Polypyrrole-Modified Saccharomyces cerevisiae Used in Microbial Fuel Cell
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Yeast Sample Preparation
2.2.2. Investigation of Viability of Polypyrrole-Modified Yeast
2.2.3. Construction of Graphite Electrodes with Yeast Modification
2.2.4. Voltammetry Measurements
2.2.5. MFC Measurements of Power Density
3. Results
3.1. Evaluation of Yeast Viability
3.2. Voltammetry Measurements of MFC
3.3. MFC Power Density Measurements
4. Discussion
Anode | Anode Material/Electron Donor | Power Density, mW m−2 | Ref. |
---|---|---|---|
Mixed culture on PANI-graphene | carbon cloth/acetate | 884 | [35] |
Shewanella xiamenensis on BC-PANI | BC/glucose | 179.4 | [36] |
Shewanella loihica on PANI and carbon nanotubes | APTES, ITO/sodium lactate | 34.5 | [37] |
Mixed culture on PEDOT:PSS-TEG | carbon felt/glucose | 82 | [38] |
Mixed culture on PEDOT:PSS | carbon veil/urine | 68.7 | [39] |
Mixed culture on MgCoO2-PEDOT:PSS | nickel foam/wastewater | 0.54 | [25] |
Saccharomyces cerevisiae on PEI and one of the QS molecules (phenylethanol, ryptophol, and tyrosol) | CF/glucose | 159 * 156 135 | [26] |
Saccharomyces cerevisiae on PEI and CNTs | CNTs/glucose | 344 | [40] |
Saccharomyces cerevisiae on PEI and AuNPs | CF/glucose | 2771 | [41] |
Saccharomyces cerevisiae on PEI, with SDBS and FeMnNPs | CF/glucose | 5838 | [24] |
Mixed culture on PPy | stainless steel/wastewater | 1190.94 | [27] |
Mixed culture on PPy | CMC-CNT carbon brush/acetate | 2970 | [28] |
S. Cerevisiae on PPy | graphite rod/glucose | 47.12 | [15] |
S. Cerevisiae on PPy-AuNP’s | graphite rod/glucose and wastewater | 61.1 179.2 | [12] |
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbasian Hamedani, E.; Abasalt, A.; Talebi, S. Application of Microbial Fuel Cells in Wastewater Treatment and Green Energy Production: A Comprehensive Review of Technology Fundamentals and Challenges. Fuel 2024, 370, 131855. [Google Scholar] [CrossRef]
- AlSayed, A.; Soliman, M.; Eldyasti, A. Microbial Fuel Cells for Municipal Wastewater Treatment: From Technology Fundamentals to Full-Scale Development. Renew. Sustain. Energy Rev. 2020, 134, 110367. [Google Scholar] [CrossRef]
- Hassan, M.; Kanwal, S.; Singh, R.S.; Ali SA, M.; Anwar, M.; Zhao, C. Current Challenges and Future Perspectives Associated with Configuration of Microbial Fuel Cell for Simultaneous Energy Generation and Wastewater Treatment. Int. J. Hydrogen Energy 2024, 50, 323–350. [Google Scholar] [CrossRef]
- Boas, J.V.; Oliveira, V.B.; Simões, M.; Pinto, A.M.F.R. Review on Microbial Fuel Cells Applications, Developments and Costs. J. Environ. Manag. 2022, 307, 114525. [Google Scholar] [CrossRef]
- Bruzaite, I.; Rozene, J.; Morkvenaite-Vilkonciene, I.; Ramanavicius, A. Towards Microorganism-Based Biofuel Cells: The Viability of Saccharomyces Cerevisiae Modified by Multiwalled Carbon Nanotubes. Nanomaterials 2020, 10, 954. [Google Scholar] [CrossRef]
- Rozene, J.; Morkvenaite-Vilkonciene, I.; Bruzaite, I.; Dzedzickis, A.; Ramanavicius, A. Yeast-Based Microbial Biofuel Cell Mediated by 9,10-Phenantrenequinone. Electrochim. Acta 2021, 373, 137918. [Google Scholar] [CrossRef]
- Rozene, J.; Morkvenaite-Vilkonciene, I.; Bruzaite, I.; Zinovicius, A.; Ramanavicius, A. Baker’s Yeast-Based Microbial Fuel Cell Mediated by 2-Methyl-1,4-Naphthoquinone. Membranes 2021, 11, 182. [Google Scholar] [CrossRef]
