Application of Shear Horizontal Surface Acoustic Wave (SH-SAW) Immunosensor in Point-of-Care Diagnosis
Abstract
:1. Introduction
2. Shear Horizontal Surface Acoustic Wave (SH-SAW) Sensor System
2.1. SH-SAW Sensor Chip
2.2. Reader (to Measure Phase and Amplitude Changes of SH-SAWs)
3. Basic Performance of the SH-SAW Sensor Chip
3.1. Simulation Model for the Evaluation of SH-SAW Performance
3.2. Mass Loading Sensitivity in Air
3.3. Mass Loading Sensitivity in Liquid
3.4. Viscosity Sensitivity in Liquid
4. A Simple Method to Fabricate the SH-SAW Biosensor
5. Quick Whole Blood Measurement by SH-SAW
6. Detection Range of the SH-SAW Biosensor
7. Detection Limit of the SH-SAW Biosensor
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piovarci, I.; Melikishvili, S.; Tatarko, M.; Hianik, T.; Thompson, M. Detection of Sub-Nanomolar Concentration of Trypsin by Thickness-Shear Mode Acoustic Biosensor and Spectrophotometry. Biosensors 2021, 11, 117. [Google Scholar] [CrossRef]
- Liu, J.; Chen, D.; Wang, P.; Song, G.; Zhang, X.; Li, Z.; Wang, Y.; Wang, J.; Yang, J. A microfabricated thickness shear mode electroacoustic resonator for the label-free detection of cardiac troponin in serum. Talanta 2020, 215, 120890. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, G.; Zu, H.; Wang, J.H.; Wang, Q.M. Real-Time Monitoring of Platelet Activation Using Quartz Thickness-Shear Mode Resonator Sensors. Biophys. J. 2016, 110, 669–679. [Google Scholar] [CrossRef]
- Dahint, R.; Bender, F.; Morhard, F. Operation of acoustic plate mode immunosensors in complex biological media. Anal. Chem. 1999, 71, 3150–3156. [Google Scholar] [CrossRef]
- Huang, Y.; Das, P.K.; Bhethanabotla, V.R. Surface acoustic waves in biosensing applications. Sens. Actuators Rep. 2021, 3, 100041. [Google Scholar] [CrossRef]
- Rana, L.; Gupta, R.; Tomar, M.; Gupta, V. Highly sensitive Love wave acoustic biosensor for uric acid. Sens. Actuators Chem. 2018, 261, 169–177. [Google Scholar] [CrossRef]
- Samarentsis, A.G.; Pantazis, A.K.; Tsortos, A.; Friedt, J.-M.; Gizeli, E. Hybrid Sensor Device for Simultaneous Surface Plasmon Resonance and Surface Acoustic Wave Measurements. Sensors 2020, 20, 6177. [Google Scholar] [CrossRef]
- Liu, F.; Li, F.; Nordin, A.N.; Voiculescu, I. A novel cell-based hybrid acoustic wave biosensor with impedimetric sensing capabilities. Sensors 2013, 13, 3039–3055. [Google Scholar] [CrossRef] [PubMed]
- Lange, K. Bulk and Surface Acoustic Wave Sensor Arrays for Multi-Analyte Detection: A Review. Sensors 2019, 19, 5382. [Google Scholar] [CrossRef] [PubMed]
- Chawich, J.; Hassen, W.M.; Elie-Caille, C.; Leblois, T.; Dubowski, J.J. Regenerable ZnO/GaAs Bulk Acoustic Wave Biosensor for Detection of Escherichia coli in "Complex" Biological Medium. Biosensors 2021, 11, 145. [Google Scholar] [CrossRef]
- Nair, M.P.; Teo, A.J.T.; Li, K.H.H. Acoustic Biosensors and Microfluidic Devices in the Decennium: Principles and Applications. Micromachines 2021, 13, 24. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Peng, Y.-C.; Lin, S.-M.; Yatsuda, H.; Szu-Heng, L.; Liu, S.-J.; Kuo, C.-Y.; Wang, R.Y.L. Measurements of Anti-SARS-CoV-2 Antibody Levels after Vaccination Using a SH-SAW Biosensor. Biosensors 2022, 12, 599. [Google Scholar] [CrossRef]
