The Impact of Hybrid Compositional Film/Structure on Organic–Inorganic Perovskite Solar Cells
Abstract
1. Introduction
2. Organic–Inorganic Hybrid Perovskites
2.1. Chemical Structures of Perovskites
2.2. Tuning Photoelectric Properties with Hybrid Cations and Anions in Perovskites
3. Solar Cells Based on Hybrid Perovskites
3.1. A Brief Summary of Key Parameters for Perovskite Solar Cells
3.2. Hybrid Architectures in PSCs
4. Hybrid Cations in Perovskites for Improvements in PSC Stability
4.1. Cs-MA Hybrid Cation PSCs
4.2. Cs-FA Hybrid Cation PSCs
4.3. Multication Hybridization for PSCs
5. Hybrid-Dimension Perovskite-Based PSCs
5.1. Hybrid 1-D/2-D/3-D Structured PSCs
5.2. Graded-Dimension Perovskite-Based PSCs
6. Other Hybrid PSCs
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviation
0-D | zero-dimensional |
1-D | one-dimensional |
2-D | two-dimensional |
3-D | three-dimensional |
4-ABPACl | butylphosphonic acid 4-ammonium chloride |
α-bis-PCBM | α bis (1-[3-(methoxycarbonyl) propyl]-1-phenyl)-[6.6] M |
BCP | bathocuproine |
BEI | Butylamine iodide |
BL | blocking layer |
BA | butylamine |
Cs | Cesium |
CB | conduction band |
C60SAM | C60self-assembled monolayer |
CA | cyclopropylamine |
CHMA | cyclohexylammonium iodide |
DFT | density functional theory |
ETL | electron transporting layer |
ETM | electron transporting material |
EDA | ethylenediamine |
FTO | fluorine-doped tin oxide |
FA | Formamidinium |
FAI | Formamidinium iodide |
FF | fill factor |
HTM | hole transport material |
HTL | hole transporting layer |
ITO | indium tin oxide |
LUMO | lowest unoccupied molecular orbital |
MA | methylammonium |
MP | mesoporous |
NERL | National renewable energy laboratory |
PCBM | [6,6]-phenyl-C61-butyric acid methyl ester |
PC61BM | [6,6]-phenyl-C61-butyric acid methyl ester |
PSCs | perovskite solar cells |
PCE | power conversion efficiency |
PEDOT:PSS | poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) |
PFNBr | poly9,9-bis6-(N,N,N-trimethylammonium)hexylfluorene-alt-co-phenylenebromide |
PTAA | polytriarylamine |
PMMA | Polymethyl methacrylate polymer |
PTAA | poly-(3-thiopheneaceticacid) |
PEG | polyethylene glycol |
PEAI | phenylethylammonium iodide |
PZPY | 3-(2-pyridyl)-pyrazol-1-yl |
PEA | phenylethylammonium |
PEI | poly(ethyleneimine) |
PC71BM | [6,6]-phenyl C71butyric acid methyl-ester |
PBDB-T | poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene)-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)benzo[1,2-c:4,5-c′]dithiophene-4,8-dione)] |
Pd | Plumbum |
Rb | Rubidium |
RMS | root mean square |
Sn | Stannum |
SCN | thiocyanate |
spiro-OMeTAD | 2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)9,9′-spirobifluorene |
TBP | 4-tert-butylpyridine |
TMA | tetramethylammonium |
TEA | tetra-ethyl ammonium |
VB | valence band |
References
- Qiu, X.; Cao, B.; Yuan, S.; Chen, X.; Qiu, Z.; Jiang, Y.; Ye, Q.; Wang, H.; Zeng, H.; Liu, J.; et al. From unstable CsSnI3 to air-stable Cs2SnI6: A lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Sol. Energy Mater. Sol. Cells 2017, 159, 227–234. [Google Scholar] [CrossRef]
- D’Innocenzo, V.; Srimath Kandada, A.R.; De Bastiani, M.; Gandini, M.; Petrozza, A. Tuning the Light Emission Properties by Band Gap Engineering in Hybrid Lead Halide Perovskite. J. Am. Chem. Soc. 2014, 136, 17730–17733. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yuan, Y.; Shao, Y.; Yan, Y. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2017, 2, 17042. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.S.; Park, B.-W.; Jung, E.H.; Jeon, N.J.; Kim, Y.C.; Lee, D.U.; Shin, S.S.; Seo, J.; Kim, E.K.; Noh, J.H.; et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379. [Google Scholar] [CrossRef] [PubMed]
- Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S.M.; Correa-Baena, J.-P.; Tress, W.R.; Abate, A.; Hagfeldt, A.; et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016, 354, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.S.; Noh, J.H.; Jeon, N.J.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.P.; Chen, Q.; Li, G.; Luo, S.; Song, T.B.; Duan, H.S.; Hong, Z.R.; You, J.B.; Liu, Y.S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.M.; Teuscher, J.; Miyasaka, T.; Murakami, T.N.; Snaith, H.J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088–4093. [Google Scholar] [CrossRef] [PubMed]
- National Renewable Energy Laboratory. Available online: https://www.nrel.gov/pv/assets/images/efficiency-chart.jpg (accessed on May 2018).
- Xu, F.; Zhang, T.; Li, G.; Zhao, Y. Mixed cation hybrid lead halide perovskites with enhanced performance and stability. J. Mater. Chem. A 2017, 5, 11450–11461. [Google Scholar] [CrossRef]
- Ono, L.K.; Juarez-Perez, E.J.; Qi, Y. Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions. ACS Appl. Mater. Interfaces 2017, 9, 30197–30246. [Google Scholar] [CrossRef] [PubMed]
- Correa-Baena, J.-P.; Abate, A.; Saliba, M.; Tress, W.; Jesper Jacobsson, T.; Gratzel, M.; Hagfeldt, A. The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 2017, 10, 710–727. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Z.B.; Cai, Y.Y.; Liu, H.; Qin, Q.Q.; Tai, Q.D.; Lu, X.B.; Gao, X.S.; Shui, L.L.; Wu, S.J.; et al. High performance planar perovskite solar cells based on CH3NH3PbI3-x(SCN)(x) perovskite film and SnO2 electron transport layer prepared in ambient air with 70% humility. Electrochim. Acta 2018, 260, 468–476. [Google Scholar] [CrossRef]
- Cheng, X.F.; Hou, X.; Zhou, J.; Gao, B.J.; He, J.H.; Li, H.; Xu, Q.F.; Li, N.J.; Chen, D.Y.; Lu, J.M. Pseudohalide-Induced 2D (CH3NH3)2PbI2(SCN)2 Perovskite for Ternary Resistive Memory with High Performance. Small 2018, 14, 1703667. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Pan, Y.; Wang, Z.; Xia, Y.; Chen, Y.; Huang, W. Additive engineering for highly efficient organic-inorganic halide perovskite solar cells: Recent advances and perspectives. J. Mater. Chem. A 2017, 5, 12602–12652. [Google Scholar] [CrossRef]
- Tress, W.; Yavari, M.; Domanski, K.; Yadav, P.; Niesen, B.; Correa Baena, J.P.; Hagfeldt, A.; Graetzel, M. Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energy Environ. Sci. 2018, 11, 151–165. [Google Scholar] [CrossRef]
- Djurisic, A.B.; Liu, F.Z.; Tam, H.W.; Wong, M.K.; Ng, A.; Surya, C.; Chen, W.; He, Z.B. Perovskite solar cells—An overview of critical issues. Prog. Quantum Electron. 2017, 53, 1–37. [Google Scholar] [CrossRef]
- Yu, H.; Yeom, H.I.; Lee, J.W.; Lee, K.; Hwang, D.; Yun, J.; Ryu, J.; Lee, J.; Bae, S.; Kim, S.K.; et al. Superfast Room-Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics. Adv. Mater. 2018, 30, 1704825. [Google Scholar] [CrossRef] [PubMed]
- Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J.M.; Alsari, M.; Booker, E.P.; Hutter, E.M.; Pearson, A.J.; et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 2018, 555, 497. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, F.Z.; Waqas, M.; Leung, T.L.; Tam, H.W.; Lan, X.Q.; Tu, B.; Chen, W.; Djurišić, A.B.; He, Z.B. Formamidinium-Based Lead Halide Perovskites: Structure, Properties, and Fabrication Methodologies. Small Methods 2018, 1700387. [Google Scholar] [CrossRef]
- Cao, D.H.; Stoumpos, C.C.; Farha, O.K.; Hupp, J.T.; Kanatzidis, M.G. 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. J. Am. Chem. Soc. 2015, 137, 7843–7850. [Google Scholar] [CrossRef] [PubMed]
