Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (214)

Search Parameters:
Keywords = Cs-based perovskite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5733 KiB  
Article
Design Optimization of Cesium Contents for Mixed Cation MA1−xCsxPbI3-Based Efficient Perovskite Solar Cell
by Syed Abdul Moiz, Ahmed N. M. Alahmadi and Mohammed Saleh Alshaikh
Nanomaterials 2025, 15(14), 1085; https://doi.org/10.3390/nano15141085 - 13 Jul 2025
Viewed by 351
Abstract
Perovskite solar cells (PSCs) have already been reported as a promising alternative to traditional energy sources due to their excellent power conversion efficiency, affordability, and versatility, which is particularly relevant considering the growing worldwide demand for energy and increasing scarcity of natural resources. [...] Read more.
Perovskite solar cells (PSCs) have already been reported as a promising alternative to traditional energy sources due to their excellent power conversion efficiency, affordability, and versatility, which is particularly relevant considering the growing worldwide demand for energy and increasing scarcity of natural resources. However, operational concerns under environmental stresses hinder its economic feasibility. Through the addition of cesium (Cs), this study investigates how to optimize perovskite solar cells (PSCs) based on methylammonium lead-iodide (MAPbI3) by creating mixed-cation compositions of MA1−xCsxPbI3 (x = 0, 0.25, 0.5, 0.75, 1) for devices A to E, respectively. The impact of cesium content on the following factors, such as open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and power conversion efficiency (PCE), was investigated using simulation software, with ITO/TiO2/MA1−xCsxPbI3/Spiro-OMeTAD/Au as a device architecture. Due to diminished defect density, the device with x = 0.5 (MA0.5Cs0.5PbI3) attains a maximum power conversion efficiency of 18.53%, with a Voc of 0.9238 V, Jsc of 24.22 mA/cm2, and a fill factor of 82.81%. The optimal doping density of TiO2 is approximately 1020 cm−3, while the optimal thicknesses of the electron transport layer (TiO2, 10–30 nm), the hole-transport layer (Spiro-OMeTAD, about 10–20 nm), and the perovskite absorber (750 nm) were identified to maximize efficiency. The inclusion of a small amount of Cs may improve photovoltaic responses; however, at elevated concentrations (x > 0.5), power conversion efficiency (PCE) diminished due to the presence of trap states. The results show that mixed-cation perovskite solar cells can be a great commercially viable option because they strike a good balance between efficiency and performance. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

13 pages, 2607 KiB  
Article
Defect-Induced Modulation of Electronic and Optical Properties in Monolayer CsPb2Br5: Implications for Fiber-Optic Sensing Applications
by Meiqi An, Wenxuan Fan, Shengsheng Wei and Junqiang Wang
Photonics 2025, 12(7), 638; https://doi.org/10.3390/photonics12070638 - 24 Jun 2025
Viewed by 309
Abstract
Two−dimensional halide perovskites have emerged as promising optoelectronic materials, yet the uncontrolled defect formation during synthesis remains a critical challenge for their practical applications. In this work, we systematically investigate the structural, electronic, and optical properties of monolayer CsPb2Br5 in [...] Read more.
Two−dimensional halide perovskites have emerged as promising optoelectronic materials, yet the uncontrolled defect formation during synthesis remains a critical challenge for their practical applications. In this work, we systematically investigate the structural, electronic, and optical properties of monolayer CsPb2Br5 in two representative configurations: ds−CsPb2Br5 and ss−CsPb2Br5. By introducing four types of vacancy defects—VBr−c, VBr−b, VCs, and VPb, we analyze their structural distortions, formation energies, and their impact on band structure and optical response using first−principles calculations. Our results reveal that Br−related vacancies are energetically most favorable and induce shallow defect levels and absorption edge redshifts in the ds−CsPb2Br5 structure, while in the ss−CsPb2Br5 configuration, only VBr−b forms a defect state. VPb and VCs lead to significant sub−bandgap absorption enhancement and dielectric response due to band−edge reorganization, despite not introducing in−gap states. Notably, VBr−c exhibits distinct infrared absorption in the ss−CsPb2Br5 model without electronic trap formation. These findings underscore the critical influence of defect type and slab asymmetry on the optoelectronic behavior of CsPb2Br5, providing guidance for defect engineering in perovskite−based optoelectronic applications. Full article
(This article belongs to the Special Issue Advanced Fiber Laser Technology and Its Application)
Show Figures

