A High-Throughput MEMS-Based Differential Scanning Calorimeter for Direct Thermal Characterization of Antibodies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design of the MEMS-Based DSC
2.3. Working Principle of the MEMS-Based DSC
3. Results
3.1. DSC Measurements
3.1.1. Experimental Setup
3.1.2. Device Characterization
3.1.3. pH Effect on the Thermal Stability of Lysozyme
3.1.4. Thermal Stability of the mAb, Fab, and DVD-Ig
4. Discussion
5. Conclusions
- The MEMS calorimeter achieved the purpose of screening large numbers of therapeutic proteins for conformational stability on the basis of transition temperature at a high throughput. This is the first time that an MEMS-based DSC has been used to study the interactions between different domains, which affect the thermal stability of antibodies during unfolding.
- The denaturation profiles measured by the MEMS-based DSC were compared with those obtained using a commercial DSC device. The comparison results verified the capability of the MEMS-based DSC in the thermal characterization of complex protein samples. Its accuracy in measuring the relative enthalpy of domain unfolding following deconvolution of the profiles can be further improved in future work. This can be achieved by improving the thermal insulation of the fluid chamber and enhancing the sensitivity of the device.
- The MEMS-based DSC had a much higher thermal profile screening throughput than the commercial DSC, which can significantly reduce the time and cost for the development of a new drug. Furthermore, the sample consumption was 0.63 µL, which was about 800 times smaller compared to the commercial DSC. The micro size of the sample indicated a large surface-to-volume ratio, thus enabling efficient thermal management and a higher scanning rate compared to the commercial DSC. The MEMS-based DSC achieved a high scanning rate of 45 °C/min with a minimum sample consumption of 0.63 µL. The time consumption of each run for the MEMS DSC was 8.5 min, which is 10 times shorter than the commercial DSC, while the sample consumption was 500 times smaller than the commercial DSC.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ecker, D.M.; Jones, S.D.; Levine, H.L. The therapeutic monoclonal antibody market. MAbs 2015, 7, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leavy, O. Therapeutic antibodies: Past, present and future. Nat. Rev. Immunol. 2010, 10, 297. [Google Scholar] [CrossRef] [PubMed]
- Ewert, S.; Honegger, A.; Pluckthun, A. Stability improvement of antibodies for extracellular and intracellular applications: CDR grafting to stable frameworks and structure-based framework engineering. Methods 2004, 34, 184–199. [Google Scholar] [CrossRef] [PubMed]
- Chiti, F.; Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75, 333–366. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Singh, S.; Zeng, D.L.; King, K.; Nema, S. Antibody structure, instability, and formulation. J. Pharm. Sci. 2007, 96, 1–26. [Google Scholar] [CrossRef]
- Wen, J.; Arthur, K.; Chemmalil, L.; Muzammil, S.; Gabrielson, J.; Jiang, Y. Applications of differential scanning calorimetry for thermal stability analysis of proteins: Qualification of DSC. J. Pharm. Sci. 2012, 101, 955–964. [Google Scholar] [CrossRef]
- Bruylants, G.; Wouters, J.; Michaux, C. Differential scanning calorimetry in life science: Thermodynamics, stability, molecular recognition and application in drug design. Curr. Med. Chem. 2005, 12, 2011–2020. [Google Scholar] [CrossRef] [Green Version]
- Rothlisberger, D.; Honegger, A.; Pluckthun, A. Domain interactions in the Fab fragment: A comparative evaluation of the single-chain Fv and Fab format engineered with variable domains of different stability. J. Mol. Biol. 2005, 347, 773–789. [Google Scholar] [CrossRef]
- Burton, L.; Gandhi, R.; Duke, G.; Paborji, M. Use of microcalorimetry and its correlation with size exclusion chromatography for rapid screening of the physical stability of large pharmaceutical proteins in solution. Pharm. Dev. Technol. 2007, 12, 265–273. [Google Scholar] [CrossRef]