- Asai, N.; Terasawa, H.; Shimizu, T.; Shingubara, S.; Ito, T. Highly sensitive quartz crystal microbalance based biosensor using Au dendrite structure. Jpn. J. Appl. Phys. 2018, 57, 02CD01. [Google Scholar] [CrossRef]
- Ju, S.; Zhang, C.; Zahedinejad, P.; Zhang, H. SC-Cut Quartz Resonators for Dynamic Liquid Viscosity Measurements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 3616–3623. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wyszynski, B.; Yatabe, R.; Hayashi, K.; Toko, K. Molecularly Imprinted Sol-Gel-Based QCM Sensor Arrays for the Detection and Recognition of Volatile Aldehydes. Sensors 2017, 17, 382. [Google Scholar] [CrossRef]
- Moriizumi, T.; Nakamoto, T.; Sakuraba, Y. Odor-Sensing System Using QCM Gas Sensors and an Artificial Neural Network. In Proceedings of the Olfaction and Taste XI, Sapporo, Japan, 12–16 July 1993; pp. 694–698. [Google Scholar]
- Yatabe, R.; Shunori, A.; Wyszynski, B.; Hanai, Y.; Nakao, A.; Nakatani, M.; Oki, A.; Oka, H.; Washio, T.; Toko, K. Odor Sensor System Using Chemosensitive Resistor Array and Machine Learning. IEEE Sens. J. 2021, 21, 2077–2083. [Google Scholar] [CrossRef]
- Lu, H.-H.; Rao, Y.K.; Wu, T.-Z.; Tzeng, Y.-M. Direct characterization and quantification of volatile organic compounds by piezoelectric module chips sensor. Sens. Actuators Chem. 2009, 137, 741–746. [Google Scholar] [CrossRef]
- Imamura, G.; Yoshikawa, G. Development of a Mobile Device for Odor Identification and Optimization of Its Measurement Protocol Based on the Free-Hand Measurement. Sensors 2020, 20, 6190. [Google Scholar] [CrossRef] [PubMed]
- Montagut, Y.; Garcia, J.; Jimenez, Y.; March, C.; Montoya, A.; Arnau, A. QCM Technology in Biosensors; InTech: Sydney, Australia, 2011. [Google Scholar]
- Xu, W.; Zhang, X.; Choi, S.; Chae, J. A High-Quality-Factor Film Bulk Acoustic Resonator in Liquid for Biosensing Applications. J. Microelectromechanich. Syst. 2011, 20, 213–220. [Google Scholar] [CrossRef]
- Innovative Point-of-Care Testing Platform Using BAW Technology. Available online: https://www.qorvo.com/innovation/biotechnologies (accessed on 13 March 2023).
- Kogai, T.; Yoshimura, N.; Mori, T.; Yatsuda, H. Liquid-Phase Shear Horizontal Surface Acoustic Wave Immunosensor. Jpn. J. Appl. Phys. 2010, 49, 07HD15. [Google Scholar] [CrossRef]
- Horiguchi, Y.; Miyachi, S.; Nagasaki, Y. High-Performance Surface Acoustic Wave Immunosensing System on a PEG/Aptamer Hybridized Surface. Langmuir 2013, 29, 7369–7376. [Google Scholar] [CrossRef]
- Kogai, T.; Yatsuda, H. Liquid-Phase Membrane-Type Shear Horizontal Surface Acoustic Wave Devices. Sens. Mater. 2014, 26, 599–606. [Google Scholar]
- Turbé, V.; Gray, E.R.; Lawson, V.E.; Nastouli, E.; Brookes, J.C.; Weiss, R.A.; Pillay, D.; Emery, V.C.; Verrips, C.T.; Yatsuda, H.; et al. Towards an ultra-rapid smartphone-connected test for infectious diseases. Sci. Rep. 2017, 7, 11971. [Google Scholar] [CrossRef]
- Gray, E.R.; Turbé, V.; Lawson, V.E.; Page, R.H.; Cook, Z.C.; Ferns, R.B.; Nastouli, E.; Pillay, D.; Yatsuda, H.; Athey, D.; et al. Ultra-rapid, sensitive and specific digital diagnosis of HIV with a dual-channel SAW biosensor in a pilot clinical study. NPJ Digit. Med. 2018, 1, 35. [Google Scholar] [CrossRef]
