Effects of Typical Antimicrobials on Growth Performance, Morphology and Antimicrobial Residues of Mung Bean Sprouts
Abstract
:1. Introduction
2. Methods
2.1. Materials and Reagents
2.2. Germination and Cultivation of Mung Bean Sprouts
2.3. Growth Performance Measurement
2.4. Microbial Reproduction Measurement in Circulating Water
2.5. Sample Collection
2.6. Sample Extraction and Purification
2.7. Screening of Antimicrobial Residues in Commercial Mung Bean Sprouts
2.8. Detection of Antimicrobial Residues in Sprouts and Circulating Water
2.9. Statistical Analysis
3. Results and Discussion
3.1. Antimicrobial Screening of Commercial Mung Bean Sprouts
3.2. Microbial Content in Circulating Water
3.3. Effects of Typical Antimicrobials on Production of Mung Bean Sprouts
3.4. Effects of Antimicrobials on Morphology of Mung Bean Sprouts
3.5. Antimicrobial Residues in Mung Bean Sprouts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Xu, H.; Zhou, Q.; Liu, B.; Cheng, K.W.; Chen, F.; Wang, M. Neuroprotective potential of mung bean (Vigna radiata L.) polyphenols in Alzheimer’s disease: A review. J. Agric. Food Chem. 2021, 69, 11554–11571. [Google Scholar] [CrossRef] [PubMed]
- Kanatt, S.R.; Arjun, K.; Sharma, A. Antioxidant and antimicrobial activity of legume hulls. Food Res. Int. 2011, 44, 3182–3187. [Google Scholar] [CrossRef]
- Luo, Y.; Xie, W. Effect of soaking and sprouting on iron and zinc availability in green and white faba bean (Vicia faba L.). J. Food Sci. Technol. 2014, 51, 3970–3976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tie, M.; Gao, Y.; Xue, Y.; Zhang, A.; Yao, Y.; Sun, J.; Xue, S. Determination of selenium species and analysis of methyl-seleno-l-cysteine in Se-enriched mung bean sprouts by HPLC-MS. Anal. Methods 2016, 8, 3102–3108. [Google Scholar] [CrossRef]
- Aguilera, Y.; Rebollo-Hernanz, M.; Herrera, T.; Cayuelas, L.T.; Rodriguez-Rodriguez, P.; de Pablo, A.L.; Arribas, S.M.; Martin-Cabrejas, M.A. Intake of bean sprouts influences melatonin and antioxidant capacity biomarker levels in rats. Food Funct. 2016, 7, 1438–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, U.; Servan, A.; Nigam, D. Comparative study on antioxidant activity, phytochemical analysis and mineral composition of the mung bean (Vigna radiata) and its sprouts. J. Pharmacogn. Phytochem. 2017, 6, 336–340. [Google Scholar]
- Hafidh, R.R.; Abdulamir, A.S.; Bakar, F.A.; Sekawi, Z.; Jahansheri, F.; Jalilian, F.A. Novel antiviral activity of mung bean sprouts against respiratory syncytial virus and herpes simplex virus-1: An in vitro study on virally infected Vero and MRC-5 cell lines. BMC Complement. Med. Ther. 2015, 15, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayer, C.; Bernard, H.; Prager, R.; Rabsch, W.; Hiller, P.; Malorny, B.; Pfefferkorn, B.; Frank, C.; Jong, D.A.; Friesema, I.; et al. An outbreak of Salmonella Newport associated with mung bean sprouts in Germany and the Netherlands, October to November 2011. Eurosurveillance 2014, 19, 20665. [Google Scholar] [CrossRef] [PubMed]
