Development of Fluorescent Aptasensors Based on G-Quadruplex Quenching Ability for Ochratoxin A and Potassium Ions Detection
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents and Chemicals
2.2. Apparatus
2.3. Demonstration of the Mechanism of Fluorescence-Quenching
2.4. Fluorescent Detection of OTA and K+
2.5. Specificity of the Aptasensor
2.6. Detection of OTA and K+ in Real Samples
3. Results and Discussion
3.1. The Principle of Fluorescence Detection of OTA and Potassium Ions Based on G-Quadruplex Quenching
3.2. Discussion on the Fluorescence-Quenching Mechanism
3.3. G-Quadruplex-Based Label-Free and Quencher-Free Fluorescence Detection Platform for OTA and K+
3.4. Specificity of the Aptasensor
3.5. Practical Application
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.W.; Pan, V.; Li, X.; Yang, X.Q.; Li, H.F.; Wang, P.F.; Ke, Y.G. Dynamic DNA structures. Small 2019, 15, 1900228. [Google Scholar] [CrossRef] [PubMed]
- Kypr, J.; Kejnovska, I.; Renciuk, D.; Vorlickova, M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009, 37, 1713–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.H.; Suo, Z.G.; Liu, W.X.; Zhao, B.Y.; Xing, F.F.; Zhang, Y.; Feng, L.Y. DNA conformational polymorphism for biosensing applications. Biosens. Bioelectron. 2019, 131, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Burge, S.; Parkinson, G.N.; Hazel, P.; Todd, A.K.; Neidle, S. Quadruplex DNA: Sequence, topology and structure. Nucleic Acids Res. 2006, 34, 5402–5415. [Google Scholar] [CrossRef] [Green Version]
- Spiegel, J.; Adhikari, S.; Balasubramanian, S. The Structure and Function of DNA G-Quadruplexes. Trends Chem. 2020, 2, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Luu, K.N.; Phan, A.T.; Kuryavyi, V.; Lacroix, L.; Patel, D.J. Structure of the human telomere in K+ solution: An intramolecular (3 + 1) G-quadruplex scaffold. J. Am. Chem. Soc. 2006, 128, 9963–9970. [Google Scholar] [CrossRef] [Green Version]
- Largy, E.; Marchand, A.; Amrane, S.; Gabelica, V.; Mergny, J. Quadruplex turncoats: Cation-dependent folding and stability of Quadruplex-DNA double switches. J. Am. Chem. Soc. 2016, 138, 2780–2792. [Google Scholar] [CrossRef] [Green Version]
- Li, T.T.; Zhang, Y.; Sun, X.H.; Zhang, Y.J.; Wang, Y.G.; Nie, Z.Y. Dual dye-labeled G-quadruplex aptasensor for detection of thallium(I) using ratiometric fluorescence resonance energy transfer. Talanta 2021, 233, 122508. [Google Scholar] [CrossRef]
- Zhu, Q.; Liu, L.H.; Xing, Y.P.; Zhou, X.H. Duplex functional G-quadruplex/NMM fluorescent probe for label-free detection of lead(II) and mercury(II) ions. J. Hazard. Mater. 2018, 355, 50–55. [Google Scholar] [CrossRef]
- Ma, D.L.; Wu, C.; Dong, Z.Z.; Tam, W.S.; Wong, S.W.; Yang, C.; Li, G.D.; Leung, C.H. The development of G-quadruplex-based assays for the detection of small molecules and toxic substances. Chem. Asian J. 2017, 12, 1851–1860. [Google Scholar] [CrossRef]
