. |
10 | Foot gangrene | N.D. | − | − | − | 13.75 | - | 8.25 | − | 4 | − | 1, S | ≤0.25, S | N.D. | N.D. | N.D. |
11 | Sputum | N.D. | + | 7.5 | 8.75 | 8.5 | 7.75 | − | − | 3 | − | ≤1, S | ≤0.25, S | N.D. | N.D. | N.D. |
12 | Blood culture | N.D. | + | 8 | − | 11.25 | 9.25 | − | − | 3 | − | ≤1, S | ≤0.25, S | N.D. | N.D. | N.D. |
13 | Blood culture | N.D. | − | − | − | 7.75 | − | − | − | 3 | − | ≤1, S | ≤0.25, S | N.D. | N.D. | N.D. |
14 | Intra-abdominal abscess | N.D. | − | − | − | − | − | 7.25 | 6.25 | 2 | − | ≤1, S | ≤0.25, S | N.D. | N.D. | N.D. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rödel, J.; Pfeifer, Y.; Fischer, M.A.; Edel, B.; Stoll, S.; Pfister, W.; Löffler, B. Screening of Klebsiella pneumoniae Isolates for Carbapenemase and Hypervirulence-Associated Genes by Combining the Eazyplex® Superbug CRE and hvKp Assays. Antibiotics 2023, 12, 959. https://doi.org/10.3390/antibiotics12060959
Rödel J, Pfeifer Y, Fischer MA, Edel B, Stoll S, Pfister W, Löffler B. Screening of Klebsiella pneumoniae Isolates for Carbapenemase and Hypervirulence-Associated Genes by Combining the Eazyplex® Superbug CRE and hvKp Assays. Antibiotics. 2023; 12(6):959. https://doi.org/10.3390/antibiotics12060959
Chicago/Turabian StyleRödel, Jürgen, Yvonne Pfeifer, Martin A. Fischer, Birgit Edel, Sylvia Stoll, Wolfgang Pfister, and Bettina Löffler. 2023. "Screening of Klebsiella pneumoniae Isolates for Carbapenemase and Hypervirulence-Associated Genes by Combining the Eazyplex® Superbug CRE and hvKp Assays" Antibiotics 12, no. 6: 959. https://doi.org/10.3390/antibiotics12060959
APA StyleRödel, J., Pfeifer, Y., Fischer, M. A., Edel, B., Stoll, S., Pfister, W., & Löffler, B. (2023). Screening of Klebsiella pneumoniae Isolates for Carbapenemase and Hypervirulence-Associated Genes by Combining the Eazyplex® Superbug CRE and hvKp Assays. Antibiotics, 12(6), 959. https://doi.org/10.3390/antibiotics12060959