- Sadler-Reeves, L.; Aird, H.; de Pinna, E.; Elviss, N.; Fox, A.; Kaye, M.; Jorgensen, F.; Lane, C.; Willis, C.; McLauchlin, J. The occurrence of Salmonella in raw and ready-to-eat bean sprouts and sprouted seeds on retail sale in England and Northern Ireland. Lett. Appl. Microbiol. 2016, 62, 126–129. [Google Scholar] [CrossRef] [Green Version]
- Iacumin, L.; Comi, G. Microbial quality of raw and ready-to-eat mung bean sprouts produced in Italy. Food Microbiol. 2019, 82, 371–377. [Google Scholar] [CrossRef]
- Kim, S.H.; Rhee, M.S. Environment-friendly mild heat and relative humidity treatment protects sprout seeds (radish, mung bean, mustard, and alfalfa) against various foodborne pathogens. Food Control 2018, 93, 17–22. [Google Scholar] [CrossRef]
- Baker, K.A.; Beecher, L.; Northcutt, J.K. Effect of irrigation water source and post-harvest washing treatment on the microflora of alfalfa and mung bean sprouts. Food Control 2019, 100, 151–157. [Google Scholar] [CrossRef]
- Gui, M.; He, H.; Li, Y.; Chen, X.; Wang, H.; Wang, T.; Li, J. Effect of UV-B treatment during the growth process on the postharvest quality of mung bean sprouts (Vigna radiata). Int. J. Food Sci. Technol. 2018, 53, 2166–2172. [Google Scholar] [CrossRef]
- Shen, Z.; Mustapha, A.; Lin, M.; Zheng, G. Biocontrol of the internalization of Salmonella enterica and Enterohaemorrhagic Escherichia coli in mung bean sprouts with an endophytic Bacillus subtilis. Int. J. Food Microbiol. 2017, 250, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Millan-Sango, D.; Sammut, E.; Van Impe, J.F.; Valdramidis, V.P. Decontamination of alfalfa and mung bean sprouts by ultrasound and aqueous chlorine dioxide. LWT 2017, 78, 90–96. [Google Scholar] [CrossRef]
- Xiang, Q.; Liu, X.; Liu, S.; Ma, Y.; Xu, C.; Bai, Y. Effect of plasma-activated water on microbial quality and physicochemical characteristics of mung bean sprouts. Innov. Food Sci. Emerg. Technol. 2019, 52, 49–56. [Google Scholar] [CrossRef]
- Zhou, R.; Li, J.; Zhou, R.; Zhang, X.; Yang, S. Atmospheric-pressure plasma treated water for seed germination and seedling growth of mung bean and its sterilization effect on mung bean sprouts. Innov. Food Sci. Emerg. Technol. 2019, 53, 36–44. [Google Scholar] [CrossRef]
- Shi, Z.; Chen, D.; Chen, T.T.; Wei, G.; Yin, C.Y.; Xu, H.; Yang, G.F. In vivo analysis of two new fungicides in mung bean sprouts by solid phase microextraction-gas chromatography-mass spectrometry. Food Chem. 2019, 275, 688–695. [Google Scholar] [CrossRef]
- Wang, M.; Liang, S.; Bai, L.; Qiao, F.; Yan, H. Green protocol for the preparation of hydrophilic molecularly imprinted resin in water for the efficient selective extraction and determination of plant hormones from bean sprouts. Anal. Chim. Acta 2019, 1064, 47–55. [Google Scholar] [CrossRef]
- Cho, S.K.; Abd El-Aty, A.M.; Park, K.H.; Park, J.H.; Assayed, M.E.; Jeong, Y.M.; Park, Y.S.; Shim, J.H. Simple multiresidue extraction method for the determination of fungicides and plant growth regulator in bean sprouts using low temperature partitioning and tandem mass spectrometry. Food Chem. 2013, 136, 1414–1420. [Google Scholar] [CrossRef]