- Taylor, J.J.; Jaedicke, K.M.; van de Merwe, R.C.; Bissett, S.M.; Landsdowne, N.; Whall, K.M.; Pickering, K.; Thornton, V.; Lawson, V.; Yatsuda, H.; et al. A Prototype Antibody-based Biosensor for Measurement of Salivary MMP-8 in Periodontitis using Surface Acoustic Wave Technology. Sci. Rep. 2019, 9, 11034. [Google Scholar] [CrossRef] [PubMed]
- Toma, K.; Harashima, Y.; Yoshimura, N.; Arakawa, T.; Yatsuda, H.; Kanamori, K.; Mitsubayashi, K. Semicontinuous Measurement of Mite Allergen (Der f 2) Using a Surface Acoustic Wave Immunosensor under Moderate pH for Long Sensor Lifetime. Sens. Mater. 2017, 29, 1679–1687. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Yatsuda, H.; Kondoh, J. A rapid in vitro diagnostic device based on SH-SAW platform to measure the lipid profile. In Proceedings of the Piezoelectric Materials & Devices Symposium, Tokyo, Japan, 26–27 January 2023; pp. 26–27. [Google Scholar]
- Goto, M.; Yatsuda, H.; Kondoh, J. Effect of viscoelastic film for shear horizontal surface acoustic wave on quartz. Jpn. J. Appl. Phys. 2015, 54, 07HD02. [Google Scholar] [CrossRef]
- Yamanouchi, K.; Furuyashiki, H. New low-loss SAW filter using internal floating electrode reflection types of single-phase unidirectional transducer. Electron. Lett. 1984, 20, 989–990. [Google Scholar] [CrossRef]
- Goto, M.; Yatsuda, H.; Kondoh, J. Analysis of Mass Loading Effect on Guided Shear Horizontal Surface Acoustic Wave on Liquid/Au/Quartz Structure for Biosensor Application. Jpn. J. Appl. Phys. 2013, 52, 07HD10. [Google Scholar] [CrossRef]
- Yatsuda, H.; Kogai, T.; Goto, M.; Kano, K.; Yoshimura, N. Immunosensor Using 250MHz Shear Horizontal Surface Acoustic Wave Delay Line. In Proceedings of the 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 566–568. [Google Scholar]
- Goto, M.; Yatsuda, H.; Kondoh, J. Numerical analysis of liquid-phase SH-SAW biosensor on quartz. In Proceedings of the 2012 IEEE International Ultrasonics Symposium, Dresden, Germany, 7–10 October 2012; pp. 2110–2113. [Google Scholar]
- Kano, K.; Yatsuda, H.; Kondoh, J. Evaluation of Shear Horizontal Surface Acoustic Wave Biosensors Using "Layer Parameter" Obtained from Sensor Responses during Immunoreaction. Sensors 2021, 21, 4924. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.J.; Jones, W.R. A method for estimating optimal crystal cuts and propagation directions for excitation of piezoelectric surface waves. IEEE Trans. Sonics Ultrason. 1968, 15, 209–217. [Google Scholar] [CrossRef]
- Moriizumi, T.; Unno, Y.; Shiokawa, S. New Sensor in Liquid Using Leaky SAW. IEEE Ultrasonics Symposium. Denver, CO, USA, 14–16 October 1987; pp. 579–582. [Google Scholar]
- Goto, M.; Yatsuda, H.; Kondoh, J. Numerical Analysis of Viscosity Effect on Shear Horizontal Surface Acoustic Wave for Biosensor Application. IEEJ Trans. Sens. Micromach. 2016, 136, 1–5. [Google Scholar] [CrossRef]
- Tetsuya, K. Ryutai No Netubusseichishuu (Thermophysical Properties of the Fluid Collection); Japan Society of Mechanical Engineers: Tokyo, Japan, 1983.