- Zhang, J.T.; Kang, T.S.; Wong, S.Y.; Pei, R.J.; Ma, D.L.; Leung, C.H. An iridium(III) complex/G-quadruplex ensemble for detection of ochratoxin A based on long-lifetime luminescent. Anal. Biochem. 2019, 580, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Rhouati, A.; Yang, C.; Hayat, A.; Marty, J. Aptamers: A Promising Tool for Ochratoxin A Detection in Food Analysis. Toxins 2013, 5, 1988–2008. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liao, R.; Wang, H.; Gong, H.; Chen, C.Y.; Chen, X.M.; Cai, C.Q. Accurate and sensitive fluorescence detection of DNA based on G-quadruplex hairpin DNA. Talanta 2018, 176, 422–427. [Google Scholar] [CrossRef]
- Xi, H.; Juhas, M.; Zhang, Y. G-quadruplex based biosensor: A potential tool for SARS-CoV-2 detection. Biosens. Bioelectron. 2020, 167, 112494. [Google Scholar] [CrossRef] [PubMed]
- Xiang, D.S.; Li, F.Q.; Wu, C.Y.; Shi, B.; Zhai, K. The G-BHQ synergistic effect: Improved double quenching molecular beacons based on guanine and Black Hole Quencher for sensitive simultaneous detection of two DNAs. Talanta 2017, 174, 289–294. [Google Scholar] [CrossRef]
- Heinlein, T.; Knemeyer, J.; Piestert, O.; Sauer, M. Photoinduced electron transfer between fluorescent dyes and guanosine residues in DNA-Hairpins. J. Phys. Chem. B 2003, 107, 7957–7964. [Google Scholar] [CrossRef]
- Mao, H.H.; Luo, G.H.; Zhan, Y.X.; Zhang, J.; Yao, S.; Yu, Y. The mechanism and regularity of quenching the effect of bases on fluorophores: The base-quenched probe method. Analyst 2018, 143, 3292–3301. [Google Scholar] [CrossRef]
- Chiorcea-Paquim, A.; Santos, P.V.; Eritja, R.; Oliveira-Brett, A.M. Self-assembled G-quadruplex nanostructures: AFM and voltammetric characterization. Phys. Chem. Chem. Phys. 2013, 15, 9117–9124. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Chen, W.H.; Dong, X.T.; Fan, H.; Wang, X.H.; Bian, L.J. Simultaneous detection of trace toxic metal ions, Pb2+ and Ag+, in water and food using a novel single-labeled fluorescent oligonucleotide probe. Sens. Actuators B Chem. 2018, 261, 58–65. [Google Scholar] [CrossRef]
- Wang, S.; Sun, J.; Zhao, J.H.; Lu, S.S.; Yang, X.R. Photo-Induced electron transfer-based versatile platform with G-quadruplex/Hemin complex as quencher for construction of DNA logic circuits. Anal. Chem. 2018, 90, 3437–3442. [Google Scholar] [CrossRef]
- Yang, C.; Dong, S.N.; ABBAS, F.; Chu, X.L.; Fan, A.Q.; RHOUATI, A.; Mao, J.; Liu, Y. Label-free fluorescence aptasensor for ochratoxin A using crystal violet as displacement-type probe. Chin. J. Anal. Chem. 2021, 49, 55–62. [Google Scholar] [CrossRef]
- Zhao, H.; Xiang, X.Y.; Chen, M.J.; Ma, C.B. Aptamer-Based Fluorometric Ochratoxin A Assay Based on Photoinduced Electron Transfer. Toxins 2019, 11, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kardar, Z.S.; Shemirani, F.; Zadmard, R. Determination of iron(II) and iron(III) via static quenching of the fluorescence of tryptophan-protected copper nanoclusters. Microchim. Acta 2020, 187, 81. [Google Scholar] [CrossRef] [PubMed]