- Smith, I.C.; Hoke, E.T.; Solis-Ibarra, D.; McGehee, M.D.; Karunadasa, H.I. A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability. Angew. Chem. 2014, 126, 11414–11417. [Google Scholar] [CrossRef]
- Tsai, H.; Nie, W.; Blancon, J.-C.; Stoumpos, C.C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A.J.; Verduzco, R.; Crochet, J.J.; Tretiak, S.; et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 2016, 536, 312. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Liu, J.; Portale, G.; Fang, H.-H.; Blake, G.R.; ten Brink, G.H.; Koster, L.J.A.; Loi, M.A. Highly Reproducible Sn-Based Hybrid Perovskite Solar Cells with 9% Efficiency. Adv. Energy Mater. 2018, 8, 1702019. [Google Scholar] [CrossRef]
- Lin, Y.; Bai, Y.; Fang, Y.; Chen, Z.; Yang, S.; Zheng, X.; Tang, S.; Liu, Y.; Zhao, J.; Huang, J. Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures. J. Phys. Chem. Lett. 2018, 9, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Ma, Y.; Zhang, C.; Liu, C.; Li, W.; Schropp, R.E.I.; Mai, Y. Thermodynamically Self-Healing 1D–3D Hybrid Perovskite Solar Cells. Adv. Energy Mater. 2018, 1703421. [Google Scholar] [CrossRef]
- Zhang, T.; Dar, M.I.; Li, G.; Xu, F.; Guo, N.; Grätzel, M.; Zhao, Y. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci. Adv. 2017, 3, e1700841. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Leng, C.; Ji, Y.; Wei, X.; Sun, K.; Tang, L.; Yang, J.; Luo, W.; Li, C.; Deng, Y.; et al. 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells. Nanoscale 2016, 8, 18309–18314. [Google Scholar] [CrossRef] [PubMed]
- Asghar, M.I.; Zhang, J.; Wang, H.; Lund, P.D. Device stability of perovskite solar cells—A review. Renew. Sustain. Energy Rev. 2017, 77, 131–146. [Google Scholar] [CrossRef]
- Mesquita, I.; Andrade, L.; Mendes, A. Perovskite solar cells: Materials, configurations and stability. Renew. Sustain. Energy Rev. 2018, 82, 2471–2489. [Google Scholar] [CrossRef]
- Yavari, M.; Mazloum-Ardakani, M.; Gholipour, S.; Marinova, N.; Delgado, J.L.; Turren-Cruz, S.H.; Domanski, K.; Taghavinia, N.; Saliba, M.; Grätzel, M.; et al. Carbon Nanoparticles in High-Performance Perovskite Solar Cells. Adv. Energy Mater. 2018, 1702719. [Google Scholar] [CrossRef]
- Son, D.-Y.; Im, J.-H.; Kim, H.-S.; Park, N.-G. 11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System. J. Phys. Chem. C 2014, 118, 16567–16573. [Google Scholar] [CrossRef]
- Abrusci, A.; Stranks, S.D.; Docampo, P.; Yip, H.-L.; Jen, A.K.Y.; Snaith, H.J. High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers. Nano Lett. 2013, 13, 3124–3128. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.-L.; Yang, G.; Ren, Z.-W.; Cheung, S.H.; So, S.K.; Chen, L.; Hao, J.; Hou, J.; Li, G. Stable and Efficient Organo-Metal Halide Hybrid Perovskite Solar Cells via π-Conjugated Lewis Base Polymer Induced Trap Passivation and Charge Extraction. Adv. Mater. 2018, 30, 1706126. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, V.M. Die Gesetze der Krystallochemie. Sci. Nat. 1926, 14, 477–485. [Google Scholar] [CrossRef]
- Brivio, F.; Frost, J.M.; Skelton, J.M.; Jackson, A.J.; Weber, O.J.; Weller, M.T.; Goni, A.R.; Leguy, A.M.A.; Barnes, P.R.F.; Walsh, A. Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide. Phys. Rev. B 2015, 92, 144308. [Google Scholar] [CrossRef]
- Ian, M.R.; Enrico, L.C.; Nava, S. Dielectric and Structural Characteristics of Ba- and Sr-based Complex Perovskites as a Function of Tolerance Factor. Jpn. J. Appl. Phys. 1994, 33, 3984. [Google Scholar]
- Li, Z.; Yang, M.; Park, J.-S.; Wei, S.-H.; Berry, J.J.; Zhu, K. Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chem. Mater. 2016, 28, 284–292. [Google Scholar] [CrossRef]
- Travis, W.; Glover, E.N.K.; Bronstein, H.; Scanlon, D.O.; Palgrave, R.G. On the application of the tolerance factor to inorganic and hybrid halide perovskites: A revised system. Chem. Sci. 2016, 7, 4548–4556. [Google Scholar] [CrossRef]
- Ng, C.H.; Ripolles, T.S.; Hamada, K.; Teo, S.H.; Lim, H.N.; Bisquert, J.; Hayase, S. Tunable Open Circuit Voltage by Engineering Inorganic Cesium Lead Bromide/Iodide Perovskite Solar Cells. Sci. Rep. 2018, 8, 2482. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Kim, W.K.; Wu, C.; Kim, T.W. Highly-stable memristive devices based on poly(methylmethacrylate): CsPbCl3 perovskite quantum dot hybrid nanocomposites. Org. Electron. 2018, 56, 41–45. [Google Scholar] [CrossRef]
- Haque, M.A.; Sheikh, A.D.; Guan, X.W.; Wu, T. Metal Oxides as Efficient Charge Transporters in Perovskite Solar Cells. Adv. Energy Mater. 2017, 7, 23. [Google Scholar] [CrossRef]
- Da, P.M.; Zheng, G.F. Tailoring interface of lead-halide perovskite solar cells. Nano Res. 2017, 10, 1471–1497. [Google Scholar] [CrossRef]
- Wang, J.; Peng, J.; Sun, Y.; Liu, X.; Chen, Y.; Liang, Z. FAPbCl3 Perovskite as Alternative Interfacial Layer for Highly Efficient and Stable Polymer Solar Cells. Adv. Electron. Mater. 2016, 2, 1600329. [Google Scholar] [CrossRef]
- Li, G.; Rivarola, F.W.R.; Davis, N.J.L.K.; Bai, S.; Jellicoe, T.C.; Peña, F.d.l.; Hou, S.; Ducati, C.; Gao, F.; Friend, R.H.; et al. Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method. Adv. Mater. 2016, 28, 3528–3534. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.-J.; Yan, Y.; Wei, S.-H. Anomalous Alloy Properties in Mixed Halide Perovskites. J. Phys. Chem. Lett. 2014, 5, 3625–3631. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.J.; Liu, X.M.; Guo, X.R.; Niu, Q.L.; Yi, J.P.; Xia, R.D.; Min, Y. Morphology Analysis and Optimization: Crucial Factor Determining the Performance of Perovskite Solar Cells. Molecules 2017, 22, 23. [Google Scholar] [CrossRef] [PubMed]
- Eperon, G.E.; Burlakov, V.M.; Docampo, P.; Goriely, A.; Snaith, H.J. Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Adv. Funct. Mater. 2014, 24, 151–157. [Google Scholar] [CrossRef]
- Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.P.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Johnston, M.B.; Snaith, H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395. [Google Scholar] [CrossRef] [PubMed]
- Ball, J.M.; Lee, M.M.; Hey, A.; Snaith, H.J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 2013, 6, 1739–1743. [Google Scholar] [CrossRef]
- Yang, X.; Yan, X.; Wang, W.; Zhu, X.; Li, H.; Ma, W.; Sheng, C. Light induced metastable modification of optical properties in CH3NH3PbI3−xBrx perovskite films: Two-step mechanism. Org. Electron. 2016, 34, 79–83. [Google Scholar] [CrossRef]
- Sutton, R.J.; Eperon, G.E.; Miranda, L.; Parrott, E.S.; Kamino, B.A.; Patel, J.B.; Hörantner, M.T.; Johnston, M.B.; Haghighirad, A.A.; Moore, D.T.; et al. Bandgap-Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells. Adv. Energy Mater. 2016, 6, 1502458. [Google Scholar] [CrossRef]
- Rehman, W.; Milot, R.L.; Eperon, G.E.; Wehrenfennig, C.; Boland, J.L.; Snaith, H.J.; Johnston, M.B.; Herz, L.M. Charge-Carrier Dynamics and Mobilities in Formamidinium Lead Mixed-Halide Perovskites. Adv. Mater. 2015, 27, 7938–7944. [Google Scholar] [CrossRef] [PubMed]
- Sadhanala, A.; Deschler, F.; Thomas, T.H.; Dutton, S.E.; Goedel, K.C.; Hanusch, F.C.; Lai, M.L.; Steiner, U.; Bein, T.; Docampo, P.; et al. Preparation of Single-Phase Films of CH3NH3Pb(I1–xBrx)3 with Sharp Optical Band Edges. J. Phys. Chem. Lett. 2014, 5, 2501–2505. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Deng, Y.; Zheng, X.; Bai, Y.; Fang, Y.; Dong, Q.; Wei, H.; Huang, J. Composition Engineering in Doctor-Blading of Perovskite Solar Cells. Adv. Energy Mater. 2017, 7, 1700302. [Google Scholar] [CrossRef]