- Inami, E.; Yamaguchi, M.; Yamaguchi, T.; Shimasaki, M.; Yamada, T.K. Controlled Deposition Number of Organic Molecules Using Quartz Crystal Microbalance Evaluated by Scanning Tunneling Microscopy Single-Molecule-Counting. Anal. Chem. 2018, 90, 8954–8959. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.-C.; Cheng, C.-H.; Yatsuda, H.; Liu, S.-H.; Liu, S.-J.; Kogai, T.; Kuo, C.-Y.; Wang, R.Y.L. A Novel Rapid Test to Detect Anti-SARS-CoV-2 N Protein IgG Based on Shear Horizontal Surface Acoustic Wave (SH-SAW). Diagnostics 2021, 11, 1838. [Google Scholar] [CrossRef] [PubMed]
- Gun, J.; Rizkov, D.; Lev, O.; Abouzar, M.H.; Poghossian, A.; Schöning, M.J. Oxygen plasma-treated gold nanoparticle-based field-effect devices as transducer structures for bio-chemical sensing. Microchim. Acta 2009, 164, 395–404. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, Z.; Zhang, Q.; Wei, Q.; Zhang, J.; Tang, S.; Lv, C.; Wang, Y.; Zhao, H.; Wei, F.; et al. O2 plasma treated biosensor for enhancing detection sensitivity of sulfadiazine in a high-к HfO2 coated silicon nanowire array. Sens. Actuators Chem. 2020, 306, 127464. [Google Scholar] [CrossRef]
- Zhang, L.; Mazouzi, Y.; Salmain, M.; Liedberg, B.; Boujday, S. Antibody-Gold Nanoparticle Bioconjugates for Biosensors: Synthesis, Characterization and Selected Applications. Biosens. Bioelectron. 2020, 165, 112370. [Google Scholar] [CrossRef]
- Arya, S.K.; Chornokur, G.; Venugopal, M.; Bhansali, S. Dithiobis(succinimidyl propionate) modified gold microarray electrode based electrochemical immunosensor for ultrasensitive detection of cortisol. Biosens. Bioelectron. 2010, 25, 2296–2301. [Google Scholar] [CrossRef]
- Reyes-De-Corcuera, J.I.; Olstad, H.E.; García-Torres, R. Stability and Stabilization of Enzyme Biosensors: The Key to Successful Application and Commercialization. Annu. Rev. Food Sci. Technol. 2018, 9, 293–322. [Google Scholar] [CrossRef]
- Butzner, M.; Cuffee, Y. Telehealth Interventions and Outcomes across Rural Communities in the United States: Narrative Review. J. Med. Internet Res. 2021, 23, e29575. [Google Scholar] [CrossRef]
- Shephard, M.; Shephard, A.; Matthews, S.; Andrewartha, K. The Benefits and Challenges of Point-of-Care Testing in Rural and Remote Primary Care Settings in Australia. Arch. Pathol. Lab. Med. 2020, 144, 1372–1380. [Google Scholar] [CrossRef] [PubMed]
- Lo, X.C.; Li, J.Y.; Lee, M.T.; Yao, D.J. Frequency Shift of a SH-SAW Biosensor with Glutaraldehyde and 3-Aminopropyltriethoxysilane Functionalized Films for Detection of Epidermal Growth Factor. Biosensors 2020, 10, 92. [Google Scholar] [CrossRef] [PubMed]
- Toma, K.; Miki, D.; Yoshimura, N.; Arakawa, T.; Yatsuda, H.; Mitsubayashi, K. A gold nanoparticle-assisted sensitive SAW (surface acoustic wave) immunosensor with a regeneratable surface for monitoring of dust mite allergens. Sens. Actuators Chem. 2017, 249, 685–690. [Google Scholar] [CrossRef]
- NCCLS. Protocols for Determination of Limits of Detection and Limits of Quantitation; Approved Guideline; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2004.
