# Vortex Beam Encoded All-Optical Logic Gates Based on Nano-Ring Plasmonic Antennas

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Interactions between Light and Surface Plasmon Polaritons (SPPs) on Nano-Ring Plasmonic Antennas

## 3. Design and Discussion

#### 3.1. OR and AND Logic Gates

#### 3.2. NOT Logic Gate

#### 3.3. NOR and NAND Logic Gates

#### 3.4. XNOR Logic Gate

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Kirchain, R.; Kimerling, L. A roadmap for nanophotonics. Nat. Photonics
**2007**, 1, 303. [Google Scholar] [CrossRef] - Sasikala, V.; Chitra, K. All optical switching and associated technologies: A review. J. Opt.
**2018**, 47, 307–317. [Google Scholar] [CrossRef] - Qin, J.; Lu, G.; Sakamoto, T.; Akahane, K.; Yamamoto, N.; Wang, D.; Wang, C.; Wang, H.; Zhang, M.; Kawanishi, T.; et al. Simultaneous multichannel wavelength multicasting and XOR logic gate multicasting for three DPSK signals based on four-wave mixing in quantum-dot semiconductor optical amplifier. Opt. Express
**2014**, 22, 29413–29423. [Google Scholar] [CrossRef] [PubMed] - Salmanpour, A.; Mohammadnejad, S.; Bahrami, A. All-optical photonic crystal AND, XOR, and OR logic gates using nonlinear Kerr effect and ring resonators. J. Mod. Opt.
**2015**, 62, 693–700. [Google Scholar] [CrossRef] - Almeida, V.R.; Barrios, C.A.; Panepucci, R.R.; Lipson, M. All-optical control of light on a silicon chip. Nature
**2004**, 431, 1081. [Google Scholar] [CrossRef] - Nozaki, K.; Tanabe, T.; Shinya, A.; Matsuo, S.; Sato, T.; Taniyama, H.; Notomi, M. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photonics
**2010**, 4, 477. [Google Scholar] [CrossRef] - Ota, M.; Sumimura, A.; Fukuhara, M.; Ishii, Y.; Fukuda, M. Plasmonic-multimode-interference-based logic circuit with simple phase adjustment. Sci. Rep.
**2016**, 6, 24546. [Google Scholar] [CrossRef] - Plum, E.; MacDonald, K.F.; Fang, X.; Faccio, D.; Zheludev, N.I. Controlling the optical response of 2D matter in standing waves. ACS Photonics
**2017**, 4, 3000–3011. [Google Scholar] [CrossRef] - Baranov, D.G.; Krasnok, A.; Shegai, T.; Alù, A.; Chong, Y. Coherent perfect absorbers: Linear control of light with light. Nat. Rev. Mater.
**2017**, 2, 17064. [Google Scholar] [CrossRef] - Roger, T.; Vezzoli, S.; Bolduc, E.; Valente, J.; Heitz, J.J.F.; Jeffers, J.; Soci, C.; Leach, J.; Couteau, C.; Zheludev, N.I.; et al. Coherent perfect absorption in deeply subwavelength films in the single-photon regime. Nat. Commun.
**2015**, 6, 7031. [Google Scholar] [CrossRef] - Xomalis, A.; Demirtzioglou, I.; Plum, E.; Jung, Y.; Nalla, V.; Lacava, C.; MacDonald, K.F.; Petropoulos, P.; Richardson, D.J.; Zheludev, N.I. Fibre-optic metadevice for all-optical signal modulation based on coherent absorption. Nat. Commun.
**2018**, 9, 182. [Google Scholar] [CrossRef] [PubMed] - Papaioannou, M.; Plum, E.; Valente, J.; Rogers, E.T.F.; Zheludev, N.I. All-optical multichannel logic based on coherent perfect absorption in a plasmonic metamaterial. APL Photonics
**2016**, 1, 090801. [Google Scholar] [CrossRef] - Cohen, M.; Zalevsky, Z.; Shavit, R. Towards integrated nanoplasmonic logic circuitry. Nanoscale
**2013**, 5, 5442–5449. [Google Scholar] [CrossRef] [PubMed] - Fu, Y.; Hu, X.; Lu, C.; Yue, S.; Yang, H.; Gong, Q. All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett.
**2012**, 12, 5784–5790. [Google Scholar] [CrossRef] [PubMed] - Wei, H.; Wang, Z.; Tian, X.; Käll, M.; Xu, H. Cascaded logic gates in nanophotonic plasmon networks. Nat. Commun.
**2011**, 2, 387. [Google Scholar] [CrossRef] [PubMed] - Birr, T.; Zywietz, U.; Chhantyal, P.; Chichkov, B.N.; Reinhardt, C. Ultrafast surface plasmon-polariton logic gates and half-adder. Opt. express
**2015**, 23, 31755–31765. [Google Scholar] [CrossRef] [PubMed] - Wei, H.; Li, Z.; Tian, X.; Wang, Z.; Cong, F.; Liu, N.; Zhang, S.; Nordlander, P.; Halas, N.J.; Xu, H. Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks. Nano Lett.
**2010**, 11, 471–475. [Google Scholar] [CrossRef] - Lu, C.; Hu, X.; Yang, H.; Gong, Q. Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits. Sci. Rep.
**2014**, 4, 3869. [Google Scholar] [CrossRef] - Kumar, A.; Kumar, S.; Raghuwanshi, S.K. Implementation of XOR/XNOR and AND logic gates by using Mach–Zehnder interferometers. Opt.-Int. J. Light Electron Opt.