- Nelson, J. The Physics of Solar Cells; Imperial College Press: London, UK, 2007. [Google Scholar]
- Yoo, S.; Domercq, B.; Kippelen, B. Intensity-dependent equivalent circuit parameters of organic solar cells based on pentacene and C60. J. Appl. Phys. 2005, 97, 103706. [Google Scholar] [CrossRef]
- Yan, J.; Saunders, B.R. Third-generation solar cells: A review and comparison of polymer: Fullerene, hybrid polymer and perovskite solar cells. RSC Adv. 2014, 4, 43286–43314. [Google Scholar] [CrossRef]
- Ravishankar, S.; Gharibzadeh, S.; Roldán-Carmona, C.; Grancini, G.; Lee, Y.; Ralaiarisoa, M.; Asiri, A.M.; Koch, N.; Bisquert, J.; Nazeeruddin, M.K. Influence of Charge Transport Layers on Open-Circuit Voltage and Hysteresis in Perovskite Solar Cells. Joule 2018, 2, 788–798. [Google Scholar] [CrossRef]
- Jeng, J.Y.; Chiang, Y.F.; Lee, M.H.; Peng, S.R.; Guo, T.F.; Chen, P.; Wen, T.C. CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells. Adv. Mater. 2013, 25, 3727–3732. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, K.; Wang, Y.; Feng, X.; Liao, Z.; Su, Q.; Lin, X.; He, Z. Black Phosphorus Quantum Dots for Hole Extraction of Typical Planar Hybrid Perovskite Solar Cells. J. Phys. Chem. Lett. 2017, 8, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xu, L.; Feng, X.; Jie, J.; He, Z. Metal Acetylacetonate Series in Interface Engineering for Full Low-Temperature-Processed, High-Performance, and Stable Planar Perovskite Solar Cells with Conversion Efficiency over 16% on 1 cm2 Scale. Adv. Mater. 2017, 29, 1603923. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhu, Y.; Yu, Y.; Xu, L.; Zhang, G.; He, Z. Low Cost and Solution Processed Interfacial Layer Based on Poly(2-ethyl-2-oxazoline) Nanodots for Inverted Perovskite Solar Cells. Chem. Mater. 2016, 28, 4879–4883. [Google Scholar] [CrossRef]
- Chen, W.; Wu, Y.Z.; Yue, Y.F.; Liu, J.; Zhang, W.J.; Yang, X.D.; Chen, H.; Bi, E.B.; Ashraful, I.; Gratzel, M.; et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944–948. [Google Scholar] [CrossRef] [PubMed]
- Nie, W.; Tsai, H.; Blancon, J.-C.; Liu, F.; Stoumpos, C.C.; Traore, B.; Kepenekian, M.; Durand, O.; Katan, C.; Tretiak, S.; et al. Critical Role of Interface and Crystallinity on the Performance and Photostability of Perovskite Solar Cell on Nickel Oxide. Adv. Mater. 2018, 30, 1703879. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhou, Y.; Wang, L.; Wu, Y.; Tu, B.; Yu, B.; Liu, F.; Tam, H.W.; Wang, G.; Djurišić, A.B.; et al. Molecule-Doped Nickel Oxide: Verified Charge Transfer and Planar Inverted Mixed Cation Perovskite Solar Cell. Adv. Mater. 2018, 30, e1800515. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wu, Y.; Fan, J.; Djurišić, A.B.; Liu, F.; Tam, H.W.; Ng, A.; Surya, C.; Chan, W.K.; Wang, D.; et al. Understanding the Doping Effect on NiO: Toward High-Performance Inverted Perovskite Solar Cells. Adv. Energy Mater. 2018, 1703519. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, G.-N.; Xu, L.-M.; Gu, R.; Xu, Z.-H.; Wang, H.-J.; He, Z.-B. Low temperature processed, high-performance and stable NiOx based inverted planar perovskite solar cells via a poly(2-ethyl-2-oxazoline) nanodots cathode electron-extraction layer. Mater. Today Energy 2016, 1–2, 1–10. [Google Scholar] [CrossRef]
- Nejand, B.A.; Ahmadi, V.; Gharibzadeh, S.; Shahverdi, H.R. Cuprous Oxide as a Potential Low-Cost Hole-Transport Material for Stable Perovskite Solar Cells. ChemSusChem 2016, 9, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Rao, H.; Ye, S.; Sun, W.; Yan, W.; Li, Y.; Peng, H.; Liu, Z.; Bian, Z.; Li, Y.; Huang, C. A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3−xClx solar cells by an effective Cl doping method. Nano Energy 2016, 27, 51–57. [Google Scholar] [CrossRef]
- Zuo, C.; Ding, L. Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells. Small 2015, 11, 5528–5532. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; He, Q.; Yang, G.; Yu, X.; Xiong, L.; Fang, G. Metal ions diffusion at heterojunction chromium Oxide/CH3NH3PbI3 interface on the stability of perovskite solar cells. Surf. Interfaces 2018, 10, 93–99. [Google Scholar] [CrossRef]
- Qin, P.L.; Lei, H.W.; Zheng, X.L.; Liu, Q.; Tao, H.; Yang, G.; Ke, W.J.; Xiong, L.B.; Qin, M.C.; Zhao, X.Z.; et al. Copper-Doped Chromium Oxide Hole-Transporting Layer for Perovskite Solar Cells: Interface Engineering and Performance Improvement. Adv. Mater. Interfaces 2016, 3, 1500799. [Google Scholar] [CrossRef]
- Wang, D.; Elumalai, N.K.; Mahmud, M.A.; Wright, M.; Upama, M.B.; Chan, K.H.; Xu, C.; Haque, F.; Conibeer, G.; Uddin, A. V2O5-PEDOT: PSS bilayer as hole transport layer for highly efficient and stable perovskite solar cells. Org. Electron. 2018, 53, 66–73. [Google Scholar] [CrossRef]
- Yao, X.; Qi, J.; Xu, W.; Jiang, X.; Gong, X.; Cao, Y. Cesium-Doped Vanadium Oxide as the Hole Extraction Layer for Efficient Perovskite Solar Cells. ACS Omega 2018, 3, 1117–1125. [Google Scholar] [CrossRef]
- Byranvand, M.M.; Kim, T.; Song, S.; Kang, G.; Ryu, S.U.; Park, T. p-Type CuI Islands on TiO2 Electron Transport Layer for a Highly Efficient Planar-Perovskite Solar Cell with Negligible Hysteresis. Adv. Energy Mater. 2018, 8, 1702235. [Google Scholar] [CrossRef]
- Tan, H.; Jain, A.; Voznyy, O.; Lan, X.; Garcia de Arquer, F.P.; Fan, J.Z.; Quintero-Bermudez, R.; Yuan, M.; Zhang, B.; Zhao, Y.; et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 2017, 355, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Xiong, Q.; Feng, B.; Xu, Y.; Zhang, J.; Wang, H. Low-temperature processed SnO2 compact layer for efficient mesostructure perovskite solar cells. CA-Cancer J. Clin. 2016, 391, 677–683. [Google Scholar]
- Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2016, 1, 16177. [Google Scholar] [CrossRef]
- Ke, W.; Fang, G.; Liu, Q.; Xiong, L.; Qin, P.; Tao, H.; Wang, J.; Lei, H.; Li, B.; Wan, J.; et al. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 2015, 137, 6730–6733. [Google Scholar] [CrossRef] [PubMed]
- Ke, W.; Zhao, D.; Cimaroli, A.J.; Grice, C.R.; Qin, P.; Liu, Q.; Xiong, L.; Yan, Y.; Fang, G. Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells. J. Mater. Chem. A 2015, 3, 24163–24168. [Google Scholar] [CrossRef]
- Ren, X.; Yang, D.; Yang, Z.; Feng, J.; Zhu, X.; Niu, J.; Liu, Y.; Zhao, W.; Liu, S.F. Solution-Processed Nb:SnO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 2421–2429. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Huang, K.; Yu, X.; Yang, Z.; Xiao, K.; Qiang, Y.; Zhu, X.; Xu, L.; Wang, P.; Cui, C.; et al. Enhanced Electronic Properties of SnO2 via Electron Transfer from Graphene Quantum Dots for Efficient Perovskite Solar Cells. ACS Nano 2017, 11, 9176–9182. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Kelly, T.L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 2013, 8, 133. [Google Scholar] [CrossRef]
- Cao, J.; Wu, B.; Chen, R.; Wu, Y.; Hui, Y.; Mao, B.W.; Zheng, N. Efficient, Hysteresis-Free, and Stable Perovskite Solar Cells with ZnO as Electron-Transport Layer: Effect of Surface Passivation. Adv. Mater. 2018, 30, 1705596. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wu, J.; Zhang, T.; Wang, Y.; Liu, D.; Chen, H.; Ji, L.; Liu, C.; Ahmad, W.; Chen, Z.D.; et al. Perovskite Solar Cells with ZnO Electron-Transporting Materials. Adv. Mater. 2018, 30, 1703737. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tan, C.H.; Du, T.; Morbidoni, M.; Lin, C.-T.; Xu, S.; Durrant, J.R.; McLachlan, M.A. ZnO-PCBM bilayers as electron transport layers in low-temperature processed perovskite solar cells. Sci. Bull. 2018, 63, 343–348. [Google Scholar] [CrossRef]
