Acinetobacter baumannii Infections in Hospitalized Patients, Treatment Outcomes
Abstract
:1. Introduction
2. Methods
2.1. Definitions
2.2. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Microbiological Features
3.3. Antimicrobial Treatment
3.4. Outcomes
4. Discussion
4.1. Monotherapy vs. Combined
4.2. Colistin
4.3. Ceftazidime (CAZ)
4.4. Meropenem
4.5. Piperacillin/Tazobactam
4.6. Tigecycline
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mulin, B.; Talon, D.; Viel, J.-F.; Vincent, C.; Leprat, R.; Thouverez, M.; Michel-Briand, Y. Risk factors for nosocomial colonization with multiresistant Acinetobacter baumannii. Eur. J. Clin. Microbiol. Infect. Dis. 1995, 14, 569–576. [Google Scholar] [CrossRef]
- Ballouz, T.; Aridi, J.; Afif, C.; Irani, J.; Lakis, C.; Nasreddine, R.; Azar, E. Risk Factors, Clinical Presentation, and Outcome of Acinetobacter baumannii Bacteremia. Front. Cell. Infect. Microbiol. 2017, 7, 156. [Google Scholar] [CrossRef]
- Ioannou, P.; Mavrikaki, V.; Kofteridis, D.P. Infective endocarditis by Acinetobacter species systematic review. J. Chemother. 2020, 1–13. [Google Scholar] [CrossRef]
- Hartzell, J.D.; Kim, A.S.; Kortepeter, M.G.; Moran, K.A. Acinetobacter pneumonia review. Medscape Gen. Med. 2007, 9, 4. [Google Scholar]
- Kim, B.-N.; Peleg, A.; Lodise, T.P.; Lipman, J.; Li, J.; Nation, R.; Paterson, D.L. Management of meningitis due to antibiotic-resistant Acinetobacter species. Lancet Infect. Dis. 2009, 9, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, D.M.; Perez, F.; Conger, N.G.; Solomkin, J.S.; Adams, M.D.; Rather, P.N.; Bonomo, R.A. Acinetobacter baumannii-associated skin and soft tissue infections: Recognizing a broadening spectrum of disease. Surg. Infect. 2010, 11, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Q.; Ye, H.; Liu, S. Risk factors for extensive drug-resistance and mortality in geriatric inpatients with bacteremia caused by Acinetobacter baumannii. Am. J. Infect. Control. 2015, 43, 857–860. [Google Scholar] [CrossRef] [PubMed]
- Ellis, D.; Cohen, B.; Liu, J.; Larson, E. Risk factors for hospital-acquired antimicrobial-resistant infection caused by Acinetobacter baumannii. Antimicrob. Resist. Infect. Control 2015, 4, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eliopoulos, G.M.; Maragakis, L.L.; Perl, T.M. Acinetobacter baumannii: Epidemiology, Antimicrobial Resistance, and Treatment Options. Clin. Infect. Dis. 2008, 46, 1254–1263. [Google Scholar]
- Čiginskienė, A.; Dambrauskienė, A.; Rello, J.; Adukauskienė, D. Ventilator-Associated Pneumonia due to Drug-Resistant Acinetobacter baumannii: Risk Factors and Mortality Relation with Resistance Profiles, and Independent Predictors of In-Hospital Mortality. Medicina 2019, 55, 49. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.P.; Shih, S.C.; Wang, N.Y.; Wu, A.Y.; Sun, F.J.; Chow, S.F.; Chen, T.-L.; Yan, T.-R. Risk factors of mortality in patients with carbapenem-resistant Acinetobacter baumannii bacteremia. J. Microbiol. Immunol. Infect. 2016, 49, 934–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States. 2013. Available online: https://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf (accessed on 24 April 2017).