- Wang, C.; Wang, C.; Jin, D.; Yu, Y.; Yang, F.; Zhang, Y.; Yao, Q.; Zhang, G.-J. AuNP-Amplified Surface Acoustic Wave Sensor for the Quantification of Exosomes. ACS Sens. 2020, 5, 362–369. [Google Scholar] [CrossRef]
- Toma, K.; Oishi, K.; Kato, M.; Kurata, K.; Yoshimura, N.; Arakawa, T.; Yatsuda, H.; Kanamori, K.; Mitsubayashi, K. Precipitate-enhanced SAW immunosensor for sensitive monitoring of mite allergens. Sens. Actuators Chem. 2019, 296, 126579. [Google Scholar] [CrossRef]
- Lee, W.; Jung, J.; Hahn, Y.K.; Kim, S.K.; Lee, Y.; Lee, J.; Lee, T.-H.; Park, J.-Y.; Seo, H.; Lee, J.N.; et al. A centrifugally actuated point-of-care testing system for the surface acoustic wave immunosensing of cardiac troponin I. Analyst 2013, 138, 2558–2566. [Google Scholar] [CrossRef]
- Lichtenberg, J.Y.; Ling, Y.; Kim, S. Non-Specific Adsorption Reduction Methods in Biosensing. Sensors 2019, 19, 2488. [Google Scholar] [CrossRef]
- Rajput, P.; Kumar, J.; Mittal, U.; Nimal, A.T.; Arsenin, A.V.; Volkov, V.S.; Mishra, P. Sensitivity enhancement analysis of frequency tuned-SAW resonator with temperature for sensor applications. Sens. Bio-Sens. Res. 2022, 37, 100509. [Google Scholar] [CrossRef]
- Yatsuda, H.; Kogai, T.; Goto, M.; Yoshimura, N. Shear-horizontal surface acoustic wave biosensors for POCT. In Proceedings of the 2014 IEEE International Frequency Control Symposium (FCS), Taipei, Taiwan, 19–22 May 2014; pp. 1–4. [Google Scholar]
- Dong, S.; Zhang, D.; Cui, H.; Huang, T. ZnO/porous carbon composite from a mixed-ligand MOF for ultrasensitive electrochemical immunosensing of C-reactive protein. Sens. Actuators Chem. 2019, 284, 354–361. [Google Scholar] [CrossRef]
- Wang, J.; Guo, J.; Zhang, J.; Zhang, W.; Zhang, Y. RNA aptamer-based electrochemical aptasensor for C-reactive protein detection using functionalized silica microspheres as immunoprobes. Biosens. Bioelectron. 2017, 95, 100–105. [Google Scholar] [CrossRef]
- Aray, A.; Chiavaioli, F.; Arjmand, M.; Trono, C.; Tombelli, S.; Giannetti, A.; Cennamo, N.; Soltanolkotabi, M.; Zeni, L.; Baldini, F. SPR-based plastic optical fibre biosensor for the detection of C-reactive protein in serum. J. Biophotonics 2016, 9, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- António, M.; Ferreira, R.; Vitorino, R.; Daniel-da-Silva, A.L. A simple aptamer-based colorimetric assay for rapid detection of C-reactive protein using gold nanoparticles. Talanta 2020, 214, 120868. [Google Scholar] [CrossRef] [PubMed]
- Byun, J.Y.; Shin, Y.B.; Kim, D.M.; Kim, M.G. A colorimetric homogeneous immunoassay system for the C-reactive protein. Analyst 2013, 138, 1538–1543. [Google Scholar] [CrossRef] [PubMed]
- Jeng, M.J.; Sharma, M.; Li, Y.C.; Lu, Y.C.; Yu, C.Y.; Tsai, C.L.; Huang, S.F.; Chang, L.B.; Lai, C.S. Surface Acoustic Wave Sensor for C-Reactive Protein Detection. Sensors 2020, 20, 6640. [Google Scholar] [CrossRef]
- Kurosawa, S.; Nakamura, M.; Park, J.W.; Aizawa, H.; Yamada, K.; Hirata, M. Evaluation of a high-affinity QCM immunosensor using antibody fragmentation and 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer. Biosens. Bioelectron. 2004, 20, 1134–1139. [Google Scholar] [CrossRef]
Air | 0 wt% | 10 wt% | 20 wt% | 30 wt% | 40 wt% | |
---|---|---|---|---|---|---|
Desity (×103) (kg·m−3) | 0.0012 | 0.9967 | 1.0207 | 1.0465 | 1.0714 | 1.099 |
Viscosity (×10−3) (Pa·s) | 0.01845 | 0.8368 | 1.22 | 1.64 | 2.3 | 3.4 |
Thickness (nm) | Air | Glycerol-Water Mixture | |||||
---|---|---|---|---|---|---|---|