**2014**, 125, 5764–5767. [Google Scholar] [CrossRef] - Malka, D.; Cohen, M.; Turkiewicz, J.; Zalevsky, Z. Optical micro-multi-racetrack resonator filter based on SOI waveguides. Photonics Nanostruct.-Fundam. Appl.
**2015**, 16, 16–23. [Google Scholar] [CrossRef] - Yang, Z.; Fu, Y.; Yang, J.; Hua, C.; Zhang, J. Spin-encoded subwavelength all-optical logic gates based on single-element optical slot nanoantennas. Nanoscale
**2018**, 10, 4523–4527. [Google Scholar] [CrossRef] [PubMed] - Deng, L.; Wang, H.; Wang, K. Quantum CNOT gates with orbital angular momentum and polarization of single-photon quantum logic. JOSA B
**2007**, 24, 2517–2520. [Google Scholar] [CrossRef] - Lopes, J.H.; Soares, W.C.; Bernardo, B.D.L.; Caetano, D.P.; Canabarro, A. Linear optical CNOT gate with orbital angular momentum and polarization. Quantum Inf. Process.
**2019**, 18, 256. [Google Scholar] [CrossRef] - Liu, H.; Teng, C.; Yang, H.; Deng, H.; Xu, R.; Deng, S.; Chen, M.; Yuan, L. Proposed phase plate for superimposed orbital angular momentum state generation. Opt. Express
**2018**, 26, 14792–14799. [Google Scholar] [CrossRef] [PubMed] - Chen, M.; Gao, W.; Liu, H.; Teng, C.; Deng, S.; Deng, H.; Yuan, L. Polarization controllable generation of flat superimposed OAM states based on metasurface. Opt. Express
**2019**, 27, 20133–20144. [Google Scholar] [CrossRef] - Yao, A.M.; Padgett, M.J. Orbital angular momentum: Origins, behavior and applications. Adv. Opt. Photonics
**2011**, 3, 161–204. [Google Scholar] [CrossRef] - Lavery, M.P.J.; Speirits, F.C.; Barnett, S.M.; Padgett, M.J. Detection of a spinning object using light’s orbital angular momentum. Science
**2013**, 341, 537–540. [Google Scholar] [CrossRef] - Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A
**1992**, 45, 8185–8189. [Google Scholar] [CrossRef] - Zhu, L.; Wang, J. Simultaneous generation of multiple orbital angular momentum (OAM) modes using a single phase-only element. Opt. Express
**2015**, 23, 26221–26233. [Google Scholar] [CrossRef] - Marrucci, L.; Manzo, C.; Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett.
**2006**, 96, 163905. [Google Scholar] [CrossRef] - Beijersbergen, M.W.; Coerwinkel, R.; Kristensen, M.; Woerdman, J.P. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun.
**1994**, 112, 321–327. [Google Scholar] [CrossRef] - Chen, S.; Cai, Y.; Li, G.; Zhang, S.; Cheah, K.W. Geometric metasurface fork gratings for vortex-beam generation and manipulation. Laser Photonics Rev.
**2016**, 10, 322–326. [Google Scholar] [CrossRef][Green Version] - Wang, Y.; Bao, W.S.; Bao, H.Z.; Zhou, C.; Jiang, M.S.; Li, H.W. High-dimensional quantum key distribution with the entangled single-photon-added coherent state. Phys. Lett. A
**2017**, 381, 1393–1397. [Google Scholar] [CrossRef] - Wang, J.; Yang, J.Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon.
**2012**, 6, 488–496. [Google Scholar] [CrossRef] - Wen, Y.; Chremmos, I.; Chen, Y.; Zhu, J.; Zhang, Y.; Yu, S. Spiral transformation for high-resolution and efficient sorting of optical vortex modes. Phys. Rev. lett.
**2018**, 120, 193904. [Google Scholar] [CrossRef][Green Version] - Berkhout, G.C.G.; Lavery, M.P.J.; Courtial, J.; Beijersbergen, M.W.; Padgett, M.J. Efficient sorting of orbital angular momentum states of light. Phys. Rev. lett.
**2010**, 105, 153601. [Google Scholar] [CrossRef][Green Version] - Cai, X.; Wang, J.; Strain, M.J.; Johnson-Morris, B.; Zhu, J.; Sorel, M.; O’Brien, J.L.; Thompson, M.G.; Yu, S. Integrated compact optical vortex beam emitters. Science
**2012**, 338, 363–366. [Google Scholar] [CrossRef] - Strain, M.J.; Cai, X.; Wang, J.; Zhu, J.; Phillips, D.B.; Chen, L.; Lopez-Garcia, M.; O’Brien, J.L.; Thompson, M.G.; Sorel, M.; et al. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters. Nat. Commun.
**2014**, 5, 4856. [Google Scholar] [CrossRef][Green Version] - Xie, Z.; Lei, T.; Li, F.; Qiu, H.; Zhang, Z.; Wang, H.; Min, C.; Du, L.; Li, Z.; Yuan, X. Ultra-broadband on-chip twisted light emitter for optical communications. Light Sci. Appl.
**2018**, 7, 18001. [Google Scholar] [CrossRef][Green Version] - Liu, A.; Rui, G.; Ren, X.; Zhan, Q.; Guo, G.; Guo, G. Encoding photonic angular momentum information onto surface plasmon polaritons with plasmonic lens. Opt. Express
**2012**, 20, 24151–24159. [Google Scholar] [CrossRef]

