Choline Oxidase-Incorporated ATRP-Based Cerium Nanogels as Nanozymes for Colorimetric Detection of Hydrogen Peroxide and Choline
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Material Characterizations
2.3. Synthesis of Ce@SiO2 NGs and Ce@SiO2 NGs Entrapping COx (COx@Ce@SiO2 NGs)
2.4. Evaluation of Peroxidase-like Activity of Ce@SiO2 NGs
2.5. Quantitative Determination of H2O2 Using Ce@SiO2 NGs
2.6. Quantitative Determination of Choline Using COx@Ce@SiO2 NGs
2.7. Detection of H2O2 and Choline in Milk and Infant Formula Samples
3. Results and Discussion
3.1. Synthesis and Characterization of Ce@SiO2 NGs
3.2. Investigation of Peroxidase-like Activity of Ce@SiO2 NGs
3.3. Quantitative Detection of H2O2 Using Ce@SiO2 NGs
3.4. Quantitative Detection of Choline Using COx@Ce@SiO2 NGs
3.5. Choline and H2O2 Detection in Milk and Infant Formula Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeisel, S.H. Nutritional importance of choline for brain development. J. Am. Coll. Nutr. 2004, 23 (Suppl. S6), 621S–626S. [Google Scholar] [CrossRef]
- Moretti, A.; Paoletta, M.; Liguori, S.; Bertone, M.; Toro, G.; Iolascon, G. Choline: An essential nutrient for skeletal muscle. Nutrients 2020, 12, 2144. [Google Scholar] [CrossRef]
- Cater, R.J.; Mukherjee, D.; Gil-Iturbe, E.; Erramilli, S.K.; Chen, T.; Koo, K.; Santander, N.; Reckers, A.; Kloss, B.; Gawda, T.; et al. Structural and molecular basis of choline uptake into the brain by FLVCR2. Nature 2024, 629, 704–709. [Google Scholar] [CrossRef]
- Arai, T.; Tanaka, M.; Goda, N. HIF-1-dependent lipin1 induction prevents excessive lipid accumulation in choline-deficient diet-induced fatty liver. Sci. Rep. 2018, 8, 14230. [Google Scholar] [CrossRef]
- Velazquez, R.; Ferreira, E.; Winslow, W.; Dave, N.; Piras, I.S.; Naymik, M.; Huentelman, M.J.; Tran, A.; Caccamo, A.; Oddo, S. Maternal choline supplementation ameliorates Alzheimer’s disease pathology by reducing brain homocysteine levels across multiple generations. Mol. Psychiatry 2020, 25, 2620–2629. [Google Scholar] [CrossRef]
- Abd El-Rahman, M.K.; Mazzone, G.; Mahmoud, A.M.; Sicilia, E.; Shoeib, T. Novel choline selective electrochemical membrane sensor with application in milk powders and infant formulas. Talanta 2021, 221, 121409. [Google Scholar] [CrossRef]
- Mathivanan, D.; Devi, K.S.; Sathiyan, G.; Tyagi, A.; da Silva, V.; Janegitz, B.; Prakash, J.; Gupta, R.K. Novel polypyrrole-graphene oxide-gold nanocomposite for high performance hydrogen peroxide sensing application. Sens. Actuator A-Phys. 2021, 328, 112769. [Google Scholar] [CrossRef]
- Giaretta, J.E.; Duan, H.; Farajikhah, S.; Oveissi, F.; Dehghani, F.; Naficy, S. A highly flexible, physically stable, and selective hydrogel-based hydrogen peroxide sensor. Sens. Actuator B-Chem. 2022, 371, 132483. [Google Scholar] [CrossRef]
- Tian, X.; Qin, Y.; Jiang, Y.; Guo, X.; Wen, Y.; Yang, H. Chemically renewable SERS sensor for the inspection of H2O2 residue in food stuff. Food Chem. 2024, 438, 137777. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Nguyen, M.H.; Vu, M.T.; Duong, H.A.; Pham, H.V.; Mai, T.D. Dual-channeled capillary electrophoresis coupled with contactless conductivity detection for rapid determination of choline and taurine in energy drinks and dietary supplements. Talanta 2019, 193, 168–175. [Google Scholar] [CrossRef]
- Giaretta, J.E.; Oveissi, F.; Dehghani, F.; Naficy, S. Paper-Based, Chemiresistive Sensor for Hydrogen Peroxide Detection. Adv. Mater. Technol. 2021, 6, 2001148. [Google Scholar] [CrossRef]
- Wu, W.; Huang, L.; Wang, E.; Dong, S. Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chem. Sci. 2020, 11, 9741–9756. [Google Scholar] [CrossRef]