- Carreto-Vazquez, V.H.; Wójcik, A.; Liu, Y.-S.; Bukur, D.; Mannan, M. Miniaturized calorimeter for thermal screening of energetic materials. Microelectron. J. 2010, 41, 874–881. [Google Scholar] [CrossRef]
- Mathot, V.; Pyda, M.; Pijpers, T.; Poel, G.V.; van de Kerkhof, E.; van Herwaarden, S.; van Herwaarden, F.; Leenaers, A. The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): First findings on polymers. Thermochim. Acta 2011, 522, 36–45. [Google Scholar] [CrossRef]
- Wang, B.; Lin, Q. Temperature-modulated differential scanning calorimetry in a MEMS device. Sens. Actuators B-Chem. 2013, 180, 60–65. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, B.; Zhang, Z.; Lin, Q. A polymer-based MEMS differential scanning calorimeter. Sens. Actuators A-Phys. 2015, 231, 1–7. [Google Scholar] [CrossRef]
- Wang, S.Y.; Yu, S.; Siedler, M.; Ihnat, P.M.; Filoti, D.I.; Lu, M.; Zuo, L. A power compensated differential scanning calorimeter for protein stability characterization. Sens. Actuators B-Chem. 2018, 256, 946–952. [Google Scholar] [CrossRef]
- Van Herwaarden, S.; Iervolino, E.; Van Herwaarden, F.; Wijffels, T.; Leenaers, A.; Mathot, V. Design, performance and analysis of thermal lag of the UFS1 twin-calorimeter chip for fast scanning calorimetry using the Mettler-Toledo Flash DSC 1. Thermochim. Acta 2011, 522, 46–52. [Google Scholar] [CrossRef]
- Iervolino, E.; van Herwaarden, A.W.; van Herwaarden, F.G.; van de Kerkhof, E.; van Grinsven, P.; Leenaers, A.; Mathot, V.; Sarro, P. Temperature calibration and electrical characterization of the differential scanning calorimeter chip UFS1 for the Mettler-Toledo Flash DSC 1. Thermochim. Acta 2011, 522, 53–59. [Google Scholar] [CrossRef]
- Jia, Y.; Su, C.; He, M.; Liu, K.; Sun, H.; Lin, Q. Isothermal titration calorimetry in a 3D-printed microdevice. Biomed. Microdev. 2019, 21, 96. [Google Scholar] [CrossRef]
- Trung, N.B.; Saito, M.; Takabayashi, H.; Viet, P.H.; Tamiya, E.; Takamura, Y. Multi-chamber PCR chip with simple liquid introduction utilizing the gas permeability of polydimethylsiloxane. Sens. Actuators B-Chem. 2010, 149, 284–290. [Google Scholar] [CrossRef]
- Lerchner, J.; Sartori, M.R.; Volpe, P.O.; Förster, S.; Mazik, M.; Vercesi, A.E.; Mertens, F. Segment fusion chip calorimetry: A new method for the investigation of fast reactions. J. Therm. Anal. Calorim. 2021, 147, 2253–2263. [Google Scholar] [CrossRef]
- Lerchner, J.; David, K.A.; Unger, F.T.; Lemke, K.; Förster, T.; Mertens, F. Continuous monitoring of drug effects on complex biological samples by segmented flow chip calorimetry. J. Therm. Anal. Calorim. 2017, 127, 1307–1317. [Google Scholar] [CrossRef]
- Gaddes, D.; Reeves, W.B.; Tadigadapa, S. Calorimetric Biosensing System for Quantification of Urinary Creatinine. ACS Sens. 2017, 2, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Dechaumphai, E.; Green, C.R.; Lal, R.; Murphy, A.N.; Metallo, C.M.; Chen, R. Sub-nanowatt microfluidic single-cell calorimetry. Nat. Commun. 2020, 11, 2982. [Google Scholar] [CrossRef] [PubMed]
- Arevalo, A.; Byas, E.; Conchouso, D.; Castro, D.; Ilyas, S.; Foulds, I.G. A Versatile Multi-User Polyimide Surface Micromachinning Process for MEMS Applications. In Proceedings of the 2015 IEEE 10th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xian, China, 7–11 April 2015; pp. 561–565. [Google Scholar]
- Lachaux, J.; Alcaine, C.; Gómez-Escoda, B.; Perrault, C.M.; Duplan, D.O.; Wu, P.-Y.J.; Ochoa, I.; Fernandez, L.; Mercier, O.; Coudreuse, D.; et al. Thermoplastic elastomer with advanced hydrophilization and bonding performances for rapid (30 s) and easy molding of microfluidic devices. Lab Chip 2017, 17, 2581–2594. [Google Scholar] [CrossRef] [PubMed]
- Lachaux, J.; Salmon, H.; Loisel, F.; Arouche, N.; Ochoa, I.; Fernandez, L.L.; Uzan, G.; Mercier, O.; Veres, T.; Roy, E. Soft Thermoplastic Elastomer for Easy and Rapid Spin-Coating Fabrication of Microfluidic Devices with High Hydrophilization and Bonding Performances. Adv. Mater. Technol. 2019, 4, 1800308. [Google Scholar] [CrossRef]