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Vrancianu, C.O.; Gheorghe, I.; Czobor, I.B.; Chifiriuc, M.C. Antibiotic Resistance Profiles, Molecular Mechanisms and Innovative Treatment Strategies of Acinetobacter baumannii. Microorganisms 2020, 8, 935. [Google Scholar] [CrossRef]
- Akers, K.S.; Chaney, C.; Barsoumian, A.; Beckius, M.; Zera, W.; Yu, X.; Guymon, C.; Keen, E.F.; Robinson, B.J.; Mende, K.; et al. Aminoglycoside resistance and susceptibility testing errors in Acinetobacter baumannii-calcoaceticus complex. J. Clin. Microbiol. 2010, 48, 1132–1138. [Google Scholar] [CrossRef] [Green Version]
- Akers, K.S.; Mende, K.; Yun, H.C.; Hospenthal, D.R.; Beckius, M.L.; Yu, X.; Murray, C.K. Tetracycline susceptibility testing and resistance genes in isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus complex from a US military hospital. Antimicrob. Agents Chemother. 2009, 53, 2693–2695. [Google Scholar] [CrossRef] [Green Version]
- Bahador, A.; Raoofian, R.; Taheri, M.; Pourakbari, B.; Hashemizadeh, Z.; Hashemi, F.B. Multidrug resistance among Acinetobacter baumannii isolates from Iran: Changes in antimicrobial susceptibility patterns and genotypic profile. Microb. Drug Resist. 2014, 20, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.-C.; Sheng, W.-H.; Lauderdale, T.-L.; Li, S.-Y.; Wang, J.-T.; Chen, Y.-C.; Chang, S.-C. Molecular epidemiology, antimicrobial susceptibility and carbapenemase resistance determinants among Acinetobacter baumannii clinical isolates in Taiwan. J. Microbiol. Immunol. Infect. 2014, 47, 324–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prashanth, K.; Badrinath, S. In vitro susceptibility pattern of Acinetobacter species to commonly used cephalosporins, quinolones, and aminoglycosides. Indian J. Med. Microbiol. 2004, 22, 97–103. [Google Scholar] [CrossRef]
- Blot, S.; Vandewoude, K.; Colardyn, F. Nosocomial bacteremia involving Acinetobacter baumannii in critically ill patients: A matched cohort study. Intensive Care Med. 2003, 29, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Cofsky, R.; Vangala, K.; Haag, R.; Recco, R.; Maccario, E.; Sathe, S.; Landman, D.; Mayorga, D.; Burgonio, B.; Sepkowitz, D.; et al. The cost of antibiotic resistance: Effect of resistance among Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudmonas aeruginosa on length of hospital stay. Infect. Control Hosp. Epidemiol. 2002, 23, 106–108. [Google Scholar]
- Zilberberg, M.D.; Nathanson, B.H.; Sulham, K.; Fan, W.; Shorr, A.F. Daily cost of delay to adequate antibiotic treatment among patients surviving a hospitalization with community-onset Acinetobacter baumannii pneumonia or sepsis. Crit. Care 2017, 21, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.T.; Sun, J.R.; Wang, Y.C.; Chiu, C.H.; Kuo, S.C.; Chen, T.L.; Ya-Sung, Y. Multicentre study of risk factors for mortality in patients with Acinetobacter bacteraemia receiving colistin treatment. Int. J. Antimicrob. Agents 2020, 55, 105956. [Google Scholar] [CrossRef]
- Matthaiou, D.K.; Michalopoulos, A.; Rafailidis, P.I.; Karageorgopoulos, D.E.; Papaioannou, V.; Ntani, G.; Samonis, G.; Falagas, M.E. Risk factors associated with the isolation of colistin-resistant gram-negative bacteria: A matched case-control study. Crit. Care Med. 2008, 36, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Rayner, C.R.; Nation, R.L.; Owen, R.J.; Spelman, D.; Tan, K.E.; Lisa, L. Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2006, 50, 2946–2950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montero, A.; Ariza, J.; Corbella, X.; Domenech, A.; Cabellos, C.; Ayats, J.; Tubau, F.; Ardanuy, C.; Gudiol, F. Efficacy of colistin versus beta-lactams, aminoglycosides, and rifampin as monotherapy in a mouse model of pneumonia caused by multiresistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2002, 46, 1946–1952. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, G.R.; Guven, T.; Guner, R.; Tufan, Z.K.; Izdes, S.; Tasyaran, M.A.; Acikgoz, Z.C. Colistin alone or combined with sulbactam or carbapenem against A. baumannii in ventilator-associated pneumonia. J. Infect. Dev. Ctries. 2015, 9, 476–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Rahmany, D.; Albeloushi, A.; Alreesi, I.; Alzaabi, A.; Alreesi, M.; Pontiggia, L.; Islam, M.G. Exploring bacterial resistance in Northern Oman, a foundation for implementing evidence-based antimicrobial stewardship program. Int. J. Infect. Dis. 2019, 83, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Falagas, M.E.; Koletsi, P.K.; Bliziotis, I.A. The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. J. Med. Microbiol. 2006, 55, 1619–1629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, R.; Hazell, L.; Sauzet, O.; Cornelius, V. Analysis and reporting of adverse events in randomised controlled trials: A review. BMJ Open 2019, 9, e024537. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute, Standards Development Policies and Process October 2013. Available online: https://www.cdc.gov/labtraining/training-courses/master/antimicrobial-susceptibility-clsi-standards.html (accessed on 28 February 2021).