Figure 1

10 pages, 2139 KiB  
Article
Octahedral Dominance and Band Gap Tuning via Pb2+-Driven Structural Evolution in α-β-γ CsZnI3
by Baoyun Liang, Ang Li, Ziming Kuang, Yating Qu, Hao Xu, Tianyi Tang, Tingting Shi and Weiguang Xie
Solids 2025, 6(2), 30; https://doi.org/10.3390/solids6020030 - 12 Jun 2025
Viewed by 400
Abstract
In the quest for stable, lead-reduced perovskites, this study unravels the structural and electronic evolution of CsZnI3 across its α, β, and γ phases. DFT calculations spotlight the tetrahedral γ phase—with elongated Zn–I bonds (3.17 Å)—as the most stable, sidestepping the octahedral [...] Read more.
In the quest for stable, lead-reduced perovskites, this study unravels the structural and electronic evolution of CsZnI3 across its α, β, and γ phases. DFT calculations spotlight the tetrahedral γ phase—with elongated Zn–I bonds (3.17 Å)—as the most stable, sidestepping the octahedral distortions of its metallic α and β counterparts. Pb2+ doping (>50%) drives a transformation to mixed octahedral–tetrahedral coordination, slashing the wide 3.15 eV bandgap to a solar-optimal 2.20 eV via lattice shrinkage. Above 50% doping, an optimum emerges—balancing structural integrity with efficient light absorption. These findings elevate Zn-doped or Zn-Pb-based compounds as promising and tunable perovskites for next-gen photovoltaics. Full article
Show Figures

Graphical abstract

12 pages, 3483 KiB  
Article
A Cascade Bilayer Electron-Transporting Layer for Enhanced Performance and Stability of Self-Powered All-Inorganic Perovskite Photodetectors
by Yu Hyun Kim and Jae Woong Jung
Molecules 2025, 30(10), 2195; https://doi.org/10.3390/molecules30102195 - 17 May 2025
Viewed by 444
Abstract
This study aims to enhance optoelectronic properties of all-inorganic perovskite photodetectors (PDs) by incorporating a bilayer electron transport layer (ETL). The bilayer ETL composed of SnO2 and ZnO effectively optimizes energy level alignment at the interface, facilitating efficient electron extraction from the [...] Read more.
This study aims to enhance optoelectronic properties of all-inorganic perovskite photodetectors (PDs) by incorporating a bilayer electron transport layer (ETL). The bilayer ETL composed of SnO2 and ZnO effectively optimizes energy level alignment at the interface, facilitating efficient electron extraction from the CsPbI2Br perovskite layer while suppressing shunt pathways. Additionally, it enhances interfacial properties by mitigating defects and minimizing dark current leakage, thereby improving overall device performance. As a result, the bilayer ETL-based PDs exhibit broadband photoresponsivity in 300 to 700 nm with a responsivity of 0.45 A W−1 and a specific detectivity of 9 × 1013 Jones, outperforming the single-ETL devices. Additionally, they demonstrate stable cyclic photoresponsivity with fast response times (14 μs for turn-on and 32 μs for turn-off). The bilayer ETL also improves long-term reliability and thermal stability, highlighting its potential for high performance, reliability, and practical applications of all-inorganic perovskite PDs. Full article
(This article belongs to the Special Issue Chemistry Innovatives in Perovskite Based Materials)
Show Figures

Figure 1

13 pages, 2446 KiB  
Article
A Novel Pathogen Detection System Combining a Nucleic Acid Extraction Biochip with a Perovskite Photodetector
by Zhuo Gao, Pan Wang, Chang Chen, Jian Duan, Shilun Feng and Bo Liu
Micromachines 2025, 16(5), 581; https://doi.org/10.3390/mi16050581 - 15 May 2025
Viewed by 2614
Abstract
The increasing spread of infectious diseases caused by pathogenic microorganisms underscores the urgent need for highly sensitive, portable, and rapid nucleic acid detection technologies to facilitate early diagnosis and effective prevention. In this study, we developed a fluorescence-based nucleic acid detection platform that [...] Read more.
The increasing spread of infectious diseases caused by pathogenic microorganisms underscores the urgent need for highly sensitive, portable, and rapid nucleic acid detection technologies to facilitate early diagnosis and effective prevention. In this study, we developed a fluorescence-based nucleic acid detection platform that integrates a microfluidic chip with an all-inorganic perovskite photodetector. The system enables integrated operation of nucleic acid extraction, purification, and amplification on a microfluidic chip, combined with real-time electrical signal readout via a CsPbBr3 perovskite photodetector. Experimental results indicate that the photodetector exhibits high responsivity at 530 nm, aligning well with the primary emission peak of FAM. The system demonstrates a strong linear correlation between photocurrent and FAM concentration over the range of 0.01–0.4 μM (R2 = 0.928), with a low detection limit of 0.01 μM and excellent reproducibility across multiple measurements. Validation using FAM standard solutions and Escherichia coli samples confirmed the system’s reliable linearity and signal stability. This platform demonstrates strong potential for rapid pathogen screening and point-of-care diagnostic applications. Full article
(This article belongs to the Special Issue Recent Progress of Lab-on-a-Chip Assays)
Show Figures