0% | 10% | 20% | 30% | 40% | |||
Velocity | 116.5 | 4759.59 | 4754.75 | 4753.99 | 4753.02 | 4751.71 | 4749.86 |
(m/s) | 117.5 | 4754.52 | 4750.17 | 4749.40 | 4748.43 | 4747.11 | 4745.25 |
118.5 | 4749.43 | 4744.54 | 4743.77 | 4742.78 | 4741.46 | 4739.59 | |
Attenuation (dB/λ) | 116.5 | 0.000270 | 0.0558 | 0.0647 | 0.0760 | 0.0913 | 0.1131 |
117.5 | 0.000272 | 0.0562 | 0.0651 | 0.0764 | 0.0918 | 0.1137 | |
118.5 | 0.000274 | 0.0565 | 0.0655 | 0.0770 | 0.0925 | 0.1145 |
Glycerol-Water % | 10% | 20% | 30% | |
---|---|---|---|---|
≒Viscosity (×10−3 Pa·s) | 1.22 | 1.64 | 2.30 | |
Phase Shift (degree) | Calculation | −10.99 | −25.01 | −43.95 |
Measurement | −10.43 | −23.45 | −39.79 | |
Amplitude shift (dB) | Calculation | −1.69 | −3.85 | −6.77 |
Measurement | −1.54 | −3.53 | −6.13 |
Test Item | Marker | |||
---|---|---|---|---|
CRP | Lp(a) | apoB | SARS-CoV-2 S Protein | |
Detection Method | Pre-mix with secondary antibody | Directly measurement | Dilution measurement | Directly measurement |
Test time | 3 min | 3 min | 30 s | 40 s |
Linearity range | 1.9–118 μg/mL | 83–1402 μg/mL | 51–2022 μg/mL | 50–1500 BAU/mL |
Sensitivity | LoQ = 1000 ng/mL LoD = 390 ng/mL LoB = 170 ng/mL | LoD = 58.3 g/mL LoB = 14.5 g/mL | LoD = 80.1 g/mL LoB = 54.7 g/mL | LoD = 41.91 BAU/mL LoB = 27.48 BAU/mL |
Comparison | R = 0.986/ Slope = 1.003 (n = 170) * | R = 0.9698/ Slope = 1.0598 (n = 55) # | R = 0.9287/ Slope = 0.9741 (n = 55) % | NPA = 98.7% (n = 79)/PPA = 94.3% (n = 35) @ |
Detection Method | Sample Type | Sample Size | Test Time | Detection Probe | Detection Range | Limit of Detection | Ref. |
---|---|---|---|---|---|---|---|
Electrochemistry (DPV) | CRP antigen | - | 60 min | Antibody | 0.01–1000 pg/mL | 5.0 pg/mL | [59] |
Electrochemistry (SWV) | Serum | - | 90 min | Aptamer | 1–125 ng/mL | 0.0017 ng/mL | [60] |
SPR | Serum | - | 15 min | Antibody | 0.006–70 μg/mL | 0.009 μg/mL | [61] |
Colorimetric immunoassay | CRP antigen | 30 μL | 5 min | Aptamer | 0.889–20.7 μg/mL | 1.2 μg/mL | [62] |
Colorimetric immunoassay | CRP antigen | 100 μL | 30 min (pre-process) | Antibody | 10–5000 ng/mL | 100 ng/mL | [63] |
SAW (Rayleigh wave) | CRP antigen | 50 μL | 10 min | Antibody | 0.1–1000 μg/mL | 0.1 μg/mL | [64] |
QCM | Serum | - | - | Antibody | 0.01–1000 ng/mL | - | [65] |
SH-SAW | Finger blood | 5 μL | 3 min | Antibody | 2–120 μg/mL | 0.39 μg/mL | This paper |
Serum | - | <10 ng/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C.-H.; Yatsuda, H.; Goto, M.; Kondoh, J.; Liu, S.-H.; Wang, R.Y.L. Application of Shear Horizontal Surface Acoustic Wave (SH-SAW) Immunosensor in Point-of-Care Diagnosis. Biosensors 2023, 13, 605. https://doi.org/10.3390/bios13060605
Cheng C-H, Yatsuda H, Goto M, Kondoh J, Liu S-H, Wang RYL. Application of Shear Horizontal Surface Acoustic Wave (SH-SAW) Immunosensor in Point-of-Care Diagnosis. Biosensors. 2023; 13(6):605. https://doi.org/10.3390/bios13060605
Chicago/Turabian StyleCheng, Chia-Hsuan, Hiromi Yatsuda, Mikihiro Goto, Jun Kondoh, Szu-Heng Liu, and Robert Y. L. Wang. 2023. "Application of Shear Horizontal Surface Acoustic Wave (SH-SAW) Immunosensor in Point-of-Care Diagnosis" Biosensors 13, no. 6: 605. https://doi.org/10.3390/bios13060605
APA StyleCheng, C. -H., Yatsuda, H., Goto, M., Kondoh, J., Liu, S. -H., & Wang, R. Y. L. (2023). Application of Shear Horizontal Surface Acoustic Wave (SH-SAW) Immunosensor in Point-of-Care Diagnosis. Biosensors, 13(6), 605. https://doi.org/10.3390/bios13060605