- Bowring, A.R.; Bertoluzzi, L.; O’Regan, B.C.; McGehee, M.D. Reverse Bias Behavior of Halide Perovskite Solar Cells. Adv. Energy Mater. 2018, 8, 1702365. [Google Scholar] [CrossRef]
- Tian, C.; Castro, E.; Betancourt-Solis, G.; Nan, Z.; Fernandez-Delgado, O.; Jankuru, S.; Echegoyen, L. Fullerene derivative with a branched alkyl chain exhibits enhanced charge extraction and stability in inverted planar perovskite solar cells. New J. Chem. 2018, 42, 2896–2902. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, J.; Mi, Y.; Zhu, X.; Ren, H.; Liu, X.; Yan, Y. Enhanced performance of perovskite solar cells by ultraviolet-ozone treatment of mesoporous TiO2. Appl. Surf. Sci. 2018, 436, 596–602. [Google Scholar] [CrossRef]
- Seo, J.Y.; Uchida, R.; Kim, H.S.; Saygili, Y.; Luo, J.; Moore, C.; Kerrod, J.; Wagstaff, A.; Eklund, M.; McIntyre, R.; et al. Boosting the Efficiency of Perovskite Solar Cells with CsBr-Modified Mesoporous TiO2 Beads as Electron-Selective Contact. Adv. Funct. Mater. 2018, 28, 1705763. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Yang, W.S.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476. [Google Scholar] [CrossRef] [PubMed]
- Guarnera, S.; Abate, A.; Zhang, W.; Foster, J.M.; Richardson, G.; Petrozza, A.; Snaith, H.J. Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al2O3 Buffer Layer. J. Phys. Chem. Lett. 2015, 6, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Pearson, A.J.; Eperon, G.E.; Hopkinson, P.E.; Habisreutinger, S.N.; Wang, J.T.W.; Snaith, H.J.; Greenham, N.C. Oxygen Degradation in Mesoporous Al2O3/CH3NH3PbI3−xClx Perovskite Solar Cells: Kinetics and Mechanisms. Adv. Energy Mater. 2016, 6, 1600014. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Z.; Mei, A.; Jiang, Y.; Hou, X.; Wang, Q.; Du, K.; Rong, Y.; Zhou, Y.; Xu, G.; et al. Improved Performance of Printable Perovskite Solar Cells with Bifunctional Conjugated Organic Molecule. Adv. Mater. 2018, 30, 1705786. [Google Scholar] [CrossRef] [PubMed]
- Mejía Escobar, M.A.; Pathak, S.; Liu, J.; Snaith, H.J.; Jaramillo, F. ZrO2/TiO2 Electron Collection Layer for Efficient Meso-Superstructured Hybrid Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 2342–2349. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.S.; Yeom, E.J.; Yang, W.S.; Hur, S.; Kim, M.G.; Im, J.; Seo, J.; Noh, J.H.; Seok, S.I. Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 2017, 356, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Jeon, N.J.; Noh, J.H.; Kim, Y.C.; Yang, W.S.; Ryu, S.; Seok, S.I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.; Kim, Y.; Lee, C.; Kim, Y.; Jun, Y. Investigation of Hole-Transporting Poly(triarylamine) on Aggregation and Charge Transport for Hysteresisless Scalable Planar Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 11633–11641. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.H.; Im, S.H.; Noh, J.H.; Mandal, T.N.; Lim, C.-S.; Chang, J.A.; Lee, Y.H.; Kim, H.-J.; Sarkar, A.; Nazeeruddin, M.K.; et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 2013, 7, 486. [Google Scholar] [CrossRef]
- Christians, J.A.; Schulz, P.; Tinkham, J.S.; Schloemer, T.H.; Harvey, S.P.; Tremolet de Villers, B.J.; Sellinger, A.; Berry, J.J.; Luther, J.M. Tailored interfaces of unencapsulated perovskite solar cells for >1000 hour operational stability. Nat. Energy 2018, 3, 68–74. [Google Scholar] [CrossRef]
- Turren-Cruz, S.-H.; Saliba, M.; Mayer, M.T.; Juarez-Santiesteban, H.; Mathew, X.; Nienhaus, L.; Tress, W.; Erodici, M.P.; Sher, M.-J.; Bawendi, M.G.; et al. Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells. Energy Environ. Sci. 2018, 11, 78–86. [Google Scholar] [CrossRef]
- Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J.M.; Bach, U.; Spiccia, L.; Cheng, Y.-B. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 2015, 3, 8139–8147. [Google Scholar] [CrossRef]
- Berhe, T.A.; Su, W.-N.; Chen, C.-H.; Pan, C.-J.; Cheng, J.-H.; Chen, H.-M.; Tsai, M.-C.; Chen, L.-Y.; Dubale, A.A.; Hwang, B.-J. Organometal halide perovskite solar cells: Degradation and stability. Energy Environ. Sci. 2016, 9, 323–356. [Google Scholar] [CrossRef]
- Eperon, G.E.; Paterno, G.M.; Sutton, R.J.; Zampetti, A.; Haghighirad, A.A.; Cacialli, F.; Snaith, H.J. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 2015, 3, 19688–19695. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Malliakas, C.D.; Kanatzidis, M.G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorg. Chem. 2013, 52, 9019–9038. [Google Scholar] [CrossRef] [PubMed]
- Eperon, G.E.; Stranks, S.D.; Menelaou, C.; Johnston, M.B.; Herz, L.M.; Snaith, H.J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014, 7, 982–988. [Google Scholar] [CrossRef]
- Giorgi, G.; Yamashita, K. Zero-dipole molecular organic cations in mixed organic-inorganic halide perovskites: Possible chemical solution for the reported anomalous hysteresis in the current-voltage curve measurements. Nanotechnology 2015, 26, 442001. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Jeong, J.; Kim, H.-B.; Kim, S.; Walker, B.; Kim, G.-H.; Kim, J.Y. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 2014, 7, 80–85. [Google Scholar] [CrossRef]
- Niemann, R.G.; Gouda, L.; Hu, J.G.; Tirosh, S.; Gottesman, R.; Cameron, P.J.; Zaban, A. Cs+ incorporation into CH3NH3PbI3 perovskite: Substitution limit and stability enhancement. J. Mater. Chem. A 2016, 4, 17819–17827. [Google Scholar] [CrossRef]
- Niu, G.; Li, W.; Li, J.; Liang, X.; Wang, L. Enhancement of thermal stability for perovskite solar cells through cesium doping. RSC Adv. 2017, 7, 17473–17479. [Google Scholar] [CrossRef]
- Niu, G.; Yu, H.; Li, J.; Wang, D.; Wang, L. Controlled orientation of perovskite films through mixed cations toward high performance perovskite solar cells. Nano Energy 2016, 27, 87–94. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Zhang, Y.; Guan, W.B.; Wang, K.F.; Cheng, Z.X.; Wang, Y.X. Large enhanced conversion efficiency of perovskite solar cells by CsBr doping. J. Mater. Sci. 2017, 52, 13203–13211. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, L.; Zhang, J.; Zhou, Z.; Li, C.; Chen, B.; Etgar, L.; Cui, G.; Pang, S. CH3NH2 gas induced (110) preferred cesium-containing perovskite films with reduced PbI6 octahedron distortion and enhanced moisture stability. J. Mater. Chem. A 2017, 5, 4803–4808. [Google Scholar] [CrossRef]
- Sedighi, R.; Tajabadi, F.; Taghavinia, N. Vapor assisted deposition of alkaline doped perovskites: Pure phase formation of CsxMA1−xPbI3. Electrochim. Acta 2018, 259, 485–491. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, P.; Wang, S.; Wang, Z.; Cai, B.; Zheng, X.; Chen, Y.; Yuan, N.; Ding, J.; Zhang, W.H. Heterojunction Engineering for High Efficiency Cesium Formamidinium Double-Cation Lead Halide Perovskite Solar Cells. ChemSusChem 2018, 11, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xu, P.; Liu, J.; You, X.Z. Sequential Introduction of Cations Deriving Large-Grain CsxFA1−xPbI3 Thin Film for Planar Hybrid Solar Cells: Insight into Phase-Segregation and Thermal-Healing Behavior. Small 2017, 13, 1603225. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ma, C.; Xie, Y.; Cheng, Y.; Tian, Y.; Li, M.; Ma, Y.; Lee, C.-S.; Tsang, S.W. Air-Processed Mixed-Cation Cs0.15FA0.85PbI3 Planar Perovskite Solar Cells Derived from PbI2-CsI-FAI Intermediate Complex. J. Mater. Chem. A 2018, 6, 7731–7740. [Google Scholar] [CrossRef]