Figure 1

13 pages, 5562 KiB  
Article
ZrBr4-Mediated Phase Engineering in CsPbBr3 for Enhanced Operational Stability of White-Light-Emitting Diodes
by Muhammad Amin Padhiar, Yongqiang Ji, Jing Wang, Noor Zamin Khan, Mengji Xiong and Shuxin Wang
Nanomaterials 2025, 15(9), 674; https://doi.org/10.3390/nano15090674 - 28 Apr 2025
Viewed by 453
Abstract
The persistent operational instability of all-inorganic cesium lead halide (CsPbX3) perovskite nanocrystals (NCs) has hindered their integration into white-light-emitting diodes (WLEDs). This study introduces a transformative approach by engineering a phase transition from CsPbBr3 NCs to zirconium bromide (ZrBr4 [...] Read more.
The persistent operational instability of all-inorganic cesium lead halide (CsPbX3) perovskite nanocrystals (NCs) has hindered their integration into white-light-emitting diodes (WLEDs). This study introduces a transformative approach by engineering a phase transition from CsPbBr3 NCs to zirconium bromide (ZrBr4)-stabilized hexagonal nanocomposites (HNs) through a modified hot-injection synthesis. Structural analyses revealed that the ZrBr4-mediated phase transformation induced a structurally ordered lattice with minimized defects, significantly enhancing charge carrier confinement and radiative recombination efficiency. The resulting HNs achieved an exceptional photoluminescence quantum yield (PLQY) of 92%, prolonged emission lifetimes, and suppressed nonradiative decay, attributed to effective surface passivation. The WLEDs with HNs enabled a breakthrough luminous efficiency of 158 lm/W and a record color rendering index (CRI) of 98, outperforming conventional CsPbX3-based devices. The WLEDs exhibited robust thermal stability, retaining over 80% of initial emission intensity at 100 °C, and demonstrated exceptional operational stability with negligible PL degradation during 50 h of continuous operation at 100 mA. Commission Internationale de l’Éclairage (CIE) coordinates of (0.35, 0.32) validated pure white-light emission with high chromatic fidelity. This work establishes ZrBr4-mediated HNs as a paradigm-shifting material platform, addressing critical stability and efficiency challenges in perovskite optoelectronics and paving the way for next-generation, high-performance lighting solutions. Full article
(This article belongs to the Special Issue Recent Advances in Halide Perovskite Nanomaterials)
Show Figures

Figure 1

11 pages, 4694 KiB  
Article
Plasmon-Enhanced Photo-Luminescence Emission in Hybrid Metal–Perovskite Nanowires
by Tintu Kuriakose, Hao Sha, Qingyu Wang, Gokhan Topcu, Xavier Romain, Shengfu Yang and Robert A. Taylor
Nanomaterials 2025, 15(8), 608; https://doi.org/10.3390/nano15080608 - 15 Apr 2025
Viewed by 726
Abstract
Semiconductor photonic nanowires are critical components for nanoscale light manipulation in integrated photonic and electronic devices. Optimizing their optical performance requires enhanced photon conversion efficiency, for which a promising solution is to combine semiconductors with noble metals, using the surface plasmon resonance of [...] Read more.
Semiconductor photonic nanowires are critical components for nanoscale light manipulation in integrated photonic and electronic devices. Optimizing their optical performance requires enhanced photon conversion efficiency, for which a promising solution is to combine semiconductors with noble metals, using the surface plasmon resonance of noble metals to enhance the photon absorption efficiency. Here, we report plasmon-enhanced light emission in a hybrid nanowire device composed of perovskite semiconductor nanowires and silver nanoparticles formed using superfluid helium droplets. A cesium lead halide perovskite-based four-layer structure (CsPbBr3/PMMA/Ag/Si) effectively reduces the metal’s plasmonic losses while ensuring efficient surface plasmon–photon coupling at moderate power. Microphotoluminescence and time-resolved spectroscopy techniques are used to investigate the optical properties and emission dynamics of carriers and excitons within the hybrid device. Our results demonstrate an intensity enhancement factor of 29 compared with pure semiconductor structures at 4 K, along with enhanced carrier recombination dynamics due to plasmonic interactions between silver nanoparticles and perovskite nanowires. This work advances existing approaches for exciting photonic nanowires at low photon densities, with potential applications in optimizing single-photon excitations and emissions for quantum information processing. Full article
(This article belongs to the Special Issue Recent Advances in Halide Perovskite Nanomaterials)
Show Figures