- Kim, K.G.; Park, D.W.; Kang, G.R.; Kim, T.S.; Yang, Y.; Moon, S.J.; Choi, E.A.; Ha, D.R.; Kim, E.S.; Cho, B.S. Simultaneous determination of plant growth regulator and pesticides in bean sprouts by liquid chromatography-tandem mass spectrometry. Food Chem. 2016, 208, 239–244. [Google Scholar] [CrossRef]
- Chen, J.; He, L.X.; Cheng, Y.X.; Ye, P.; Wu, D.L.; Fang, Z.Q.; Li, J.; Ying, G.G. Trace analysis of 28 antibiotics in plant tissues (root, stem, leaf and seed) by optimized QuEChERS pretreatment with UHPLC-MS/MS detection. J. Chromatogr. B 2020, 1161, 122450. [Google Scholar] [CrossRef]
- Li, X.; Tang, Z.; Wen, L.; Jiang, C.; Feng, Q. Matrine: A review of its pharmacology, pharmacokinetics, toxicity, clinical application and preparation researches. J. Ethnopharmacol. 2021, 269, 113682. [Google Scholar] [CrossRef]
- Phanwilai, S.; Piyavorasakul, S.; Noophan, P.L.; Daniels, K.D.; Snyder, S.A. Inhibition of anaerobic ammonium oxidation (anammox) bacteria by addition of high and low concentrations of chloramphenicol and comparison of attached- and suspended-growth. Chemosphere 2020, 238, 124570. [Google Scholar] [CrossRef] [PubMed]
- Tong, C.; Zhuo, X.; Guo, Y. Occurrence and risk assessment of four typical fluoroquinolone antibiotics in raw and treated sewage and in receiving waters in Hangzhou, China. J. Agric. Food Chem. 2011, 59, 7303–7309. [Google Scholar] [CrossRef] [PubMed]
- Rocha, D.C.; da Silva Rocha, C.; Tavares, D.S.; de Morais Calado, S.L.; Gomes, M.P. Veterinary antibiotics and plant physiology: An overview. Sci. Total Environ. 2021, 767, 144902. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, X.; Yang, Q.; Sun, L.; Yang, X.; Zhou, M.; Deng, R.; Bi, L. Plant growth, antibiotic uptake, and prevalence of antibiotic resistance in an endophytic system of pakchoi under antibiotic exposure. Int. J. Environ. Res. Public Health 2017, 14, 1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambalavanan, N.; Kavitha, M.; Jayakumar, S.; Raj, A.; Nataraj, S. Comparative evaluation of bactericidal effect of silver nanoparticle in combination with Nd-YAG laser against enterococcus faecalis: An in vitro study. J. Contemp. Dent. Pract. 2020, 21, 1141–1145. [Google Scholar] [PubMed]
- Khan, I.; Raza, M.A.; Awan, S.A.; Shah, G.A.; Rizwan, M.; Ali, B.; Tariq, R.; Hassan, M.J.; Alyemeni, M.N.; Brestic, M.; et al. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol. Biochem. 2020, 156, 221–232. [Google Scholar] [CrossRef]
- Li, C.L.; Wang, M.; Ma, X.Y.; Zhang, W. NRGA1, a putative mitochondrial pyruvate carrier, mediates ABA regulation of guard cell Ion channels and drought stress responses in arabidopsis. Mol. Plant 2014, 7, 1508–1521. [Google Scholar] [CrossRef] [Green Version]
- Lewkowski, J.; Rogacz, D.; Rychter, P. Hazardous ecotoxicological impact of two commonly used nitrofuran-derived antibacterial drugs: Furazolidone and nitrofurantoin. Chemosphere 2019, 222, 381–390. [Google Scholar] [CrossRef]