- Orak, C. Application of Response Surface Methodology for Bioenergy Generation in a Yeast-Based Microbial Fuel Cell. RSC Adv. 2024, 14, 34356–34361. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, J.; Shinde, S.; Wang, X.; Li, Y.; Dai, Y.; Ren, J.; Zhang, P.; Liu, X. Simultaneous Wastewater Treatment and Energy Harvesting in Microbial Fuel Cells: An Update on the Biocatalysts. RSC Adv. 2020, 10, 25874–25887. [Google Scholar] [CrossRef] [PubMed]
- Hemdan, B.A.; El-Taweel, G.E.; Naha, S.; Goswami, P. Bacterial Community Structure of Electrogenic Biofilm Developed on Modified Graphite Anode in Microbial Fuel Cell. Sci. Rep. 2023, 13, 1255. [Google Scholar] [CrossRef]
- Wang, X.; Gu, X.; Yuan, C.; Chen, S.; Zhang, P.; Zhang, T.; Yao, J.; Chen, F.; Chen, G. Evaluation of Biocompatibility of Polypyrrole in Vitro and in Vivo. J. Biomed. Mater. Res. A 2004, 68, 411–422. [Google Scholar] [CrossRef]
- Kižys, K.; Pirštelis, D.; Morkvėnaitė-Vilkončienė, I. Effect of Gold Nanoparticles in Microbial Fuel Cells Based on Polypyrrole-Modified Saccharomyces Cerevisiae. Biosensors 2024, 14, 572. [Google Scholar] [CrossRef] [PubMed]
- Andriukonis, E.; Ramanaviciene, A.; Ramanavicius, A. Synthesis of Polypyrrole Induced by [Fe(CN)6]3− and Redox Cycling of [Fe(CN)6]4−/[Fe(CN)6]3−. Polymers 2018, 10, 749. [Google Scholar] [CrossRef] [PubMed]
- Andriukonis, E.; Stirke, A.; Garbaras, A.; Mikoliunaite, L.; Ramanaviciene, A.; Remeikis, V.; Thornton, B.; Ramanavicius, A. Yeast-Assisted Synthesis of Polypyrrole: Quantification and Influence on the Mechanical Properties of the Cell Wall. Colloids Surf. B Biointerfaces 2018, 164, 224–231. [Google Scholar] [CrossRef]
- Zinovicius, A.; Rozene, J.; Merkelis, T.; Bruzaitė, I.; Ramanavicius, A.; Morkvenaite-Vilkonciene, I.; Bruzaite, I.; Ramanavicius, A.; Morkvenaite-Vilkonciene, I.; Bruzaitė, I.; et al. Evaluation of a Yeast–Polypyrrole Biocomposite Used in Microbial Fuel Cells. Sensors 2022, 22, 327. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Du, P.; Chen, Y.; Lu, H.; Cheng, X.; Chang, B.; Wang, Z. Advances in Microbial Fuel Cells for Wastewater Treatment. Renew. Sustain. Energy Rev. 2017, 71, 388–403. [Google Scholar] [CrossRef]
- Roy, H.; Rahman, T.U.; Tasnim, N.; Arju, J.; Rafid, M.M.; Islam, M.R.; Pervez, M.N.; Cai, Y.; Naddeo, V.; Islam, M.S. Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater Treatment. Membranes 2023, 13, 490. [Google Scholar] [CrossRef]
- Ramanavicius, A.; Andriukonis, E.; Stirke, A.; Mikoliunaite, L.; Balevicius, Z.; Ramanaviciene, A. Synthesis of Polypyrrole within the Cell Wall of Yeast by Redox-Cycling of [Fe(CN)6]3−/[Fe(CN)6]4−. Enzym. Microb. Technol. 2016, 83, 40–47. [Google Scholar] [CrossRef]
- Priya, A.K.; Subha, C.; Kumar, P.S.; Suresh, R.; Rajendran, S.; Vasseghian, Y.; Soto-Moscoso, M. Advancements on Sustainable Microbial Fuel Cells and Their Future Prospects: A Review. Environ. Res. 2022, 210, 112930. [Google Scholar] [CrossRef]
- Sharma, A.; Chhabra, M. The Versatility of Microbial Fuel Cells as Tools for Organic Matter Monitoring. Bioresour. Technol. 2023, 377, 128949. [Google Scholar] [CrossRef]
- Selvasembian, R.; Mal, J.; Rani, R.; Sinha, R.; Agrahari, R.; Joshua, I.; Santhiagu, A.; Pradhan, N. Recent Progress in Microbial Fuel Cells for Industrial Effluent Treatment and Energy Generation: Fundamentals to Scale-up Application and Challenges. Bioresour. Technol. 2022, 346, 126462. [Google Scholar] [CrossRef] [PubMed]