- Park, H.J.; Cho, J.H.; Kim, H.J.; Han, S.H.; Jeong, S.H.; Byun, M.K. Colistin monotherapy versus colistin/rifampicin combination therapy in pneumonia caused by colistin-resistant Acinetobacter baumannii: A randomised controlled trial. J. Glob. Antimicrob. Resist. 2019, 17, 66–71. [Google Scholar] [CrossRef]
- Salameh, M.; Abou Daher, L.M.; Chartouny, M.; Abi Hanna, P. Colistin monotherapy v/s colistin combination therapy for treatment of Acinetobacter infections, a systematic review. J. Infect. Dev. Ctries. 2018, 12, 23S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, H.; Lee, J.S.; Park, S.Y.; Ko, Y.; Eom, J.S. Colistin Plus Carbapenem versus Colistin Monotherapy in the Treatment of Carbapenem-Resistant Acinetobacter baumannii Pneumonia. Infect. Drug Resist. 2019, 12, 3925–3934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Cortés, L.E.; Cisneros, J.M.; Fernández-Cuenca, F.; Bou, G.; Tomás, M.; Garnacho-Montero, J.; Pascual, A.; Martínez-Martínez, L.; Vila, J.; Pachón, J.; et al. Monotherapy versus combination therapy for sepsis due to multidrug-resistant Acinetobacter baumannii: Analysis of a multicentre prospective cohort. J. Antimicrob. Chemother. 2014, 69, 3119–3126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.Y.; Si, H.J.; Eom, J.S.; Lee, J.S. Survival of carbapenem-resistant Acinetobacter baumannii bacteremia: Colistin monotherapy versus colistin plus meropenem. J. Int. Med. Res. 2019, 47, 5977–5985. [Google Scholar] [CrossRef] [Green Version]
- Schmid, A.; Wolfensberger, A.; Nemeth, J.; Schreiber, P.W.; Sax, H.; Kuster, S.P. Monotherapy versus combination therapy for multidrug-resistant Gram-negative infections: Systematic Review and Meta-Analysis. Sci. Rep. 2019, 9, 15290. [Google Scholar] [CrossRef] [PubMed]
- Katip, W.; Uitrakul, S.; Oberdorfer, P. A Comparison of Colistin versus Colistin Plus Meropenem for the Treatment of Carbapenem-Resistant Acinetobacter baumannii in Critically Ill Patients: A Propensity Score-Matched Analysis. Antibiotics 2020, 9, 647. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fu, Y.; Zhang, J.; Zhao, Y.; Fan, X.; Yu, L.; Wang, Y.; Zhang, X.; Li, C. The efficacy of colistin monotherapy versus combination therapy with other antimicrobials against carbapenem-resistant Acinetobacter baumannii ST2 isolates. J. Chemother. 2020, 32, 359–367. [Google Scholar] [CrossRef]
- Viehman, J.A.; Nguyen, M.H.; Doi, Y. Treatment options for carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii infections. Drugs 2014, 74, 1315–1333. [Google Scholar] [CrossRef] [Green Version]
- Aparicio, J.; Oltra, A.; Llorca, C.; Montalar, J.; Herranz, C.; Gómez-Codina, J.; Pastor, M.; Munárriz, B. Randomised comparison of ceftazidime and imipenem as initial monotherapy for febrile episodes in neutropenic cancer patients. Eur. J. Cancer. 1996, 32, 1739–1743. [Google Scholar] [CrossRef]