- Rehman, W.; McMeekin, D.P.; Patel, J.B.; Milot, R.L.; Johnston, M.B.; Snaith, H.J.; Herz, L.M. Photovoltaic mixed-cation lead mixed-halide perovskites: Links between crystallinity, photo-stability and electronic properties. Energy Environ. Sci. 2017, 10, 361–369. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Kwun, J.; Garces, H.F.; Pang, S.P.; Padture, N.P. Observation of phase-retention behavior of the HC(NH2)(2)PbI3 black perovskite polymorph upon mesoporous TiO2 scaffolds. Chem. Commun. 2016, 52, 7273–7275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tian, F.; Xie, Z.; Qin, G. Efficiency evaluation on Csx[NH2CH = NH2]1−xPb(I1−yBry)3/crystalline silicon tandem solar cells. Sol. Energy 2017, 147, 432–438. [Google Scholar] [CrossRef]
- Jiang, Y.; Leyden, M.R.; Qiu, L.; Wang, S.; Ono, L.K.; Wu, Z.; Juarez-Perez, E.J.; Qi, Y. Combination of Hybrid CVD and Cation Exchange for Upscaling Cs-Substituted Mixed Cation Perovskite Solar Cells with High Efficiency and Stability. Adv. Funct. Mater. 2018, 28, 1703835. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, D.H.; Kim, H.S.; Seo, S.W.; Cho, S.M.; Park, N.G. Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell. Adv. Energy Mater. 2015, 5, 1501310. [Google Scholar] [CrossRef]
- Yi, C.; Luo, J.; Meloni, S.; Boziki, A.; Ashari-Astani, N.; Grätzel, C.; Zakeeruddin, S.M.; Röthlisberger, U.; Grätzel, M. FA CS PB BR IEntropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 2016, 9, 656–662. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, C.; Grice, C.R.; Shrestha, N.; Chen, J.; Zhao, D.; Liao, W.; Cimaroli, A.J.; Roland, P.J.; Ellingson, R.J.; et al. Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives. ChemSusChem 2016, 9, 3288–3297. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Saidaminov, M.I.; Tan, H.; Zhao, Y.; Kim, Y.; Choi, J.; Jo, J.W.; Fan, J.; Quintero-Bermudez, R.; Yang, Z.; et al. Amide-Catalyzed Phase-Selective Crystallization Reduces Defect Density in Wide-Bandgap Perovskites. Adv. Mater. 2018, 30, 1706275. [Google Scholar] [CrossRef] [PubMed]
- McMeekin, D.P.; Sadoughi, G.; Rehman, W.; Eperon, G.E.; Saliba, M.; Horantner, M.T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B.; et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016, 351, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.F.; Zhou, S.W.; Zhou, Y.G.; Xia, W.; Sun, L.; Cheng, J.G.; Xu, C.X.; Lu, Y.W. Fabrication of Cs(x)FA(1-x)PbI(3) Mixed-Cation Perovskites via Gas-Phase-Assisted Compositional Modulation for Efficient and Stable Photovoltaic Devices. ACS Appl. Mater. Interfaces 2017, 9, 42708–42716. [Google Scholar] [CrossRef] [PubMed]
- Conings, B.; Babayigit, A.; Klug, M.T.; Bai, S.; Gauquelin, N.; Sakai, N.; Wang, J.T.-W.; Verbeeck, J.; Boyen, H.-G.; Snaith, H.J. A Universal Deposition Protocol for Planar Heterojunction Solar Cells with High Efficiency Based on Hybrid Lead Halide Perovskite Families. Adv. Mater. 2016, 28, 10701. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; McMeekin, D.P.; Sakai, N.; Reenen, S.V.; Wojciechowski, K.; Patel, J.B.; Johnston, M.B.; Snaith, H.J. Efficient and Air-Stable Mixed-Cation Lead Mixed-Halide Perovskite Solar Cells with n-Doped Organic Electron Extraction Layers. Adv. Mater. 2017, 29, 1604186. [Google Scholar] [CrossRef] [PubMed]
- Bischak, C.G.; Hetherington, C.L.; Wu, H.; Aloni, S.; Ogletree, D.F.; Limmer, D.T.; Ginsberg, N.S. Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites. Nano Lett. 2017, 17, 1028–1033. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zong, Y.; Zhou, Y.; Yang, M.; Li, Z.; Game, O.S.; Zhu, K.; Zhu, R.; Gong, Q.; Padture, N.P. High-Performance Formamidinium-Based Perovskite Solar Cells via Microstructure-Mediated δ-to-α Phase Transformation. Chem. Mater. 2017, 29, 3246–3250. [Google Scholar] [CrossRef]
- Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y.B.; Spiccia, L. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. Engl. 2014, 53, 9898–9903. [Google Scholar] [CrossRef] [PubMed]
- Bush, K.A.; Palmstrom, A.F.; Yu, Z.J.; Boccard, M.; Cheacharoen, R.; Mailoa, J.P.; McMeekin, D.P.; Hoye, R.L.Z.; Bailie, C.D.; Leijtens, T.; et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2017, 2, 17009. [Google Scholar] [CrossRef]
- Eperon, G.E.; Leijtens, T.; Bush, K.A.; Prasanna, R.; Green, T.; Wang, J.T.-W.; McMeekin, D.P.; Volonakis, G.; Milot, R.L.; May, R.; et al. Perovskite-perovskite tandem photovoltaics with optimized bandgaps. Science 2016. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liu, D.T.; Wang, Y.F.; Zhang, T.; Gu, X.L.; Zhang, P.; Wu, J.; Chen, Z.D.; Zhao, Y.C.; Li, S.B. Theoretical lifetime extraction and experimental demonstration of stable cesium-containing tri-cation perovskite solar cells with high efficiency. Electrochim. Acta 2018, 265, 98–106. [Google Scholar] [CrossRef]
- Draguta, S.; Christians, J.A.; Morozov, Y.V.; Mucunzi, A.; Manser, J.S.; Kamat, P.V.; Luther, J.M.; Kuno, M. A quantitative and spatially resolved analysis of the performance-bottleneck in high efficiency, planar hybrid perovskite solar cells. Energy Environ. Sci. 2018, 11, 960–969. [Google Scholar] [CrossRef]
- Mahboubi Soufiani, A.; Zhuo, Y.; Young, T.; Miyata, A.; Surrente, A.; Pascoe, A.R.; Galkowski, K.; Abdi-Jalebi, M.; Brenes, R.; Urban, J.; et al. Impact of Microstructure on the Electron-hole Interaction in Metal Halide Perovskites. Energy Environ. Sci. 2017, 10, 1358–1366. [Google Scholar] [CrossRef]
- Tsai, H.; Asadpour, R.; Blancon, J.-C.; Stoumpos, C.C.; Durand, O.; Strzalka, J.W.; Chen, B.; Verduzco, R.; Ajayan, P.M.; Tretiak, S.; et al. Light-induced lattice expansion leads to high-efficiency perovskite solar cells. Science 2018, 360, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Saliba, M.; Matsui, T.; Seo, J.Y.; Domanski, K.; Correa-Baena, J.P.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Tress, W.; Abate, A.; Hagfeldt, A.; et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Hutter, E.M.; Rieder, P.; Grill, I.; Hanisch, J.; Aygüler, M.F.; Hufnagel, A.G.; Handloser, M.; Bein, T.; Hartschuh, A.; et al. Understanding the Role of Cesium and Rubidium Additives in Perovskite Solar Cells: Trap States, Charge Transport, and Recombination. Adv. Energy Mater. 2018, 1703057. [Google Scholar] [CrossRef]
- Yang, G.; Chen, C.; Yao, F.; Chen, Z.; Zhang, Q.; Zheng, X.; Ma, J.; Lei, H.; Qin, P.; Xiong, L.; et al. Effective Carrier-Concentration Tuning of SnO2 Quantum Dot Electron-Selective Layers for High-Performance Planar Perovskite Solar Cells. Adv. Mater. 2018, 30, 1706023. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Zhang, C.J.; Wang, S.T.; Liu, G.; Xia, H.Y.; Tong, S.C.; He, J.; Niu, D.M.; Zhou, C.H.; Ding, K.X.; et al. Low-Temperature Processed, Efficient, and Highly Reproducible Cesium-Doped Triple Cation Perovskite Planar Heterojunction Solar Cells. Sol. RRL 2018, 2, 1700209. [Google Scholar] [CrossRef]