- Duarte, K.D.Z.; Kwon, Y. Enhanced Extracellular Electron Transfer of Yeast-Based Microbial Fuel Cells via One Pot Substrate-Bound Growth Iron-Manganese Oxide Nanoflowers. J. Power Sources 2020, 474, 228496. [Google Scholar] [CrossRef]
- Shetty, B.H.; Sundramoorthy, A.K.; Annamalai, J.; Murugan, P.; Atchudan, R.; Arya, S.; Alothman, A.A.; Ouladsmane, M. Fabrication of High-Performance MgCoO2/PEDOT:PSS@Nickel Foam Anode for Bioelectricity Generation by Microbial Fuel Cells. J. Nanomater. 2022, 2022, 6358852. [Google Scholar] [CrossRef]
- Christwardana, M.; Frattini, D.; Duarte, K.D.Z.; Accardo, G.; Kwon, Y. Carbon Felt Molecular Modification and Biofilm Augmentation via Quorum Sensing Approach in Yeast-Based Microbial Fuel Cells. Appl. Energy 2019, 238, 239–248. [Google Scholar] [CrossRef]
- Pu, K.B.; Ma, Q.; Cai, W.F.; Chen, Q.Y.; Wang, Y.H.; Li, F.J. Polypyrrole Modified Stainless Steel as High Performance Anode of Microbial Fuel Cell. Biochem. Eng. J. 2018, 132, 255–261. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, L.; An, L. Electricity Generation and Storage in Microbial Fuel Cells with Porous Polypyrrole-Base Composite Modified Carbon Brush Anodes. Renew. Energy 2020, 162, 2220–2226. [Google Scholar] [CrossRef]
- Xu, C.; Sun, S.; Li, Y.; Gao, Y.; Zhang, W.; Tian, L.; Li, T.; Du, Q.; Cai, J.; Zhou, L. Methane Emission Reduction Oriented Extracellular Electron Transfer and Bioremediation of Sediment Microbial Fuel Cell: A Review. Sci. Total Environ. 2023, 874, 162508. [Google Scholar] [CrossRef]
- Aghababaie, M.; Farhadian, M.; Jeihanipour, A.; Biria, D. Effective Factors on the Performance of Microbial Fuel Cells in Wastewater Treatment—A Review. Environ. Technol. Rev. 2015, 4, 62–87. [Google Scholar] [CrossRef]
- Yang, J.; Cao, X.; Sun, Y.; Yang, G.; Yi, W. Recovery of Microbial Fuel Cells with High COD Molasses Wastewater and Analysis of the Microbial Community. Biomass Bioenergy 2022, 161, 106450. [Google Scholar] [CrossRef]
- Yang, R.; Liu, M.; Yang, Q. Microbial Fuel Cell Affected the Filler Pollution Accumulation of Constructed Wetland in the Lab-Scale and Pilot-Scale Coupling Reactors. Chem. Eng. J. 2022, 429, 132208. [Google Scholar] [CrossRef]
- Hou, B.; Liu, X.; Zhang, R.; Li, Y.; Liu, P.; Lu, J. Investigation and Evaluation of Membrane Fouling in a Microbial Fuel Cell-Membrane Bioreactor Systems (MFC-MBR). Sci. Total Environ. 2022, 814, 152569. [Google Scholar] [CrossRef]
- Li, X.; Lu, Y.; Luo, H.; Liu, G.; Torres, C.I.; Zhang, R. Effect of PH on Bacterial Distributions within Cathodic Biofilm of the Microbial Fuel Cell with Maltodextrin as the Substrate. Chemosphere 2021, 265, 129088. [Google Scholar] [CrossRef]
- Ramesh, P.; Gupta, R.; Koventhan, C.; Muralitharan, G.; Lo, A.-Y.; Huang, Y.-J.; Ramasamy, S. Recent Trends in the Use of Electrode Materials for Microbial Fuel Cells Accentuating the Potential of Photosynthetic Cyanobacteria and Microalgae: A Review. Processes 2025, 13, 1348. [Google Scholar] [CrossRef]