- Shamsabadi, A.; Haghighi, T.; Carvalho, S.; Frenette, L.C.; Stevens, M.M. The nanozyme revolution: Enhancing the performance of medical biosensing platforms. Adv. Mater. 2024, 36, 2300184. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Lee, J.; Cho, A.; Kim, M.S.; Choi, D.; Han, J.W.; Kim, M.I.; Lee, J. Rational development of co-doped mesoporous ceria with high peroxidase-mimicking activity at neutral ph for paper-based colorimetric detection of multiple biomarkers. Adv. Funct. Mater. 2022, 32, 2112428. [Google Scholar] [CrossRef]
- Vu, T.H.; Nguyen, P.T.; Kim, M.I. Polydopamine-coated Co3O4 nanoparticles as an efficient catalase mimic for fluorescent detection of sulfide ion. Biosensors 2022, 12, 1047. [Google Scholar] [CrossRef]
- Lee, J.; Le, X.A.; Chun, H.; Vu, T.H.; Choi, D.; Han, B.; Kim, M.I.; Lee, J. Active site engineering of Zn-doped mesoporous ceria toward highly efficient organophosphorus hydrolase-mimicking nanozyme. Biosens. Bioelectron. 2024, 246, 115882. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Vu, T.H.; Kim, M.I. Histidine–cysteine–copper hybrid nanoflowers as active site-inspired laccase mimics for the colorimetric detection of phenolic compounds in PDMS microfluidic devices. Sens. Actuator B-Chem. 2024, 413, 135845. [Google Scholar] [CrossRef]
- Tian, Q.; Li, S.; Tang, Z.; Zhang, Z.; Du, D.; Zhang, X.; Niu, X.; Lin, Y. Nanozyme-enabled biomedical diagnosis: Advances, trends, and challenges. Adv. Healthc. Mater. 2024, 2401630. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, Q.; Shang, Y.; Zhang, Q.; Wang, Q. D-Serine enzymatic metabolism induced formation of a powder-remoldable PAAM–CS hydrogel. Chem. Commun. 2017, 53, 12270–12273. [Google Scholar] [CrossRef]
- Cui, Z.-K.; Kim, S.; Baljon, J.J.; Wu, B.M.; Aghaloo, T.; Lee, M. Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Nat. Commun. 2019, 10, 3523. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Ahn, H.T.; Kim, M.I. Reagent-free colorimetric assay for galactose using agarose gel entrapping nanoceria and galactose oxidase. Nanomaterials 2020, 10, 895. [Google Scholar] [CrossRef]
- Kim, M.I.; Park, C.Y.; Seo, J.M.; Kang, K.S.; Park, K.S.; Kang, J.; Hong, K.S.; Choi, Y.; Lee, S.Y.; Park, J.P.; et al. In situ biosynthesis of a metal nanoparticle encapsulated in alginate gel for imageable drug-delivery system. ACS Appl. Mater. Interfaces 2021, 13, 36697–36708. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Lee, D.H.; Nguyen, P.T.; Le, P.G.; Kim, M.I. Foldable paper microfluidic device based on single iron site-containing hydrogel nanozyme for efficient glucose biosensing. Chem. Eng. J. 2023, 454, 140541. [Google Scholar] [CrossRef]
- Qi, M.; Pan, H.; Shen, H.; Xia, X.; Wu, C.; Han, X.; He, X.; Tong, W.; Wang, X.; Wang, Q. Nanogel multienzyme mimics synthesized by biocatalytic ATRP and metal coordination for bioresponsive fluorescence imaging. Angew. Chem.-Int. Ed. 2020, 132, 11846–11851. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Yan, X.; Du, Y.; Pu, F.; Ren, J.; Qu, X. An ATPase-Mimicking MXene nanozyme pharmacologically breaks the ironclad defense system for ferroptosis cancer therapy. Biomaterials 2024, 307, 122523. [Google Scholar] [CrossRef] [PubMed]
- Kaygusuz, H.; Torlak, E.; Akın-Evingür, G.; Özen, İ.; Von Klitzing, R.; Erim, F.B. Antimicrobial cerium ion-chitosan crosslinked alginate biopolymer films: A novel and potential wound dressing. Int. J. Biol. Macromol. 2017, 105, 1161–1165. [Google Scholar] [CrossRef]
- Ma, T.; Zhai, X.; Huang, Y.; Zhang, M.; Li, P.; Du, Y.J. Cerium ions crosslinked sodium alginate-carboxymethyl chitosan spheres with antibacterial activity for wound healing. J. Rare Earths 2022, 40, 1407–1416. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, L.; Wang, J. Cerium alginate cross-linking with biochar beads for fast fluoride removal over a wide pH range. Colloid Surf. A-Physicochem. Eng. Asp. 2022, 636, 128161. [Google Scholar] [CrossRef]