- Sun, Y.; Peng, J.; Chen, Y.; Yao, Y.; Liang, Z. Triple-cation mixed-halide perovskites: Towards efficient, annealing-free and air-stable solar cells enabled by Pb(SCN)2 additive. Sci. Rep. 2017, 7, 46193. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Seo, J.Y.; Saliba, M.; Zakeeruddin, S.M.; Grätzel, M. Room-Temperature Formation of Highly Crystalline Multication Perovskites for Efficient, Low-Cost Solar Cells. Adv. Mater. 2017, 29, 1606258. [Google Scholar] [CrossRef] [PubMed]
- Deepa, M.; Salado, M.; Calio, L.; Kazim, S.; Shivaprasad, S.M.; Ahmad, S. Cesium power: Low Cs+ levels impart stability to perovskite solar cells. Phys. Chem. Chem. Phys. 2017, 19, 4069–4077. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Liu, L.; Wang, X.; Chen, G.; Tian, W.; Miyasaka, T. Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber. J. Mater. Chem. A 2017, 5, 13439–13447. [Google Scholar] [CrossRef]
- Zhang, M.; Yun, J.S.; Ma, Q.; Zheng, J.; Lau, C.F.J.; Deng, X.; Kim, J.; Kim, D.; Seidel, J.; Green, M.A.; et al. High-Efficiency Rubidium-Incorporated Perovskite Solar Cells by Gas Quenching. ACS Energy Lett. 2017, 2, 438–444. [Google Scholar] [CrossRef]
- Duong, T.; Mulmudi, H.K.; Shen, H.; Wu, Y.; Barugkin, C.; Mayon, Y.O.; Nguyen, H.T.; Macdonald, D.; Peng, J.; Lockrey, M.; et al. Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites. Nano Energy 2016, 30, 330–340. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, G.; Fu, W.; Qin, M.; Yang, W.; Yan, J.; Zhang, Z.; Lu, X.; Chen, H. Orientation Regulation of Phenylethylammonium Cation Based 2D Perovskite Solar Cell with Efficiency Higher Than 11%. Adv. Energy Mater. 2018, 1702498. [Google Scholar] [CrossRef]
- Yuan, M.; Quan, L.N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y.; Beauregard, E.M.; Kanjanaboos, P.; et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 2016, 11, 872. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Wang, X.; Xu, Y.-X.; Li, F.; Zhou, L. Multilayered Perovskite Materials Based on Polymeric-Ammonium Cations for Stable Large-Area Solar Cell. Chem. Mater. 2016, 28, 3131–3138. [Google Scholar] [CrossRef]
- Blancon, J.C.; Tsai, H.; Nie, W.; Stoumpos, C.C.; Pedesseau, L.; Katan, C.; Kepenekian, M.; Soe, C.M.M.; Appavoo, K.; Sfeir, M.Y.; et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 2017, 355, 1288–1291. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.-Y.; Liao, W.-Q.; Hu, C.-L.; Zhang, Y.; You, Y.-M.; Mao, J.-G.; Li, P.-F.; Xiong, R.-G. Bandgap Engineering of Lead-Halide Perovskite-Type Ferroelectrics. Adv. Mater. 2016, 28, 2579–2586. [Google Scholar] [CrossRef] [PubMed]
- Milot, R.L.; Sutton, R.J.; Eperon, G.E.; Haghighirad, A.A.; Martinez Hardigree, J.; Miranda, L.; Snaith, H.J.; Johnston, M.B.; Herz, L.M. Charge-Carrier Dynamics in 2D Hybrid Metal–Halide Perovskites. Nano Lett. 2016, 16, 7001–7007. [Google Scholar] [CrossRef] [PubMed]
- Koh, T.M.; Shanmugam, V.; Schlipf, J.; Oesinghaus, L.; Müller-Buschbaum, P.; Ramakrishnan, N.; Swamy, V.; Mathews, N.; Boix, P.P.; Mhaisalkar, S.G. Nanostructuring Mixed-Dimensional Perovskites: A Route toward Tunable, Efficient Photovoltaics. Adv. Mater. 2016, 28, 3653–3661. [Google Scholar] [CrossRef] [PubMed]
- Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M.; et al. One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 2017, 8, 15684. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liu, C.; Du, P.; Zheng, J.; Gong, X. Bulk heterojunction perovskite hybrid solar cells with large fill factor. Energy Environ. Sci. 2015, 8, 1245–1255. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, Q.; Chmiel, F.P.; Sakai, N.; Herz, L.M.; Snaith, H.J. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2017, 2, 17135. [Google Scholar] [CrossRef]
- Zhang, T.; Xie, L.; Chen, L.; Guo, N.; Li, G.; Tian, Z.; Mao, B.; Zhao, Y. In Situ Fabrication of Highly Luminescent Bifunctional Amino Acid Crosslinked 2D/3D NH3C4H9COO(CH3NH3PbBr3)n Perovskite Films. Adv. Funct. Mater. 2017, 27, 1603568. [Google Scholar] [CrossRef]
- Hu, Y.; Qiu, T.; Bai, F.; Ruan, W.; Zhang, S. Highly Efficient and Stable Solar Cells with 2D MA3Bi2I9/3D MAPbI3 Heterostructured Perovskites. Adv. Energy Mater. 2018, 1703620. [Google Scholar] [CrossRef]
- Ran, C.; Xi, J.; Gao, W.; Yuan, F.; Lei, T.; Jiao, B.; Hou, X.; Wu, Z. Bilateral Interface Engineering toward Efficient 2D–3D Bulk Heterojunction Tin Halide Lead-Free Perovskite Solar Cells. ACS Energy Lett. 2018, 3, 713–721. [Google Scholar] [CrossRef]
- Paul, T.; Chatterjee, B.K.; Maiti, S.; Sarkar, S.; Besra, N.; Das, B.K.; Panigrahi, K.J.; Thakur, S.; Ghorai, U.K.; Chattopadhyay, K.K. Tunable cathodoluminescence over the entire visible window from all-inorganic perovskite CsPbX3 1D architecture. J. Mater. Chem. C 2018, 6, 3322–3333. [Google Scholar] [CrossRef]
- Ji, C.; Wang, P.; Wu, Z.; Sun, Z.; Li, L.; Zhang, J.; Hu, W.; Hong, M.; Luo, J. Inch-Size Single Crystal of a Lead-Free Organic–Inorganic Hybrid Perovskite for High-Performance Photodetector. Adv. Funct. Mater. 2018, 28, 1705467. [Google Scholar] [CrossRef]
- Zhou, C.; Tian, Y.; Wang, M.; Rose, A.; Besara, T.; Doyle, N.K.; Yuan, Z.; Wang, J.C.; Clark, R.; Hu, Y.; et al. Low-Dimensional Organic Tin Bromide Perovskites and Their Photoinduced Structural Transformation. Angew. Chem. Int. Ed. 2017, 56, 9018–9022. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Zhou, C.; Tian, Y.; Shu, Y.; Messier, J.; Wang, J.C.; van de Burgt, L.J.; Kountouriotis, K.; Xin, Y.; Holt, E.; et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat. Commun. 2017, 8, 14051. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Wang, X.; Li, F.; Zhou, L. Mixed perovskite based on methyl-ammonium and polymeric-ammonium for stable and reproducible solar cells. Chem. Commun. 2015, 51, 15430–15433. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Wang, X.F.; Xu, Y.X.; Li, F. A general fabrication procedure for efficient and stable planar perovskite solar cells: Morphological and interfacial control by in-situ-generated layered perovskite. Nano Energy 2015, 18, 165–175. [Google Scholar] [CrossRef]
- Bai, Y.; Xiao, S.; Hu, C.; Zhang, T.; Meng, X.; Lin, H.; Yang, Y.; Yang, S. Dimensional Engineering of a Graded 3D–2D Halide Perovskite Interface Enables Ultrahigh Voc Enhanced Stability in the p-i-n Photovoltaics. Adv. Energy Mater. 2017, 7, 1701038. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Liu, P.; Cheng, Y.-B.; Zhao, H.J.; Yang, H.G. Functionalization of perovskite thin films with moisture-tolerant molecules. Nat. Energy 2016, 1, 15016. [Google Scholar] [CrossRef]
- Chen, J.; Seo, J.Y.; Park, N.G. Simultaneous Improvement of Photovoltaic Performance and Stability by In Situ Formation of 2D Perovskite at (FAPbI3)0.88(CsPbBr3)0.12/CuSCN Interface. Adv. Energy Mater. 2018, 1702714. [Google Scholar] [CrossRef]
- Chen, P.; Bai, Y.; Wang, S.; Lyu, M.; Yun, J.H.; Wang, L. In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells. Adv. Funct. Mater. 2018, 1706923. [Google Scholar] [CrossRef]
- Cho, K.T.; Grancini, G.; Lee, Y.; Oveisi, E.; Ryu, J.; Almora, O.; Tschumi, M.; Schouwink, P.A.; Seo, G.; Heo, S.; et al. Selective growth of layered perovskites for stable and efficient photovoltaics. Energy Environ. Sci. 2018, 11, 952–959. [Google Scholar] [CrossRef]
- Zhang, J.; Bai, D.; Jin, Z.; Bian, H.; Wang, K.; Sun, J.; Wang, Q.; Liu, S. 3D–2D–0D Interface Profiling for Record Efficiency All-Inorganic CsPbBrI2 Perovskite Solar Cells with Superior Stability. Adv. Energy Mater. 2018, 1703246. [Google Scholar] [CrossRef]