Graphical abstract

10 pages, 1581 KiB  
Article
Electronic Characteristics of Layered Heterostructures Based on Graphene and Two-Dimensional Perovskites: First-Principle Study
by Lev Zubkov, Pavel Kulyamin, Konstantin Grishakov, Savaş Kaya, Konstantin Katin and Mikhail Maslov
Colloids Interfaces 2025, 9(2), 23; https://doi.org/10.3390/colloids9020023 - 10 Apr 2025
Cited by 1 | Viewed by 627
Abstract
Layered perovskites have been actively studied due to their outstanding electronic and optical properties as well as kinetic stability. Layered perovskites with hexagonal symmetry have special electronic properties, such as the Dirac cone in the band structure, similar to graphene. In the presented [...] Read more.
Layered perovskites have been actively studied due to their outstanding electronic and optical properties as well as kinetic stability. Layered perovskites with hexagonal symmetry have special electronic properties, such as the Dirac cone in the band structure, similar to graphene. In the presented study, the heterostructure of single-layer all-inorganic lead-free hexagonal perovskite of the A3B2X9 type (A = Cs, Rb, K; B = In, Sb; X = Cl, Br) and graphene (Gr) was studied. The structural and electronic characteristics of A3B2X9 and the A3B2X9/Gr composite were calculated using density functional theory. It was found that graphene is not deformed, while the main deformation is observed only in perovskite. B-X bonds have different sensitivities to stretching or compression. The Fermi level of the A3In2X9/Gr composite can be shifted down from the Dirac point, which can be used to create optoelectronic devices or as spacer layers for graphene-based resonant tunneling nanostructures. Full article
Show Figures

Graphical abstract

10 pages, 2844 KiB  
Article
Solvent Engineering and Molecular Doping Synergistically Boost CsPbIBr2 Solar Cell Efficiency
by Yani Lu, Jinping Ren and Jinke Kang
Coatings 2025, 15(4), 448; https://doi.org/10.3390/coatings15040448 - 10 Apr 2025
Viewed by 531
Abstract
Perovskite solar cells have garnered significant attention due to their outstanding optoelectronic properties, ease of fabrication, and cost-effectiveness, making them a promising candidate for next-generation photovoltaic technologies. However, CsPbIBr2-based perovskites currently face critical challenges regarding their limited efficiency and relatively poor [...] Read more.
Perovskite solar cells have garnered significant attention due to their outstanding optoelectronic properties, ease of fabrication, and cost-effectiveness, making them a promising candidate for next-generation photovoltaic technologies. However, CsPbIBr2-based perovskites currently face critical challenges regarding their limited efficiency and relatively poor long-term stability, hindering their broader commercial applications. In this study, we systematically investigated the morphological effects induced by different solvents, including dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), and dimethyl sulfoxide (DMSO), on the formation and characteristics of lead bromide (PbBr2) complexes. Further optimization was achieved through the innovative incorporation of trimesoyl chloride (TMC) doping into the perovskite precursor solution. The optimized precursor solution was subsequently processed using a spin-coating and annealing method, resulting in high-quality CsPbIBr2 perovskite thin films with improved morphological and optoelectronic properties. The experimental results demonstrated a remarkable enhancement in power conversion efficiency (PCE), with an increase from an initial value of 6.2% up to 10.2%. Furthermore, the optimized CsPbIBr2 solar cells exhibited excellent stability, maintaining over 80% of their initial efficiency after continuous aging for 250 h in ambient air conditions. This study presents an effective strategy for the controlled morphological and compositional engineering of wide-bandgap perovskite materials, providing a significant step forward in the advancement of perovskite photovoltaic technology. Full article
Show Figures