- Li, X.-J.; Yan, C.-J.; Luo, W.-J.; Gao, Q.; Zhou, Q.; Liu, C.; Zhou, S. Exceptional cerium (III) adsorption performance of poly (acrylic acid) brushes-decorated attapulgite with abundant and highly accessible binding sites. Chem. Eng. J. 2016, 284, 333–342. [Google Scholar] [CrossRef]
- Chen, Z.; Song, S.; Zeng, H.; Ge, Z.; Liu, B.; Fan, Z. 3D printing MOF nanozyme hydrogel with dual enzymatic activities and visualized glucose monitoring for diabetic wound healing. Chem. Eng. J. 2023, 471, 144649. [Google Scholar] [CrossRef]
- Nosrati, H.; Heydari, M.; Khodaei, M. Cerium oxide nanoparticles: Synthesis methods and applications in wound healing. Mater. Today Bio 2023, 23, 100823. [Google Scholar] [CrossRef]
- Othman, A.; Gowda, A.; Andreescu, D.; Hassan, M.H.; Babu, S.; Seo, J.; Andreescu, S. Two decades of ceria nanoparticles research: Structure, properties and emerging applications. Mater. Horiz. 2024, 11, 3213–3266. [Google Scholar] [CrossRef]
- Ganganboina, A.B.; Doong, R.A. Nitrogen doped graphene quantum dot-decorated earth-abundant nanotubes for enhanced capacitive deionization. Environ. Sci.-Nano 2020, 7, 228–237. [Google Scholar] [CrossRef]
- Anandan, C.; Bera, P. XPS studies on the interaction of CeO2 with silicon in magnetron sputtered CeO2 thin films on Si and Si3N4 substrates. Appl. Surf. Sci. 2013, 283, 297–303. [Google Scholar] [CrossRef]
- Hosu, O.; Lettieri, M.; Papara, N.; Ravalli, A.; Sandulescu, R.; Cristea, C.; Marrazza, G. Colorimetric multienzymatic smart sensors for hydrogen peroxide, glucose and catechol screening analysis. Talanta 2019, 204, 525–532. [Google Scholar] [CrossRef]
- Li, P.; Zhang, S.; Xu, C.; Zhang, L.; Liu, Q.; Chu, S.; Li, S.; Mao, G.; Wang, H. Coating Fe3O4 quantum dots with sodium alginate showing enhanced catalysis for capillary array-based rapid analysis of H2O2 in milk. Food Chem. 2022, 380, 132188. [Google Scholar] [CrossRef]
- Chen, S.; Li, Z.; Huang, Z.; Jia, Q. Investigation of efficient synergistic and protective effects of chitosan on copper nanoclusters: Construction of highly active and stable nanozyme for colorimetric and fluorometric dual-signal biosensing. Sens. Actuator B-Chem. 2021, 332, 129522. [Google Scholar] [CrossRef]
- Liu, H.; Ding, Y.; Yang, B.; Liu, Z.; Liu, Q.; Zhang, X. Colorimetric and ultrasensitive detection of H2O2 based on Au/Co3O4-CeOx nanocomposites with enhanced peroxidase-like performance. Sens. Actuator B-Chem. 2018, 271, 336–345. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, H.; Gao, L.-N.; Fu, M.; Luo, X.; Zhang, X.; Liu, Q.; Zeng, R.-C. Compounds. Fe-doped Ag2S with excellent peroxidase-like activity for colorimetric determination of H2O2. J. Alloys Compd. 2019, 785, 1189–1197. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, H.; Huang, Y.; Jiang, H.; Yang, N.; Shahzad, S.A.; Meng, L.; Yu, C. Silver nanoparticles decorated and tetraphenylethene probe doped silica nanoparticles: A colorimetric and fluorometric sensor for sensitive and selective detection and intracellular imaging of hydrogen peroxide. Biosens. Bioelectron. 2018, 121, 236–242. [Google Scholar] [CrossRef]