- Sergelen, K.; Fossati, S.; Turupcu, A.; Oostenbrink, C.; Liedberg, B.; Knoll, W.; Dostalek, J. Plasmon field-enhanced fluorescence energy transfer for hairpin aptamer assay readout. ACS Sens. 2017, 2, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.Q.; Cheng, N.Y.; Liu, Q.; Xing, W.; Sun, X.P. Cobalt phosphide nanowires: Efficient nanostructures for fluorescence sensing of biomolecules and photocatalytic evolution of dihydrogen from water under visible light. Angew. Chem. Int. Ed. 2015, 54, 5493–5497. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.N. Fluorescence energy transfer methods in bioanalysis. Analyst 2005, 130, 265. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.L.; Spata, V.A.; Matsika, S. Photophysical properties of pyrrolocytosine, a cytosine fluorescent base analogue. Phys. Chem. Chem. Phys. 2016, 18, 20189–20198. [Google Scholar] [CrossRef] [Green Version]
- Kong, D.M.; Ma, Y.E.; Guo, J.H.; Yang, W.; Shen, H.X. Fluorescent sensor for monitoring structural changes of G-quadruplexes and detection of potassium Ion. Anal. Chem. 2009, 81, 2678–2684. [Google Scholar] [CrossRef]
- Cao, Y.W.; Li, W.J.; Gao, T.; Ding, P.; Pei, R.J. One terminal guanosine flip of intramolecular parallel G-quadruplex: Catalytic enhancement of G-quadruplex/Hemin DNAzymes. Chem. A Eur. J. 2020, 26, 8631–8638. [Google Scholar] [CrossRef]
- He, Y.; Tian, F.Y.; Zhou, J.; Jiao, B.N. A fluorescent aptasensor for ochratoxin A detection based on enzymatically generated copper nanoparticles with a polythymine scaffold. Microchim. Acta 2019, 186, 199. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.Y.; Li, B.X.; Du, J.X.; Yang, Z.Q. A fluorometric aptamer-based assay for ochratoxin A by using exonuclease III-assisted recycling amplification. Microchim. Acta 2020, 187, 46. [Google Scholar] [CrossRef] [PubMed]
- Sundquist, W.I.; Klug, A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature 1989, 342, 825–829. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Li, B.X.; Cheng, D.M.; Duan, X.Y. Simple and sensitive fluorescence sensor for detection of potassium ion in the presence of high concentration of sodium ion using berberine–G-quadruplex complex as sensing element. Microchem. J. 2011, 99, 503–507. [Google Scholar] [CrossRef]
Sample Number | Added (nM) | Detected (nM) | Recovery (%) |
---|---|---|---|
1 | 2.00 | 1.98 ± 0.53 | 99.00 |
2 | 4.00 | 4.13 ± 0.35 | 103.25 |
3 | 8.00 | 7.82 ± 0.62 | 97.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Chu, X.; Zeng, L.; Rhouati, A.; Abbas, F.; Cui, S.; Lin, D. Development of Fluorescent Aptasensors Based on G-Quadruplex Quenching Ability for Ochratoxin A and Potassium Ions Detection. Biosensors 2022, 12, 423. https://doi.org/10.3390/bios12060423
Yang C, Chu X, Zeng L, Rhouati A, Abbas F, Cui S, Lin D. Development of Fluorescent Aptasensors Based on G-Quadruplex Quenching Ability for Ochratoxin A and Potassium Ions Detection. Biosensors. 2022; 12(6):423. https://doi.org/10.3390/bios12060423
Chicago/Turabian StyleYang, Cheng, Xiaolin Chu, Li Zeng, Amina Rhouati, Fathimath Abbas, Shengnan Cui, and Daiqin Lin. 2022. "Development of Fluorescent Aptasensors Based on G-Quadruplex Quenching Ability for Ochratoxin A and Potassium Ions Detection" Biosensors 12, no. 6: 423. https://doi.org/10.3390/bios12060423
APA StyleYang, C., Chu, X., Zeng, L., Rhouati, A., Abbas, F., Cui, S., & Lin, D. (2022). Development of Fluorescent Aptasensors Based on G-Quadruplex Quenching Ability for Ochratoxin A and Potassium Ions Detection. Biosensors, 12(6), 423. https://doi.org/10.3390/bios12060423