Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (1)

Search Parameters:
Keywords = ATRP-based nanogels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1275 KiB  
Article
Choline Oxidase-Incorporated ATRP-Based Cerium Nanogels as Nanozymes for Colorimetric Detection of Hydrogen Peroxide and Choline
by Trung Hieu Vu, Byung Jo Yu and Moon Il Kim
Biosensors 2024, 14(12), 563; https://doi.org/10.3390/bios14120563 - 21 Nov 2024
Viewed by 1230
Abstract
Choline is an important molecule in monitoring food safety and infant nutrition. Here, we report Ce nanogels synthesized by atom transfer radical polymerization (ATRP) employing Ce-coordinated acryloyl-lysine polymer brushes (Ce@SiO2 NGs) as highly efficient cascade nanozymes for colorimetric detection of choline. The [...] Read more.
Choline is an important molecule in monitoring food safety and infant nutrition. Here, we report Ce nanogels synthesized by atom transfer radical polymerization (ATRP) employing Ce-coordinated acryloyl-lysine polymer brushes (Ce@SiO2 NGs) as highly efficient cascade nanozymes for colorimetric detection of choline. The synthesized Ce@SiO2 NGs demonstrated remarkable peroxidase-like activity with a porous exterior, which are essential to entrap choline oxidase (COx) to yield COx@Ce@SiO2 NGs and construct a cascade reaction system to detect choline. Immobilized COx catalyzed the oxidation of choline in food samples to produce H2O2, which subsequently induced the oxidation of chromogenic substrate 3,3′,5,5′-tetramethylbenzidine (TMB) to produce blue color signals. This method enabled the selective and sensitive detection of target choline with a satisfactory linear range of 4–400 μM, which is sufficient to analyze foodborne choline. The practical utility of the COx@Ce@SiO2 NG-based assay was successfully validated to determine choline spiked in commercially available milk and infant formula with high accuracy and precision values. This approach provides a simple and affordable method of choline detection and has the potential to lead to more developments in ATRP-based nanozymes for diverse biosensing applications. Full article
(This article belongs to the Special Issue Feature Paper in Biosensor and Bioelectronic Devices 2024)
Show Figures

Figure 1

Back to TopTop