- Remani, K.; Binitha, N.N. Cobalt doped ceria catalysts for the oxidative abatement of gaseous pollutants and colorimetric detection of H2O2. Mater. Res. Bull. 2021, 139, 111253. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, H.; Qin, X.; Shen, Y.; Wei, X.; Liu, G. Metalloporphyrin and gold nanoparticles modified hollow zeolite imidazole Framework-8 with excellent peroxidase like activity for quick colorimetric determination of choline in infant formula milk powder. Food Chem. 2022, 384, 132552. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Song, D.; Zhang, W.; Fang, S.; Zhou, Q.; Zhang, H.; Liang, Z.; Li, Y.J. Choline oxidase-integrated copper metal–organic frameworks as cascade nanozymes for one-step colorimetric choline detection. J. Agric. Food Chem. 2022, 70, 5228–5236. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-L.; Chen, G.-Y.; Chai, T.-Q.; Chen, L.-X.; Chen, H.; Yang, F.-Q. Construction of Mn-decorated zeolitic imidazolate framework-90 nanostructure as superior oxidase-like mimic for colorimetric detection of glucose and choline. Talanta 2024, 271, 125708. [Google Scholar] [CrossRef]
- Alizadeh, N.; Salimi, A.; Hallaj, R. Mimicking peroxidase-like activity of Co3O4-CeO2 nanosheets integrated paper-based analytical devices for detection of glucose with smartphone. Sens. Actuator B-Chem. 2019, 288, 44–52. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef]
Sample | Linear Range (μM) | LOD (μM) | References |
---|---|---|---|
Poly(ANI-co-AA) composite film | 25–200 | 35.6 | [35] |
Fe3O4 QDs | 10–400 | 4.5 | [36] |
CS@GSH-CuNCs | 20–200 | 6.7 | [37] |
Au/Co3O4-CeOx NCs | 10–100 | 5.29 | [38] |
Fe–Ag2S | 10–150 | 7.82 | [39] |
Ag@TPE-SiO2 NPs | 5–160 | 2.1 | [40] |
Co/CeO2 | 3.33–100 | 3.33 | [41] |
Ce@SiO2 NGs | 5–1000 | 1.3 | This work |
Sample | Linear Range (μM) | LOD (μM) | References |
---|---|---|---|
Au/HZIF-8@TCPP(Fe) | 50–2000 | 50 | [42] |
ChOx@MOF | 6–300 | 2 | [43] |
Mn/ZIF-90 | 5−50 and 50−1000 | 5.6 | [44] |
CS@GSH-CuNCs | 20–150 | 6.5 | [37] |
Ce@SiO2 NGs | 4–400 | 2 | This work |
Original Amount (µM) | Spiked Level (µM) | Measured (µM) | Recovery (%) (n = 3) | CV (%) | ||
---|---|---|---|---|---|---|
Choline | Milk #1 | 7.9 | 50 | 57.0 | 98.4 | 3.2 |
100 | 111.0 | 102.8 | 3.6 | |||
200 | 209.8 | 100.9 | 0.3 | |||
Milk #2 | 6.6 | 50 | 57.2 | 101.1 | 2.3 | |
100 | 103.9 | 97.5 | 1.3 | |||
200 | 204.7 | 99.1 | 1.0 | |||
Infant formula #1 | 8.2 | 50 | 59.2 | 101.8 | 3.8 | |
100 | 111.4 | 103.0 | 1.1 | |||
200 | 214.0 | 102.8 | 2.1 | |||
Infant formula #2 | 8.1 | 50 | 57.6 | 99.2 | 3.6 | |
100 | 109.3 | 101.1 | 4.1 | |||
200 | 219.0 | 105.3 | 2.4 | |||
H2O2 | Milk #1 | 0 | 25 | 25.9 | 103.7 | 1.8 |
50 | 50.8 | 101.5 | 1.2 | |||
100 | 99.5 | 99.5 | 2.7 | |||
Milk #2 | 0 | 25 | 25.24 | 101.0 | 2.5 | |
50 | 49.4 | 98.8 | 3.6 | |||
100 | 101.8 | 101.8 | 2.7 | |||
Infant formula #1 | 0 | 25 | 25.7 | 103.0 | 2.4 | |
50 | 50.4 | 100.8 | 4.0 | |||
100 | 97.5 | 97.5 | 2.7 | |||
Infant formula #2 | 0 | 25 | 25.1 | 100.3 | 2.5 | |
50 | 51.3 | 102.6 | 3.1 | |||
100 | 100.6 | 100.6 | 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, T.H.; Yu, B.J.; Kim, M.I. Choline Oxidase-Incorporated ATRP-Based Cerium Nanogels as Nanozymes for Colorimetric Detection of Hydrogen Peroxide and Choline. Biosensors 2024, 14, 563. https://doi.org/10.3390/bios14120563
Vu TH, Yu BJ, Kim MI. Choline Oxidase-Incorporated ATRP-Based Cerium Nanogels as Nanozymes for Colorimetric Detection of Hydrogen Peroxide and Choline. Biosensors. 2024; 14(12):563. https://doi.org/10.3390/bios14120563
Chicago/Turabian StyleVu, Trung Hieu, Byung Jo Yu, and Moon Il Kim. 2024. "Choline Oxidase-Incorporated ATRP-Based Cerium Nanogels as Nanozymes for Colorimetric Detection of Hydrogen Peroxide and Choline" Biosensors 14, no. 12: 563. https://doi.org/10.3390/bios14120563
APA StyleVu, T. H., Yu, B. J., & Kim, M. I. (2024). Choline Oxidase-Incorporated ATRP-Based Cerium Nanogels as Nanozymes for Colorimetric Detection of Hydrogen Peroxide and Choline. Biosensors, 14(12), 563. https://doi.org/10.3390/bios14120563