- Zhuravlev, E.; Schick, C. Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis. Thermochim. Acta 2010, 505, 14–21. [Google Scholar] [CrossRef]
- Wang, B.; Lai, J.; Li, H.; Hu, H.; Chen, S. Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer. Infrared Phys. Technol. 2013, 57, 8–13. [Google Scholar] [CrossRef]
- Vandooren, A.A.; Muller, B.W. Influence of Experimental-Variables on Curves in Differential Scanning Calorimetry. 2. Effects on Baseline-Related Characteristics. Thermochim. Acta 1981, 49, 163–173. [Google Scholar] [CrossRef]
- Donovan, J.W.; Mapes, C.J.; Davis, J.G.; Garibaldi, J.A. A Differential Scanning Calorimetric Study of the Stability of Egg White to Heat Denaturation. J. Sci. Food Agric. 1974, 26, 73–83. [Google Scholar] [CrossRef]
- Clark, C.A.; Schwinefus, J.J.; Schaefle, N.J.; Muth, G.W.; Miessler, G.L. Lysozyme thermal denaturation and self-interaction: Four integrated thermodynamic experiments for the physical chemistry laboratory. J. Chem. Educ. 2008, 85, 117–120. [Google Scholar] [CrossRef]
- Ionescu, R.M.; Vlasak, J.; Price, C.; Kirchmeier, M. Contribution of variable domains to the stability of humanized IgG1 monoclonal antibodies. J. Pharm. Sci. 2008, 97, 1414–1426. [Google Scholar] [CrossRef]
- Dimasi, N.; Gao, C.; Fleming, R.; Woods, R.M.; Yao, X.-T.; Shirinian, L.; Kiener, P.A.; Wu, H. The Design and Characterization of Oligospecific Antibodies for Simultaneous Targeting of Multiple Disease Mediators. J. Mol. Biol. 2009, 393, 672–692. [Google Scholar] [CrossRef] [PubMed]
- Weiss, T.; Igel, G.; Urban, G. Chip-based scanning nano-calorimeter for protein stability analysis in biosensor membranes. In Proceedings of the Transducers ’07 & Eurosensors XXI, Lyon, France, 10–14 June 2007; Digest of Technical Papers, Volumes 1 and 2; IEEE: New York, NY, USA, 2007. [Google Scholar]
Sample | Measuring Device | Transition 1 | Transition 2 | Transition 3 | Transition 4 | ||||
---|---|---|---|---|---|---|---|---|---|
Tm1 (°C) | ∆H1 (%) | Tm2 (°C) | ∆H2 (%) | Tm3 (°C) | ∆H3 (%) | Tm4 (°C) | ∆H4 (%) | ||
Fab | VP DSC | 78.8 | 100% | - | - | - | - | - | - |
MEMS DSC | 79.5 | 100% | - | - | - | - | - | - | |
mAb | VP DSC | 70.7 | 12% | 79.2 | 45% | 81.3 | 43% | - | - |
MEMS DSC | 71.9 | 3% | 81.1 | 95% | 92.5 | 3% | - | - | |
DVD-Ig | VP DSC | 67.5 | 45% | 74.4 | 31% | 76.1 | 18% | 82.2 | 7% |
MEMS | 64.3 | 16% | 69.7 | 29% | 74.7 | 34% | 78.0 | 21% |
Scanning Rate °(C/min) | Temperature Sensing Method | Sensitivity (μV/μW) | Noise Level (μW) | Sample Volume (μL) | Target Materials | References |
---|---|---|---|---|---|---|
1 | Thermocouple | - | 0.1 | 370 | Proteins and other biomolecules | MicroCal VP capillary DSC |
20 | Germanium thermistor | - | 0.001 | 0.1 | Enzyme (glucose oxidase) | Urban group [33] |
5 | Sb–Bi thermopile | 4.78 | 0.021 | 4.78 | Protein (lysozyme) | Lin group [13] |
5–45 | Vanadium oxide thermistor | 6.1 | 0.4 | 0.63 | Proteins and complex antibodies | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.; Wu, Y.; Wang, S.; Siedler, M.; Ihnat, P.M.; Filoti, D.I.; Lu, M.; Zuo, L. A High-Throughput MEMS-Based Differential Scanning Calorimeter for Direct Thermal Characterization of Antibodies. Biosensors 2022, 12, 422. https://doi.org/10.3390/bios12060422
Yu S, Wu Y, Wang S, Siedler M, Ihnat PM, Filoti DI, Lu M, Zuo L. A High-Throughput MEMS-Based Differential Scanning Calorimeter for Direct Thermal Characterization of Antibodies. Biosensors. 2022; 12(6):422. https://doi.org/10.3390/bios12060422
Chicago/Turabian StyleYu, Shifeng, Yongjia Wu, Shuyu Wang, Michael Siedler, Peter M. Ihnat, Dana I. Filoti, Ming Lu, and Lei Zuo. 2022. "A High-Throughput MEMS-Based Differential Scanning Calorimeter for Direct Thermal Characterization of Antibodies" Biosensors 12, no. 6: 422. https://doi.org/10.3390/bios12060422
APA StyleYu, S., Wu, Y., Wang, S., Siedler, M., Ihnat, P. M., Filoti, D. I., Lu, M., & Zuo, L. (2022). A High-Throughput MEMS-Based Differential Scanning Calorimeter for Direct Thermal Characterization of Antibodies. Biosensors, 12(6), 422. https://doi.org/10.3390/bios12060422