- Lee, J.W.; Seol, D.J.; Cho, A.N.; Park, N.G. High-Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3. Adv. Mater. 2014, 26, 4991–4998. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.T.; Paek, S.; Grancini, G.; Roldán-Carmona, C.; Gao, P.; Lee, Y.; Nazeeruddin, M.K. Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ. Sci. 2017, 10, 621–627. [Google Scholar] [CrossRef]
- Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A.K.; Liu, B.; Nazeeruddin, M.K.; Grätzel, M. Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells. J. Am. Chem. Soc. 2012, 134, 17396–17399. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-S.; Lee, J.-W.; Yantara, N.; Boix, P.P.; Kulkarni, S.A.; Mhaisalkar, S.; Grätzel, M.; Park, N.-G. High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer. Nano Lett. 2013, 13, 2412–2417. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Shi, W.; Luo, J.; Pellet, N.; Yi, C.; Li, X.; Zhao, X.; Dennis, T.J.S.; Li, X.; Wang, S.; et al. Isomer-Pure Bis-PCBM-Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability. Adv. Mater. 2017, 29, 1606806. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wei, J.; Li, H.; Yan, Y.; Zhou, W.; Yu, D.; Zhao, Q. A polymer scaffold for self-healing perovskite solar cells. Nat. Commun. 2016, 7, 10228. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.-H.; Wu, C.-G. Bulk heterojunction perovskite–PCBM solar cells with high fill factor. Nat. Photonics 2016, 10, 196. [Google Scholar] [CrossRef]
- Xu, J.; Buin, A.; Ip, A.H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J.J.; et al. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 2015, 6, 7081. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ibrahim Dar, M.; Yi, C.; Luo, J.; Tschumi, M.; Zakeeruddin, S.M.; Nazeeruddin, M.K.; Han, H.; Grätzel, M. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 2015, 7, 703. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, K.; Du, P.; Yi, C.; Meng, T.; Gong, X. Efficient Solution-Processed Bulk Heterojunction Perovskite Hybrid Solar Cells. Adv. Energy Mater. 2015, 5, 1402024. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Q.; Jin, Z.; Zhang, X.; Lei, J.; Bin, H.; Zhang, Z.G.; Li, Y.; Liu, S. Polymer Doping for High-Efficiency Perovskite Solar Cells with Improved Moisture Stability. Adv. Energy Mater. 2018, 8, 1701757. [Google Scholar] [CrossRef]
- Chung, C.C.; Narra, S.; Jokar, E.; Wu, H.P.; Diau, E.W.G. Inverted planar solar cells based on perovskite/graphene oxide hybrid composites. J. Mater. Chem. A 2017, 5, 13957–13965. [Google Scholar] [CrossRef]
- Hadadian, M.; Correa-Baena, J.P.; Goharshadi, E.K.; Ummadisingu, A.; Seo, J.Y.; Luo, J.; Gholipour, S.; Zakeeruddin, S.M.; Saliba, M.; Abate, A.; et al. Enhancing Efficiency of Perovskite Solar Cells via N-doped Graphene: Crystal Modification and Surface Passivation. Adv. Mater. 2016, 28, 8681–8686. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Sun, Y.; Wu, M.; Xie, D.; Ding, L.; Shi, G. A Solution-Processed High-Performance Phototransistor based on a Perovskite Composite with Chemically Modified Graphenes. Adv. Mater. 2017, 29, 1606175. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Chen, Y.; Liu, H.; Wang, J.; Fang, X.; Liang, Z. Chemical decoration of CH3NH3PbI3 perovskites with graphene oxides for photodetector applications. Chem. Commun. 2015, 51, 9659–9661. [Google Scholar] [CrossRef] [PubMed]
Device Structure | Perovskite | Jsc (mA·cm−2) | Voc (V) | FF (%) | PCE (%) | Year | Ref. |
---|---|---|---|---|---|---|---|
ITO/PEDOT:PSS/perovskie/PCBM/Al | Cs0.1MA0.9PbI3 | 10.10 | 1.05 | 0.73 | 7.68 | 2014 | [113] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Ag | CsxMA1−xPbI3 | / | / | / | / | 2016 | [114] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Ag | Cs0.1MA0.9PbI3 | 20.97 | 1.10 | 0.74 | 17.08 | 2017 | [118] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | Cs0.09MA0.91PbI3 | 22.57 | 1.06 | 0.76 | 18.1 | 2017 | [115] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | Cs0.1MA0.9PbI3 | 19.20 | 0.96 | 0.70 | 13.0 | 2018 | [119] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Ag | (CsBr)0.1 (MAPbI3)0.9 | 22.60 | 0.93 | 0.65 | 13.6 | 2017 | [117] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | (MAPbI3)0.9 (CsPbBr3)0.1, | 22.8 | 1.05 | 0.73 | 17.6 | 2016 | [116] |
Device Structure | Perovskite | Jsc (mA·cm−2) | Voc (V) | FF (%) | PCE (%) | Year | Ref. |
---|---|---|---|---|---|---|---|
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Ag | Cs0.1FA0.9PbI3 | 23.5 | 1.06 | 0.66 | 16.5 | 2015 | [127] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | Cs0.2FA0.8PbI3 | 21.5 | 1.01 | 0.7 | 15.69 | 2016 | [128] |
FTO/c-TiO2/mTiO2/perovskite/Spiro-OMeTAD/Au | Cs0.2FA0.8PbI2.84Br0.16 | 21.9 | 1.07 | 0.74 | 17.35 | 2016 | [128] |
FTO/NiO/perovskite/PCBM/PFN-Br/Ag | Cs0.2FA0.8PbI3 | 19.85 | 1.01 | 0.71 | 15.38 | 2017 | [121] |
FTO/SnO2/C60-SAM/perovskite/Spiro-OMeTAD/Au | Cs0.2FA0.8PbI3 | 21.85 | 1.06 | 0.76 | 17.61 | 2016 | [129] |
FTO/SnO2/C60-SAM/perovskite/Spiro-OMeTAD/Au | Cs0.2FA0.8PbI3 & 0.6% Pb(SCN)2 | 22.25 | 1.09 | 0.81 | 19.57 | 2016 | [129] |
ITO/c-TiO2/perovskite/Spiro-OMeTAD/Au | FA0.83Cs0.17Pb(I0.6Br0.4)3 | 18.34 | 1.23 | 0.79 | 17.8 | 2018 | [130] |
FTO/SnO2/PCBM/perovskite/Spiro-OMeTAD/Ag | FA0.83Cs0.17Pb(I0.6Br0.4)3 | 19.4 | 1.19 | 0.78 | 17.9 | 2016 | [131] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Ag | Cs0.15FA0.85PbI3 | 22.85 | 0.91 | 0.69 | 14.46 | 2017 | [132] |
ITO/SnO2/C60/perovskite/Spiro-OMeTAD/Ag | FA0.85Cs0.15Pb(I0.95Br0.05)3 | 22.4 | 1.01 | 0.72 | 16.2 | 2016 | [133] |
ITO/TPD/perovskite/C60/Ag | Cs0.15FA0.85PbI3 | 23.36 | 1.00 | 0.64 | 15.18 | 2018 | [122] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Ag | FA0.85Cs0.15PbI3 | 21.50 | 1.08 | 0.75 | 17.3 | 2016 | [41] |
FTO/SnO2/C60/perovskite/spiro-OMeTAD/Au | (HC(NH2)2)0.83Cs0.17Pb(I0.6Br0.4)3 | 23.0 | 1.06 | 0.75 | 18.3 | 2017 | [134] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | Cs0.07FA0.93PbI3 | 21.9 | 0.98 | 0.72 | 15.3 | 2018 | [126] |
Device Structure | Perovskite | Jsc (mA·cm−2) | Voc (V) | FF (%) | PCE (%) | Year | Ref. |
---|---|---|---|---|---|---|---|
FTO/c-TiO2/mp-TiO2/perovskite/PTAA/Au | MA-FAPb-Br-I | 25.00 | 1.10 | 0.80 | 22.1 | 2017 | [5] |
FTO/SnO2/C60/perovskite/Spiro-OMeTAD/Ag | (FA0.83MA0.17)0.95 Cs0.05Pb(I0.9Br0.1)3 | 22.6 | 1.08 | 0.74 | 18.0 | 2016 | [133] |
ITO/NiOx/F6TCNNQ/perovskite/PCBM/Zracc/Ag | Cs-FA-MAPb-Br-I | 23.18 | 1.12 | 0.80 | 20.86 | 2018 | [70] |
FTO/SnO2/perovskite/Spiro-OMeTAD/Au | Cs0.056FA0.76MA0.15PbI2.42Br0.48 | 22.03 | 1.15 | 0.77 | 19.56 | 2018 | [21] |
ITO/PEN/QD-SnO2/perovskite/Spiro-OMeTAD/Au | Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 | 23.05 | 1.13 | 0.79 | 20.79 | 2018 | [146] |
ITO/SnO2/Perovskite/Spiro-OMeTAD/Ag | FA0.945MA0.025Cs0.03 Pb(I0.975Br0.025)3 | 24.94 | 1.12 | 0.73 | 20.51 | 2018 | [147] |
FTO/QD-SnO2/perovskite/PBDBT/Spiro-OMeTAD/Au | (CsPbI3)0.04(FAPb I3)0.82(MAPbBr3)0.14 | 22.39 | 1.12 | 0.79 | 19.85 | 2018 | [37] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | Cs-FA-MAPb-Br-I | 21.77 | 1.13 | 0.76 | 18.76 | 2018 | [141] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | Cs0.06FA0.79MA0.15 Pb(I0.85Br0.15)3 & KI | 23.2 | 1.17 | 0.79 | 21.5 | 2018 | [22] |