- Lewkowski, J.; Morawska, M.; Karpowicz, R.; Rychter, P.; Rogacz, D.; Lewicka, K. Novel (5-nitrofurfuryl)-substituted esters of phosphonoglycine- their synthesis and phyto- and ecotoxicological properties. Chemosphere 2017, 188, 618–632. [Google Scholar] [CrossRef]
- Fan, K.; Delgado-Baquerizo, M.; Guo, X.; Wang, D.; Zhu, Y.G.; Chu, H. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. ISME J. 2021, 15, 550–561. [Google Scholar] [CrossRef]
- Wang, D.; Liang, F.; Ma, P.; Yang, Q.; Gao, D.; Song, D.; Wang, X. Determination of 6-benzylaminopurine and Hg2+ in bean sprouts and drinking mineral water by surface-enhanced raman spectroscopy. Food Anal. Methods 2015, 9, 934–941. [Google Scholar] [CrossRef]
- Geilfus, C.M. Review on the significance of chlorine for crop yield and quality. Plant Sci. 2018, 270, 114–122. [Google Scholar] [CrossRef]
- Min, P.; Chu, L.M. Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops. Ecotoxicol. Environ. Saf. 2016, 126, 228–237. [Google Scholar] [CrossRef]
- Wang, D.; Chan, K.K.J.; Chan, W. Plant uptake and metabolism of nitrofuran antibiotics in spring onion grown in nitrofuran-contaminated soil. J. Agric. Food Chem. 2017, 65, 4255–4261. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, Y.; Shi, M.; Qiu, T.; Gao, M.; Tian, S.; Wang, X. Effect of antibiotic type and vegetable species on antibiotic accumulation in soil-vegetable system, soil microbiota, and resistance genes. Chemosphere 2021, 263, 128099. [Google Scholar] [CrossRef]
- EFSA. Scientific opinion on nitrofurans and their metabolites in food. EFSA J. 2015, 13, 4140. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Li, J.; Yuan, H.; Chu, B.; Lin, W.; Cao, Q.; Zhao, Q.; Fang, R.; Li, L.; Xiao, G. Determination of four nitrofuran metabolites in gelatin Chinese medicine using dispersive solid phase extraction and pass-through solid phase extraction coupled to ultra high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2020, 1146, 122018. [Google Scholar] [CrossRef]
Residues | Positive Samples | Positive Ratio | Concentration |
---|---|---|---|
Chloramphenicol | 1 | 2.78% | 9.31 |
Enrofloxacin | 8 | 22.22% | 193.23 ± 98.42 |
AOZ | 5 | 13.89% | 2.88 ± 1.93 |
Groups | Growth Time | |||
---|---|---|---|---|
24 h | 48 h | 72 h | 96 h | |
Production (g) | ||||
Tap water | 382.9 ± 9.2 a | 585.2 ± 10.3 a | 858.1 ± 60.1 a | 1012.1 ± 95.6 a |
Distilled water | 379.8 ± 16.0 a | 567.6 ± 21.7 ab | 763.4 ± 115.4 abc | 873.9 ± 162.2 abcd |
6-Benzyl adenine | 371.7 ± 18.9 a | 494.9 ± 42.0 cde | 629.8 ± 65.3 def | 786.5 ± 98.0 cde |
Chloramphenicol | 381.9 ± 9.4 a | 569.4 ± 10.7 ab | 811.4 ± 89.5 ab | 971.2 ± 142.0 abc |
Enrofloxacin | 375.0 ± 8.6 a | 528.4 ± 19.6 bcd | 697.1 ± 77.0 bcd | 806.3 ± 143.6 bcd |
Olaquindox | 348.7 ± 37.0 b | 484.1 ± 92.4 def | 643.9 ± 199.1 cde | 761.9 ± 266.8 de |
Doxycycline | 360.5 ± 11.6 ab | 451.4 ± 20.9 ef | 538.9 ± 53.2 ef | 595.3 ± 87.4 ef |
Furazolidone | 359.3 ± 6.9 ab | 436.7 ± 24.6 f | 512.0 ± 69.1 f | 563.4 ± 108.3 f |
Total length (cm) | ||||
Tap water | 2.83 ± 1.10 | 9.12 ± 2.23 a | 17.94 ± 3.85 a | 23.73 ± 1.89 a |
Distilled water | 2.97 ± 0.28 | 8.49 ± 1.74 a | 17.30 ± 1.39 a | 22.21 ± 2.12 a |