- Bizette, G.A.; Brooks, B.J.; Jr Alvarez, S. Ceftazidime as monotherapy for fever and neutropenia: Experience in a community hospital. J. La State Med. Soc. 1994, 146, 448–452. [Google Scholar]
- Chen, X.; Meng, X.; Gao, Q.; Zhang, G.; Gu, H.; Guo, X. Meropenem selection induced overproduction of the intrinsic carbapenemase as well as phenotype divergence in Acinetobacter baumannii. Int. J. Antimicrob. Agents 2017, 50, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wu, Y.; Cao, L.; Yao, D.; Long, M. Is Meropenem as a Monotherapy Truly Incompetent for Meropenem-Nonsusceptible Bacterial Strains? A Pharmacokinetic/Pharmacodynamic Modeling with Monte Carlo Simulation. Front. Microbiol. 2019, 10, 2777. [Google Scholar] [CrossRef] [Green Version]
- Visalli, M.A.; Jacobs, M.R.; Moore, T.D.; Renzi, F.A.; Appelbaum, P.C. Activities of beta-lactams against Acinetobacter genospecies as determined by agar dilution and E-test MIC methods. Antimicrob. Agents Chemother. 1997, 41, 767–770. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.S.; Prado, G.V.; Costa, S.F.; Grinbaum, R.S.; Levin, A.S. Ampicillin/sulbactam compared with polymyxins for the treatment of infections caused by carbapenem-resistant Acinetobacter spp. J. Antimicrob. Chemother. 2008, 61, 1369–1375. [Google Scholar] [CrossRef]
- Jellison, T.K.; McKinnon, P.S.; Rybak, M.J. Epidemiology, resistance, and outcomes of Acinetobacter baumannii bacteremia treated with imipenem-cilastatin or ampicillin-sulbactam. Pharmacotherapy 2001, 21, 142–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smolyakov, R.; Borer, A.; Riesenberg, K.; Schlaeffer, F.; Alkan, M.; Porath, A.; Rimar, D.; Almog, Y.; Gilad, J. Nosocomial multidrug resistant Acinetobacter baumannii bloodstream infection: Risk factors and outcome with ampicillin-sulbactam treatment. J. Hosp. Infect. 2003, 54, 32–38. [Google Scholar] [CrossRef]
- Penwell, W.F.; Shapiro, A.; Giacobbe, R.A.; Gu, R.-F.; Gao, N.; Thresher, J.; McLaughlin, R.E.; Huband, M.; Dejonge, B.L.M.; Ehmann, D.E.; et al. Molecular mechanisms of sulbactam antibacterial activity and resistance determinants in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2015, 59, 1680–1689. [Google Scholar] [CrossRef] [Green Version]
- McGovern, P.C.; Wible, M.; El-Tahtawy, A.; Biswas, P.; Meyer, R.D. All-cause mortality imbalance in the tigecycline phase 3 and 4 clinical trials. Int. J. Antimicrob. Agents 2013, 41, 463–467. [Google Scholar] [CrossRef] [Green Version]
- Prasad, P.; Sun, J.; Danner, R.L.; Natanson, C. Excess deaths associated with tigecycline after approval based on noninferiority trials. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2012, 54, 1699–1709. [Google Scholar] [CrossRef] [Green Version]
- FDA Drug Safety Communication: Increased Risk of Death with Tygacil (tigecycline) Compared to other Antibiotics Used to Treat similar Infections. Rockville, MD: Food and Drug Administration. Available online: http://www.fda.gov/Drugs/DrugSafety/ucm224370.htm (accessed on 1 September 2010).