**Figure 1.**The diagram of a single ring plasmonic antenna. (

**a**) is a 3D drawing of the nano-ring plasmonic antenna. (

**b**) is a top view of the nano-ring plasmonic antenna and the coordinates for our calculation.

**Figure 2.**The normalized intensity of the plasmonic field near the center of the nano-ring for (

**a**) input logic states “11”, (

**b**) input logic states “10/01”, and (

**c**) input logic states “00” in the realization scheme of OR and AND logic gates.

**Figure 3.**The normalized intensity of the plasmonic field near the center of the nano-ring for (

**a**) input state “0” and (

**b**) input state “1” in the realization scheme of NOT logic gate.

**Figure 4.**The normalized intensity of the plasmonic field near the center of the nano-ring for (

**a**) input logic states “00”, (

**b**) input logic states “10/01”, and (

**c**) input logic states “11” in the realization scheme of NOR and NAND logic gates.

**Figure 5.**The normalized intensity of the plasmonic field near the center of the nano-ring for (

**a**) input logic states “00”, (

**b**) input logic states “10/01”, and (

**c**) input logic states “11” in the realization scheme of XNOR logic gate.

Input States of Signal 1 | Input States of Signal 2 | Normalized Intensity of the Center Point |
---|---|---|

1 | 1 | 1 |

1 | 0 | 0.25 |

0 | 1 | 0.25 |

0 | 0 | 0 |

Input States | Normalized Intensity of the Center Point |
---|---|

0 | 1 |

1 | 0 |

Input States of Signal 1 | Input States of Signal 2 | Normalized Intensity of the Center Point |
---|---|---|

0 | 0 | 1 |

1 | 0 | 0.25 |

0 | 1 | 0.25 |

1 | 1 | 0 |

Input States of Signal 1 | Input States of Signal 2 | Normalized Intensity of the Center Point |
---|---|---|

0 | 0 | 1 |

1 | 0 | 0.5 |

0 | 1 | 0.5 |

1 | 1 | 1 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Liu, H.; Deng, H.; Deng, S.; Teng, C.; Chen, M.; Yuan, L. Vortex Beam Encoded All-Optical Logic Gates Based on Nano-Ring Plasmonic Antennas. *Nanomaterials* **2019**, *9*, 1649.
https://doi.org/10.3390/nano9121649

**AMA Style**

Liu H, Deng H, Deng S, Teng C, Chen M, Yuan L. Vortex Beam Encoded All-Optical Logic Gates Based on Nano-Ring Plasmonic Antennas. *Nanomaterials*. 2019; 9(12):1649.
https://doi.org/10.3390/nano9121649

**Chicago/Turabian Style**

Liu, Houquan, Hongchang Deng, Shijie Deng, Chuanxin Teng, Ming Chen, and Libo Yuan. 2019. "Vortex Beam Encoded All-Optical Logic Gates Based on Nano-Ring Plasmonic Antennas" *Nanomaterials* 9, no. 12: 1649.
https://doi.org/10.3390/nano9121649