6-Benzyl adenine | 2.41 ± 0.43 | 3.49 ± 0.68 d | 4.66 ± 1.16 c | 6.47 ± 1.27 c |
Chloramphenicol | 2.91 ± 0.54 | 7.34 ± 1.39 ab | 16.88 ± 2.21 a | 22.41 ± 1.94 a |
Enrofloxacin | 2.57 ± 0.35 | 5.95 ± 0.52 bc | 10.40 ± 3.63 b | 13.59 ± 5.26 b |
Olaquindox | 2.34 ± 0.24 | 4.87 ± 1.13 cd | 8.70 ± 5.06 bc | 12.72 ± 6.83 b |
Doxycycline | 2.39 ± 0.18 | 4.11 ± 1.05 cd | 6.29 ± 1.41 bc | 8.61 ± 1.94 bc |
Furazolidone | 2.27 ± 0.52 | 3.18 ± 0.79 d | 4.45 ± 1.81 c | 5.77 ± 2.88 c |
Bud length (cm) | ||||
Tap water | 0.97 ± 0.15 de | 3.77 ± 0.21 ab | 11.33 ± 0.32 a | 17.17 ± 0.95 b |
Distilled water | 1.67 ± 0.12 a | 3.53 ± 0.64 b | 10.67 ± 0.45 a | 15.10 ± 0.40 a |
6-Benzyl adenine | 1.10 ± 0.10 cd | 2.10 ± 0.10 de | 3.80 ± 0.44 d | 4.47 ± 0.55 e |
Chloramphenicol | 1.53 ± 0.15 ab | 4.33 ± 0.29 a | 10.97 ± 0.32 a | 15.63 ± 1.40 ab |
Enrofloxacin | 1.17 ± 0.15 cd | 3.50 ± 0.36 bc | 7.33 ± 0.21 b | 12.50 ± 0.53 c |
Olaquindox | 1.30 ± 0.10 bc | 2.47 ± 0.25 d | 5.00 ± 0.44 c | 8.60 ± 0.82 d |
Doxycycline | 1.03 ± 0.21 cd | 2.80 ± 0.44 cd | 5.57 ± 0.76 c | 8.53 ± 0.21 d |
Furazolidone | 0.70 ± 0.10 e | 1.63 ± 0.32 e | 3.53 ± 0.30 d | 4.47 ± 0.93 e |
Root length (cm) | ||||
Tap water | 1.20 ± 0.10 ab | 6.67 ± 0.65 a | 11.03 ± 0.68 a | 9.83 ± 0.55 a |
Distilled water | 1.40 ± 0.36 ab | 5.97 ± 0.50 a | 8.80 ± 0.70 b | 9.50 ± 2.86 a |
6-Benzyl adenine | 0.97 ± 0.06 bc | 2.07 ± 0.25 de | 2.67 ± 0.21 d | 2.83 ± 0.25 bc |
Chloramphenicol | 1.43 ± 0.15 a | 4.70 ± 0.78 b | 8.13 ± 0.85 b | 9.33 ± 0.67 a |
Enrofloxacin | 1.10 ± 0.10 abc | 3.20 ± 0.66 c | 3.97 ± 0.67 c | 4.17 ± 0.95 b |
Olaquindox | 1.17 ± 0.38 ab | 2.50 ± 0.20 cd | 2.83 ± 0.35 d | 2.87 ± 0.29 bc |
Doxycycline | 0.97 ± 0.25 bc | 1.60 ± 0.36 de | 2.17 ± 0.40 d | 2.20 ± 0.36 bc |
Furazolidone | 0.67 ± 0.12 c | 1.17 ± 0.21 e | 0.73 ± 0.06 e | 1.10 ± 0.20 c |
Groups | Antimicrobial Residues | Mung Bean Sprouts | Circulating Water |
---|---|---|---|
Chloramphenicol | Chloramphenicol | 45.6 ± 4.8 | 82.9 ± 6.9 |
Enrofloxacin | Enrofloxacin | 93.1 ± 2.8 | 84.2 ± 2.9 |
Olaquindox | Olaquindox | 17.6 ± 4.9 | 41.6 ± 2.9 |
Doxycycline | Doxycycline | 37.7 ± 2.0 | 44.1 ± 3.0 |
Furazolidone | Furazolidone | 388.6 ± 18.1 | 458.9 ± 29.9 |
AOZ | 24.1 ± 3.6 | 19.3 ± 3.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Wang, Y.; Wang, G.; Ren, P.; Wu, Y.; He, Q. Effects of Typical Antimicrobials on Growth Performance, Morphology and Antimicrobial Residues of Mung Bean Sprouts. Antibiotics 2022, 11, 807. https://doi.org/10.3390/antibiotics11060807
Cao J, Wang Y, Wang G, Ren P, Wu Y, He Q. Effects of Typical Antimicrobials on Growth Performance, Morphology and Antimicrobial Residues of Mung Bean Sprouts. Antibiotics. 2022; 11(6):807. https://doi.org/10.3390/antibiotics11060807
Chicago/Turabian StyleCao, Jing, Yajie Wang, Guanzhao Wang, Pingping Ren, Yongning Wu, and Qinghua He. 2022. "Effects of Typical Antimicrobials on Growth Performance, Morphology and Antimicrobial Residues of Mung Bean Sprouts" Antibiotics 11, no. 6: 807. https://doi.org/10.3390/antibiotics11060807