Susceptibility Pattern (tested) | Blood n = 22 | Respiratory n = 142 | Skin and Soft Tissue n = 105 | Urine n = 42 | Others n = 9 | Average Susceptibility. | Average DDD | Average DOT |
---|---|---|---|---|---|---|---|---|
Amikacin (n = 68) | 4 (18%) | 24 (17%) | 25 (24%) | 13 (33%) | 2 (25%) | (24%) | 9.4 | 5.6 |
Ciprofloxacin (n = 54) | 4 (18%) | 22 (16%) | 18 (18%) | 9 (22%) | 1 (11%) | (17%) | 16.0 | 7.1 |
Colistin (n = 282) | 21 (100%) | 131 (98%) | 92 (99%) | 30 (100%) | 8 (100%) | (99%) | 2.2 | 9.4 |
Co-trimoxazole (n = 112) | 3 (14%) | 39 (28%) | 46 (45%) | 22 (56%) | 2 (22%) | (33%) | 6.8 | 7.2 |
Ceftazidime (n = 57) | 3 (14%) | 21 (15%) | 21 (20%) | 11 (26%) | 1 (11%) | (17%) | 3.3 | 6.0 |
Gentamycin (n = 58) | 3 (15%) | 21 (16%) | 21 (21%) | 11 (27%) | 2 (22%) | (20%) | 29.5 | 4.5 |
Meropenem (n = 52) | 3 (14%) | 16 (12%) | 18 (19%) | 15 (41%) | 0 (0%) | (17%) | 6.4 | 7.8 |
Piperacillin/Tazobactam (n = 58) | 3 (14%) | 22 (15%) | 22 (21%) | 10 (24%) | 1 (11%) | (17%) | 1.3 | 7.0 |
Tigecycline (n = 180) | 13 (87%) | 90 (85%) | 55 (89%) | 19 (86%) | 3 (75%) | (84%) | 142.3 | 8.0 |
Doxycycline (n = 73) | 6 (43%) | 25 (40%) | 25 (50%) | 17 (77%) | 0 (0%) | (42%) | 90.0 | 5.7 |
Variable | Blood No. (%) | Respiratory No. (%) | Skin and Soft Tissue No. (%) | Urine No. (%) | Others No. (%) |
---|---|---|---|---|---|
Total (n = 320) | 22 (7%) | 142 (44%) | 105 (33%) | 42 (13%) | 9 (3%) |
Male Gender (n = 180) | 15 (68%) | 92 (65%) | 59 (56%) | 8 (19%) | 6 (67%) |
Admission to Critical Care (n = 92) | 9 (41%) | 59 (42%) | 18 (17%) | 3 (7%) | 3 (33%) |
Resistance (MDR) (n = 260) | 18 (82%) | 120 (85%) | 84 (80%) | 30 (71%) | 8 (89%) |
Hospital Acquired (n = 190) | 15 (68%) | 92 (65%) | 55 (52%) | 23 (55%) | 5 (56%) |
90-day recurrence (n = 8) | 1 (5%) | 3 (2%) | 4 (4%) | 0 (0%) | 0 (0%) |
Adverse Event (n = 147) | 9 (41%) | 93 (65%) | 37 (35%) | 7 (17%) | 1 (11%) |
Combined Therapy (n = 175) | 14 (64%) | 92 (65%) | 49 (47%) | 13 (31%) | 7 (78%) |
Pip/Taz Monotherapy (n = 35) | 4 (18%) | 16 (11%) | 12 (11%) | 3 (7%) | 0 (0%) |
Pip/Taz Combined Therapy (n = 54) | 4 (18%) | 29 (20%) | 16 (15%) | 2 (5%) | 3 (33%) |
Pip/Taz based (n = 89) | 8 (36%) | 45 (32%) | 28 (27%) | 5 (12%) | 3 (33%) |
CST Monotherapy (n = 37) | 1 (5%) | 11 (8%) | 18 (17%) | 7 (17%) | 0 (0%) |
CST Combined Therapy (n = 125) | 8 (36%) | 70 (49%) | 35 (33%) | 8 (19%) | 4 (44%) |
CST based (n = 162) | 9 (41%) | 81 (57%) | 53 (50%) | 15 (36%) | 4 (44%) |
CAZ Monotherapy (n = 31) | 1 (5%) | 11 (8%) | 9 (9%) | 9 (21%) | 1 (11%) |
MEM Monotherapy (n = 15) | 0 (0%) | 4 (3%) | 6 (6%) | 4 (10%) | 1 (11%) |
MEM Combined Therapy (n = 85) | 8 (36%) | 46 (32%) | 22 (21%) | 6 (14%) | 3 (33%) |
MEM based (n = 100) | 8 (36%) | 50 (35%) | 28 (27%) | 10 (24%) | 4 (44%) |
Other Monotherapies (n = 27) | 2 (9%) | 8 (6%) | 11 (10%) | 6 (14%) | 0 (0%) |