- Jalili, P.; Ala, A.; Nazari, P.; Jalili, B.; Ganji, D.D. A Comprehensive Review of Microbial Fuel Cells Considering Materials, Methods, Structures, and Microorganisms. Heliyon 2024, 10, e25439. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Li, X.; Ren, Y.; Wang, X. In-Situ Modified Carbon Cloth with Polyaniline/Graphene as Anode to Enhance Performance of Microbial Fuel Cell. Int. J. Hydrogen Energy 2016, 41, 11369–11379. [Google Scholar] [CrossRef]
- Truong, D.H.; Dam, M.S.; Bujna, E.; Rezessy-Szabo, J.; Farkas, C.; Vi, V.N.H.; Csernus, O.; Nguyen, V.D.; Gathergood, N.; Friedrich, L.; et al. In Situ Fabrication of Electrically Conducting Bacterial Cellulose-Polyaniline-Titanium-Dioxide Composites with the Immobilization of Shewanella Xiamenensis and Its Application as Bioanode in Microbial Fuel Cell. Fuel 2021, 285, 119259. [Google Scholar] [CrossRef]
- Wu, W.; Niu, H.; Yang, D.; Wang, S.; Jiang, N.; Wang, J.; Lin, J.; Hu, C. Polyaniline/Carbon Nanotubes Composite Modified Anode via Graft Polymerization and Self-Assembling for Microbial Fuel Cells. Polymers 2018, 10, 759. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, J.; Shetty, B.H.; Ganapathy, D.; Murugan, P.; Atchudan, R.; Umapathy, D.; Khosla, A.; Sundramoorthy, A.K. Thermally Expanded Graphite Incorporated with PEDOT:PSS Based Anode for Microbial Fuel Cells with High Bioelectricity Production. J. Electrochem. Soc. 2022, 169, 017515. [Google Scholar] [CrossRef]
- Salar-Garcia, M.J.; Montilla, F.; Quijada, C.; Morallon, E.; Ieropoulos, I. Improving the Power Performance of Urine-Fed Microbial Fuel Cells Using PEDOT-PSS Modified Anodes. Appl. Energy 2020, 278, 115528. [Google Scholar] [CrossRef]
- Christwardana, M.; Kwon, Y. Yeast and Carbon Nanotube Based Biocatalyst Developed by Synergetic Effects of Covalent Bonding and Hydrophobic Interaction for Performance Enhancement of Membraneless Microbial Fuel Cell. Bioresour. Technol. 2017, 225, 175–182. [Google Scholar] [CrossRef]
- Duarte, K.D.Z.; Frattini, D.; Kwon, Y. High Performance Yeast-Based Microbial Fuel Cells by Surfactant-Mediated Gold Nanoparticles Grown atop a Carbon Felt Anode. Appl. Energy 2019, 256, 113912. [Google Scholar] [CrossRef]
Sample | CFU/mL |
---|---|
Yeast cells treated with an 8 mM concentration of polypyrrole solution | (2.5 ± 0.5) ×∙107 |
Yeast cells treated with a 25 mM concentration of polypyrrole solution | (1.6 ± 0.3) ×∙107 |
Yeast cells treated with a 50 mM concentration of polypyrrole solution | (1.0 ± 0.2) ×∙107 |
Yeast cells treated with a 100 mM concentration of polypyrrole solution | (0.6 ± 0.1)∙× 107 |
Untreated yeast cells (control) | (5.0 ± 1.0) ×∙107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kižys, K.; Pirštelis, D.; Bružaitė, I.; Morkvėnaitė, I. Polypyrrole-Modified Saccharomyces cerevisiae Used in Microbial Fuel Cell. Biosensors 2025, 15, 519. https://doi.org/10.3390/bios15080519
Kižys K, Pirštelis D, Bružaitė I, Morkvėnaitė I. Polypyrrole-Modified Saccharomyces cerevisiae Used in Microbial Fuel Cell. Biosensors. 2025; 15(8):519. https://doi.org/10.3390/bios15080519
Chicago/Turabian StyleKižys, Kasparas, Domas Pirštelis, Ingrida Bružaitė, and Inga Morkvėnaitė. 2025. "Polypyrrole-Modified Saccharomyces cerevisiae Used in Microbial Fuel Cell" Biosensors 15, no. 8: 519. https://doi.org/10.3390/bios15080519
APA StyleKižys, K., Pirštelis, D., Bružaitė, I., & Morkvėnaitė, I. (2025). Polypyrrole-Modified Saccharomyces cerevisiae Used in Microbial Fuel Cell. Biosensors, 15(8), 519. https://doi.org/10.3390/bios15080519