ITO/PTAA/perovskite/C60/BCP/Cu | MA0.6FA0.38Cs0.02PbI2.975Br0.025 & 5 mol% MACl | 22.70 | 1.10 | 0.73 | 19.2 | 2017 | [59] |
ITO/PEDOT:PSS/perovskite/PC61BM/Bphen/Al | FA0.7MA0.2Cs0.1Pb (I5/6Br1/6)3 & Pb(SCN)2 | 18.21 | 1.06 | 0.73 | 16.09 | 2017 | [148] |
FTO/c-TiO2/mp-TiO2/perovskite/PTAA/Au | (FA0.79MA0.16Cs0.05) Pb(I0.83Br0.17)3 | 21.5 | 1.15 | 0.73 | 18.10 | 2017 | [149] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | Cs0.05(MA0.15FA0.85)0.95 Pb(I0.85Br0.15)3 | 21.7 | 1.05 | 0.75 | 17.1 | 2017 | [150] |
ITO/ZnO/perovskite/Spiro-OMeTAD/Ag | Cs6(MA0.17FA0.83)94Pb(I0.83Br0.17)3 | 22.5 | 1.12 | 0.73 | 18.6 | 2017 | [151] |
FTO/bl-TiO2/Li-mp-TiO2/perovskite/Spiro-OMeTAD/Au | (FAPbI3)0.83(MAPbBr3)0.17 | 23.50 | 1.07 | 0.74 | 21.1 | 2016 | [144] |
FTO/c-TiO2/Li-mp-TiO2/perovskite/Spiro-OMeTAD/Au | Rb5(Cs5MAFA)0.95Pb(IBr)x | 22.8 | 1.18 | 0.81 | 21.8 | 2016 | [6] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | Rb0.05Cs0.05[(FA0.83MA0.17)]0.9 Pb(I0.83Br0.17)3 | 20.65 | 1.47 | 0.72 | 17.02 | 2018 | [145] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | FA0.80MA0.15Rb0.05 PbI2.55Br0.45 | 23.2 | 1.17 | 0.73 | 20.0 | 2017 | [152] |
FTO/c-TiO2/mp-TiO2/perovskite/PTAA/Au | Rb-MA-FA-Pb-I-Br | 23.24 | 1.12 | 0.72 | 18.80 | 2016 | [153] |
Device Sintructure | Perovskite | Jsc (mA·cm−2) | Voc (V) | FF (%) | PCE (%) | Year | Ref. |
---|---|---|---|---|---|---|---|
ITO/PEDOT:PSS/perovskite/PCBM/Al | CH3NH3PbI3/A10C60 | 19.41 | 0.88 | 0.82 | 13.97 | 2015 | [162] |
FTO/SnO2/PC61BM/perovskite/Spiro-OMeTAD/Au | BA0.05(FA0.83 Cs0.17)0.95Pb(I0.8Br0.2)3 | 22.7 | 1.14 | 0.8 | 20.6 | 2017 | [163] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD /Au | CsPbI3•0.025EDAPbI4 | 14.53 | 1.15 | 0.71 | 11.86 | 2017 | [164] |
FTO/bl-TiO2/perovskite/Spiro-OMeTAD /Au | MAPbI3/MA3Bi2I9 | 23.03 | 1.09 | 0.76 | 18.97 | 2018 | [165] |
ITO/PEDOT:PSS/perovskite/C60/BCP/Al | FASnI3/PEAI | 24.1 | 0.52 | 0.71 | 9.01 | 2018 | [27] |
FTO/c-TiO2/mp-TiO2/perovskite/TBP/Au | Cs0.04MA0.16FA0.8PbI0.85Br0.15/PZPY | 21.70 | 1.08 | 0.77 | 18.10 | 2018 | [29] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | CH3NH3PbI3/(HOOC(CH2)4 NH3)2PbI4 | 18.84 | 1.02 | 0.75 | 14.6 | 2017 | [161] |
FTO/c-TiO2/mp-TiO2/perovskite/ZrO2/Carbon | CH3NH3PbI3/(HOOC(CH2)4 NH3)2PbI4 | 23.99 | 0.85 | 0.63 | 12.71 | 2017 | [161] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Ag | (MAPbI3)1−x/ [(PEI)2PbI4]x | 20.10 | 1.07 | 0.73 | 15.60 | 2015 | [171] |
ITO/PEDOT:PSS/Perovskite/PCBM/LiF/Ag | [(PEI)2PbI4]x/ (MAPbI3)1−x | 19.95 | 1.07 | 0.72 | 25.27 | 2015 | [172] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | (IC2H4NH3)2 (CH3NH3)n−1PbnI3n+1:CH3NH3PbI3 | 14.88 | 0.83 | 0.69 | 9.03 | 2016 | [160] |
ITO/PEDOT:PSS/Perovskite/C60/BCP/Ag | (PEA,FA)SnI3 | 20.07 | 0.47 | 0.74 | 6.98 | 2018 | [166] |
Device Sintructure | Perovskite | Jsc (mA cm−2) | Voc (V) | FF (%) | PCE (%) | Year | Ref. |
---|---|---|---|---|---|---|---|
ITO/PEDOT:PSS/perovskite/PCBM/Rhodamine 101/LiF/Ag | CA2PbI4/MAPbIxCl3−x | 19.29 | 0.92 | 0.77 | 13.86 | 2016 | [31] |
FTO/TiO2/perovskite/Spiro-OMeTAD/Au | CH3NH3PbI3 (TMA) | 20.10 | 0.99 | 0.65 | 13.00 | 2016 | [174] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | CH3NH3PbI3 (TEA) | 19.60 | 0.99 | 0.67 | 12.89 | 2016 | [174] |
FTO/c-TiO2/mp-TiO2/perovskite/CuSCN/Au | (5AVA)2PbI4/(FAPbI3)0.88(Cs PbBr3)0.12 & HI | 21.93 | 1.07 | 0.72 | 16.75 | 2018 | [175] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | Cs0.05(FA0.83 MA0.17)0.95Pb(I0.83Br0.17)3 | 22.89 | 1.11 | 0.73 | 18.51 | 2018 | [176] |
ITO/PTAA/perovskite/PCBM/C60/BCP/Cu | MAPbI3/BA | 22.49 | 1.11 | 0.78 | 19.56 | 2018 | [28] |
ITO/PTAA/perovskite/PCBM/C60/BCP/Cu | MAPbI3/BAI | 22.59 | 1.09 | 0.77 | 18.85 | 2018 | [28] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | FAPbI3/MAPbI3 | 20.97 | 1.03 | 0.74 | 16.01 | 2014 | [179] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | (FAPbI3)0.85(MAPbBr3)0.15/FAPbBr3−xIx | 23.18 | 1.16 | 0.79 | 21.31 | 2017 | [180] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | Cs0.1FA0.74MA0.13PbI2.48Br0.39/PEIA | 22.73 | 1.14 | 0.76 | 20.08 | 2018 | [177] |
FTO/c-TiO2/mp-TiO2/perovskite/PTAA/Au | 3-D/2-D/0-D CsPbBrI2 | 12.93 | 1.19 | 0.80 | 12.39 | 2018 | [178] |
FTO/NiOx/perovskite/PCBM/Ag | MAPbI3/PEAI | 21.8 | 1.17 | 0.78 | 19.89 | 2017 | [173] |
Device Structure | Perovskite | Jsc(mA cm−2) | Voc (V) | FF (%) | PCE (%) | Year | Ref. |
---|---|---|---|---|---|---|---|
FTO/c-TiO2/mp-Li-TiO2/perovskit/Spiro-OMeTAD/Ag | Cs0.05(MA0.17FA0.83)0.95 Pb(I0.83Br0.17)3:carbon nanoparticles | 22.10 | 1.16 | 0.72 | 18.30 | 2018 | [34] |
FTO/c-TiO2/P61BM/perovskit/P3HT/Mo3/Ag | CH3NH3PbI3:PC 61BM | 26.86 | 0.9 | 0.53 | 12.78 | 2015 | [188] |
FTO/SnO2/perovskite/Spiro-OMeTAD /Au | (CsPbI3)0.04(FAPbI3) 0.82(MAPbBr3)0.14: PBDB-T | 22.39 | 1.11 | 0.78 | 19.38 | 2018 | [35] |
ITO/Mixing graphene oxide/perovskite/PCBM/Ag | MAPbI3:Mixing graphene oxide | 20.71 | 0.96 | 0.76 | 15.20 | 2017 | [190] |
FTO/c-TiO2/mp-TiO2/perovskit/Spiro-OMeTAD/Au | FA0.85 MA0.15 Pb(I0.85 Br0.15)3:reduced graphene oxides | 21.80 | 1.15 | 0.74 | 18.73 | 2016 | [191] |
ITO/PEDOT:PSS/Perovskite/Ca/PC71BM/Al | CH3NH3PbI3:PC61BM | 20.20 | 0.97 | 0.82 | 16.0 | 2016 | [185] |
FTO/c-TiO2/mp-TiO2/perovskit/Spiro-OMeTAD/Au | CH3NH3PbI3:4-ABPACl | 21.98 | 1.00 | 0.70 | 15.38 | 2015 | [187] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | MAI:(Pb(Ac)2):PCBM | 18.0 | 1.08 | 0.75 | 14.4 | 2015 | [186] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | CH3NH3PbI3−xClx: C60SAM | 19.60 | 0.84 | 0.72 | 11.7 | 2013 | [36] |
FTO/c-TiO2/mp-TiO2/perovskite/Spiro-OMeTAD/Au | (FAI)0.81(PbI2)0.85 (MABr)0.15(PbBr2)0.15: α-bis-PCBM | 23.73 | 1.11 | 0.73 | 20.80 | 2017 | [183] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | CH3NH3PbI:PC61BM | 22.5 | 0.98 | 0.72 | 15.4 | 2016 | [184] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | CH3NH3PbI:J71 | 22.31 | 1.11 | 0.78 | 19.19 | 2018 | [189] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | CH3NH3PbI:J50 | 22.28 | 1.10 | 0.76 | 18.81 | 2018 | [189] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | CH3NH3PbI:J51 | 22.11 | 1.10 | 0.77 | 18.92 | 2018 | [189] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | CH3NH3PbI:J61 | 22.35 | 1.10 | 0.75 | 18.69 | 2018 | [189] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | CH3NH3PbI:N2200 | 22.27 | 1.10 | 0.77 | 19.07 | 2018 | [189] |
FTO/c-TiO2/perovskite/Spiro-OMeTAD/Au | CH3NH3PbI:PMMA | 21.71 | 1.11 | 0.76 | 18.40 | 2018 | [189] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Chen, W.; Chen, G.; Liu, L.; He, Z.; Liu, R. The Impact of Hybrid Compositional Film/Structure on Organic–Inorganic Perovskite Solar Cells. Nanomaterials 2018, 8, 356. https://doi.org/10.3390/nano8060356
Wu Y, Chen W, Chen G, Liu L, He Z, Liu R. The Impact of Hybrid Compositional Film/Structure on Organic–Inorganic Perovskite Solar Cells. Nanomaterials. 2018; 8(6):356. https://doi.org/10.3390/nano8060356
Chicago/Turabian StyleWu, Yinghui, Wei Chen, Guo Chen, Liyu Liu, Zhubing He, and Ruchuan Liu. 2018. "The Impact of Hybrid Compositional Film/Structure on Organic–Inorganic Perovskite Solar Cells" Nanomaterials 8, no. 6: 356. https://doi.org/10.3390/nano8060356
APA StyleWu, Y., Chen, W., Chen, G., Liu, L., He, Z., & Liu, R. (2018). The Impact of Hybrid Compositional Film/Structure on Organic–Inorganic Perovskite Solar Cells. Nanomaterials, 8(6), 356. https://doi.org/10.3390/nano8060356