TGC based Therapy (n = 37) | 4 (18%) | 25 (18%) | 6 (6%) | 0 (0%) | 2 (22%) |
CST + MEM based (n = 59) | 4 (18%) | 36 (25%) | 15 (14%) | 3 (7%) | 1 (11%) |
Polymicrobial Infections (n = 239) | 17 (77%) | 115 (81%) | 79 (75%) | 21 (50%) | 7 (78%) |
≥ 3 comorbidities (n = 127) | 8 (36%) | 58 (41%) | 49 (47%) | 9 (21%) | 3 (33%) |
14 Days Mortality | 28 Days Mortality | 90 Days Mortality | Adverse Events | LOS | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p Value (Odd Ratios) | p Value (Odd Ratios) | p Value (Odd Ratios) | p Value (Odd Ratios) | ± Median (p Value) | |||||||||||||||||||||
Total | Hospital | Community | Sensitive | MDR | Total | Hospital | Community | Sensitive | MDR | Total | Hospital | Community | Sensitive | MDR | Total | Hospital | Community | Sensitive | MDR | Total | Hospital | Community | Sensitive | MDR | |
Monotherapy | 0.983 | 0.795 | 0.817 | 0.736 | 0.677 | 0.047 | 0.795 | 0.140 | 0.879 | 0.155 | 0.001 | 0.028 | 0.027 | 0.484 | 0.018 | 0.001 | 0.280 | 0.002 | 0.047 | 0.055 | −12 | −3 | −8 | −8 | −9 |
(0.99) | (0.91) | (1.10) | (0.77) | (1.13) | (0.62) | (0.91) | (0.57) | (0.89) | (0.68) | (0.46) | (0.50) | (0.44) | (0.61) | (0.54) | (0.47) | (0.72) | (0.32) | (0.28) | (0.61) | (0.01) | (0.98) | (0.02) | (0.18) | (0.12) | |
Pip/Taz monotherapy | 0.015 | 0.079 | 0.088 | 0.882 | 0.005 | 0.148 | 0.079 | 0.268 | 1.000 | 0.061 | 0.492 | 0.593 | 0.489 | 0.888 | 0.230 | 0.295 | 0.902 | 0.048 | 0.899 | 0.138 | −9 | −16.5 | −2 | 7.5 | −12 |
(2.55) | (2.82) | (2.43) | (1.14) | (3.42) | (1.71) | (2.82) | (1.73) | (1.00) | (2.22) | (1.28) | (1.35) | (1.40) | (0.89) | (1.66) | (1.46) | (0.93) | (2.60) | (1.10) | (1.89) | (0.09) | (0.33) | (0.39) | (0.64) | (0.13) | |
CST monotherapy | 0.047 | 0.010 | 0.876 | *** | 0.031 | 0.061 | 0.010 | 0.749 | *** | 0.024 | 0.290 | 0.182 | 0.971 | *** | 0.103 | 0.157 | 0.202 | 0.448 | *** | 0.049 | 17 | 11 | 4 | *** | 14 |
(0.38) | (0.14) | (0.90) | *** | (0.35) | (0.46) | (0.14) | (0.82) | *** | (0.39) | (0.68) | (0.54) | (0.98) | *** | (0.55) | (0.60) | (0.56) | (0.63) | *** | (0.49) | (0.30) | (0.18) | (0.954) | *** | (0.13) | |
CAZ monotherapy | 0.143 | 0.362 | 0.226 | 0.615 | 0.988 | 0.036 | 0.362 | 0.105 | 0.335 | 0.981 | 0.000 | 0.031 | 0.044 | 0.459 | 0.980 | 0.001 | 0.064 | 0.030 | 0.485 | 0.007 | −14 | −16 | −7 | −5 | −16 |
(0.47) | (0.41) | (0.47) | (1.43) | (0.00) | (0.38) | (0.41) | (0.41) | (1.92) | (0.00) | (0.26) | (0.15) | (0.34) | (1.64) | (0.00) | (0.25) | (0.25) | (0.31) | (0.64) | (0.17) | (0.20) | (0.53) | (0.28) | (0.93) | (0.45) | |
MEM monotherapy | 0.341 | 0.709 | 0.343 | 0.910 | 0.168 | 0.902 | 0.709 | 0.749 | 0.826 | 0.535 | 0.568 | 0.417 | 0.935 | 0.747 | 0.992 | 0.116 | 0.764 | *** | 0.483 | 0.304 | −13 | −12 | −4 | −1.5 | −16 |
(1.74) | (1.39) | (2.11) | (0.88) | (2.66) | (1.07) | (1.39) | (1.28) | (0.78) | (1.54) | (0.73) | (0.52) | (1.06) | (0.70) | (0.99) | (0.41) | (1.26) | *** | (0.48) | (0.49) | (0.33) | (0.65) | (0.52) | (0.45) | (0.58) | |
Other monotherapies | 0.939 | 0.381 | 0.315 | 0.282 | 0.392 | 0.247 | 0.381 | 0.074 | 0.222 | 0.914 | 0.038 | 0.472 | 0.036 | 0.174 | 0.359 | 0.329 | 0.275 | 0.027 | 0.296 | 0.790 | −13 | −13 | −6 | −3.5 | −13 |
(0.96) | (1.78) | (0.48) | (0.35) | (1.65) | (0.59) | (1.78) | (0.29) | (0.31) | (0.94) | (0.40) | (0.64) | (0.24) | (0.27) | (0.60) | (0.67) | (1.96) | (0.22) | (0.44) | (1.15) | (0.13) | (0.36) | (0.40) | (0.60) | (0.28) | |
CST combined | 0.008 | 0.038 | 0.062 | 0.731 | 0.001 | 0.439 | 0.038 | 0.185 | 0.801 | 0.976 | 0.003 | 0.072 | 0.033 | 0.194 | 0.079 | 0.049 | 0.779 | 0.053 | 0.343 | 0.384 | 18 | 11 | 9 | 25 | 15 |
(0.47) | (0.48) | (0.33) | (1.53) | (0.38) | (1.21) | (0.48) | (1.80) | (1.36) | (1.01) | (1.99) | (1.70) | (2.52) | (4.09) | (1.55) | (1.57) | (1.09) | (2.31) | (2.73) | (1.24) | (0.17) | (0.61) | (0.82) | (0.28) | (0.60) | |
MEM combined | 0.629 | 0.895 | 0.310 | 0.479 | 0.899 | 0.064 | 0.895 | 0.035 | 0.562 | 0.158 | 0.006 | 0.264 | 0.003 | 0.177 | 0.050 | 0.044 | 0.623 | 0.020 | 0.088 | 0.279 | 7 | 4 | 8.5 | 11 | 3.5 |
(1.16) | (0.95) | (1.66) | (1.96) | (1.04) | (1.64) | (0.95) | (2.59) | (1.72) | (1.49) | (2.02) | (1.42) | (3.77) | (3.23) | (1.70) | (1.67) | (1.17) | (2.81) | (4.10) | (1.34) | (0.97) | (0.41) | (0.78) | (0.55) | (0.61) | |
Pip/Taz combined | 0.809 | 0.561 | 0.719 | 0.994 | 0.760 | 0.377 | 0.561 | 0.197 | 0.994 | 0.444 | 0.328 | 0.901 | 0.168 | 0.994 | 0.481 | 0.954 | 0.180 | 0.087 | 0.846 | 0.639 | 1.5 | −3 | 6 | −2 | −1 |
(1.09) | (1.29) | (0.81) | (0.00) | (1.12) | (1.32) | (1.29) | (1.91) | (0.00) | (1.28) | (1.34) | (1.05) | (1.97) | (0.00) | (1.25) | (1.02) | (0.60) | (2.32) | (1.28) | (0.86) | (0.05) | (0.72) | (0.00) | (0.04) | (0.19) | |
TGC combined | 0.015 | 0.002 | 0.807 | *** | 0.022 | 0.000 | 0.002 | 0.061 | *** | 0.000 | 0.000 | 0.000 | 0.023 | *** | 0.000 | 0.000 | 0.002 | 0.000 | *** | 0.000 | 13 | 0 | 13.5 | *** | 10 |
(2.55) | (3.99) | (0.82) | *** | (2.46) | (5.79) | (3.99) | (3.50) | *** | (5.26) | (7.29) | (8.95) | (4.67) | *** | (6.23) | (6.84) | (4.46) | (18.0) | *** | (5.93) | (0.02) | (0.56) | (0.00) | *** | (0.06) | |
CST based therapy | 0.000 | 0.000 | 0.090 | 0.731 | 0.000 | 0.694 | 0.000 | 0.333 | 0.801 | 0.130 | 0.027 | 0.328 | 0.062 | 0.194 | 0.521 | 0.304 | 0.568 | 0.222 | 0.343 | 0.611 | 22 | 17.5 | 8 | 25 | 19.5 |
(0.36) | (0.28) | (0.44) | (1.53) | (0.25) | (0.91) | (0.28) | (1.47) | (1.36) | (0.67) | (1.66) | (1.35) | (2.05) | (4.09) | (1.18) | (1.26) | (0.84) | (1.60) | (2.73) | (0.88) | (0.04) | (0.15) | (0.81) | (0.27) | (0.34) | |
MEM based | 0.363 | 0.982 | 0.145 | 0.625 | 0.899 | 0.068 | 0.982 | 0.035 | 0.757 | 0.158 | 0.018 | 0.440 | 0.006 | 0.382 | 0.058 | 0.221 | 0.550 | 0.371 | 0.370 | 0.511 | 3.5 | 2.5 | 4.5 | 5 | 1 |
(1.29) | (1.01) | (1.94) | (1.46) | (1.04) | (1.59) | (1.01) | (2.39) | (1.27) | (1.49) | (1.79) | (1.27) | (3.08) | (1.88) | (1.65) | (1.34) | (1.20) | (1.44) | (1.82) | (1.19) | (0.63) | (0.32) | (0.92) | (0.93) | (0.48) | |
Pip/Taz based | 0.051 | 0.107 | 0.262 | 0.752 | 0.760 | 0.079 | 0.107 | 0.058 | 0.630 | 0.444 | 0.194 | 0.666 | 0.103 | 0.522 | 0.163 | 0.436 | 0.209 | 0.004 | 0.827 | 0.585 | −4 | −10.5 | 3 | 3 | −8 |
(1.75) | (1.85) | (1.63) | (0.77) | (1.12) | (1.59) | (1.85) | (2.12) | (0.67) | (1.28) | (1.39) | (1.16) | (1.88) | (0.60) | (1.47) | (1.22) | (0.66) | (3.10) | (1.16) | (1.16) | (0.65) | (0.36) | (0.09) | (0.52) | (0.86) | |
TGC based | 0.028 | 0.006 | 0.807 | *** | 0.039 | 0.000 | 0.006 | 0.061 | *** | 0.000 | 0.000 | 0.000 | 0.023 | *** | 0.000 | 0.000 | 0.003 | 0.000 | *** | 0.000 | 13 | 1 | 12.5 | *** | 10 |
(2.31) | (3.41) | (0.82) | *** | (2.22) | (4.85) | (3.41) | (3.50) | *** | (4.39) | (5.61) | (5.85) | (4.67) | *** | (4.77) | (6.08) | (3.91) | (18.0) | *** | (5.27) | (0.02) | (0.50) | (0.00) | *** | (0.08) | |
CST+ Mem based | 0.049 | 0.181 | 0.095 | 0.731 | 0.022 | 0.501 | 0.181 | 0.381 | 0.801 | 0.760 | 0.035 | 0.219 | 0.090 | 0.194 | 0.174 | 0.157 | 0.943 | 0.033 | 0.343 | 0.447 | 18 | 5 | 12 | 25 | 15 |
(0.47) | (0.56) | (0.23) | (1.53) | (0.40) | (1.23) | (0.56) | (1.67) | (1.36) | (1.10) | (1.84) | (1.52) | (2.63) | (4.09) | (1.51) | (1.51) | (0.98) | (3.42) | (2.73) | (1.26) | (0.67) | (0.53) | (0.49) | (0.27) | (0.95) |
Comorbid Condition | Combined Therapy (n = 175) | Monotherapy (n = 145) | p Value | ||
---|---|---|---|---|---|
No of comorbidities Median (IQR) | 2 (1–3) | 2 (0-3) | 0.29 | ||
Age Median (IQR) | 62.72 (39.2–73.2) | 62.84 (38.5–76.3) | 0.80 | ||
Diabetes mellites | 77 | 44% | 54 | 37% | 0.22 |
Chronic renal failure | 36 | 21% | 22 | 15% | 0.21 |
Active malignancy | 7 | 4% | 7 | 5% | 0.72 |
Immuno-suppressed | 4 | 2% | 5 | 3% | 0.53 |
Chronic Cardiac Diseases | 100 | 57% | 78 | 54% | 0.55 |
Chronic Resp. Disease | 20 | 11% | 15 | 10% | 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrahmany, D.; Omar, A.F.; Harb, G.; El Nekidy, W.S.; Ghazi, I.M. Acinetobacter baumannii Infections in Hospitalized Patients, Treatment Outcomes. Antibiotics 2021, 10, 630. https://doi.org/10.3390/antibiotics10060630
Alrahmany D, Omar AF, Harb G, El Nekidy WS, Ghazi IM. Acinetobacter baumannii Infections in Hospitalized Patients, Treatment Outcomes. Antibiotics. 2021; 10(6):630. https://doi.org/10.3390/antibiotics10060630
Chicago/Turabian StyleAlrahmany, Diaa, Ahmed F. Omar, Gehan Harb, Wasim S. El Nekidy, and Islam M. Ghazi. 2021. "Acinetobacter baumannii Infections in Hospitalized Patients, Treatment Outcomes" Antibiotics 10, no. 6: 630. https://doi.org/10.3390/antibiotics10060630
APA StyleAlrahmany, D., Omar, A. F., Harb, G., El Nekidy, W. S., & Ghazi, I. M. (2021). Acinetobacter baumannii Infections in Hospitalized Patients, Treatment Outcomes. Antibiotics, 10(6), 630. https://doi.org/10.3390/antibiotics10060630