Figure 1

9 pages, 2715 KiB  
Article
Three-Dimensional High-Resolution Laser Lithography of CsPbBr3 Quantum Dots in Photoresist with Sub-100 nm Feature Size
by Boyuan Cai, Haoran Jiang, Run Bai, Shengting Zhu, Yinan Zhang, Haoyi Yu, Min Gu and Qiming Zhang
Nanomaterials 2025, 15(7), 531; https://doi.org/10.3390/nano15070531 - 31 Mar 2025
Cited by 1 | Viewed by 664
Abstract
Perovskite quantum dots (PQDs), with their excellent optical properties, have become a leading semiconductor material in the field of optoelectronics. However, to date, it has been a challenge to achieve the three-dimensional high-resolution patterning of perovskite quantum dots. In this paper, an in [...] Read more.
Perovskite quantum dots (PQDs), with their excellent optical properties, have become a leading semiconductor material in the field of optoelectronics. However, to date, it has been a challenge to achieve the three-dimensional high-resolution patterning of perovskite quantum dots. In this paper, an in situ femtosecond laser-direct-writing technology was demonstrated for three-dimensional high-resolution patterned CsPbBr3 PQDs using a two-photon photoresist nanocomposite doped with the CsPbBr3 perovskite precursor. By adjusting the laser processing parameters, the minimum line width of the PQDs material was confirmed to be 98.6 nm, achieving a sub-100 nm PQDs nanowire for the first time. In addition, the fluorescence intensity of the laser-processed PQDs can be regulated by the laser power. Our findings provide a new technology for fabricating high-resolution display devices based on laser-direct-writing CsPbBr3 PQDs materials. Full article
(This article belongs to the Special Issue Nano-Optics and Nanophotonics)
Show Figures

Figure 1

10 pages, 2184 KiB  
Article
CsPbI3 Perovskite Nanorods: Enhancing Fluorescence Efficiency and Environmental Stability via Trioctylphosphine Ligand Coordination
by Chengqi Liu, Zahir Abdalla, Xiaoqian Wang, Manrui Liu, Yanhui Jiao, Zisheng Tang, Qi Zhang and Yong Liu
Materials 2025, 18(7), 1518; https://doi.org/10.3390/ma18071518 - 28 Mar 2025
Cited by 1 | Viewed by 506
Abstract
Metal halide perovskite nanorods hold great promise for optoelectronic applications. However, they tend to undergo phase transitions due to the instability of the crystal phase under environmental conditions, leading to a rapid decline in the fluorescence efficiency. Here, we report a method in [...] Read more.
Metal halide perovskite nanorods hold great promise for optoelectronic applications. However, they tend to undergo phase transitions due to the instability of the crystal phase under environmental conditions, leading to a rapid decline in the fluorescence efficiency. Here, we report a method in which trioctylphosphine (TOP) directly serves as both the surface ligand and solvent to synthesize highly stable α-CsPbI3 nanorods (NRs). This approach produces monodisperse α-phase NRs with controlled sizes (1 μm and 150 nm in length, and an aspect ratio of 10:1), as confirmed by high-resolution transmission electron microscopy (TEM) and X-ray diffraction. The optimized NRs exhibit a high photoluminescence quantum yield of around 80%, as well as excellent environmental stability; after 15 days of storage, the photoluminescence quantum yield (PLQY) retention is 90%. Transient absorption spectroscopy shows that the carrier lifetime is extended to 23.95 ns and 27.86 ns, attributed to the dual role of TOP in defect passivation and hydrolysis suppression. This work provides a scalable paradigm for stabilizing metastable perovskite nanostructures through rational ligand selection, paving the way for durable perovskite-based optoelectronics. Full article
(This article belongs to the Special Issue Advanced Materials in Photoelectrics and Photonics)
Show Figures

Figure 1

12 pages, 2381 KiB  
Article
FACl as a Bifunctional Additive to Enhance the Performance of Lead-Free Antimony-Based Perovskite Solar Cells
by Xinyu Gao, Zihao Gao, Zhen Sun, Ping Song, Xiyuan Feng and Zhixin Jin
Micromachines 2025, 16(4), 379; https://doi.org/10.3390/mi16040379 - 27 Mar 2025
Viewed by 513
Abstract
Lead halide perovskite solar cells (PSCs) have shown tremendous progress in the last few years. However, highly toxic Pb and its instability have restricted their further development. On the other hand, antimony-based perovskites such as cesium antimony iodide (Cs3Sb2I [...] Read more.
Lead halide perovskite solar cells (PSCs) have shown tremendous progress in the last few years. However, highly toxic Pb and its instability have restricted their further development. On the other hand, antimony-based perovskites such as cesium antimony iodide (Cs3Sb2I9) have shown high stability but low power conversion efficiency (PCE) due to the limited transfer of photocarriers and the poor quality of films. Here, we present a novel method to improve the performance of Cs3Sb2I9 PSCs through a FACl-modified buried interface. FACl acts as a bi-functional additive, and FA incorporation enhances the crystallinity and light absorption of films. Furthermore, treatment with FACl optimizes the level position of Cs3Sb2I9. In addition, transient photovoltage and transient photocurrent were employed to confirm the reduction of charge recombination and superior carrier transportation. By using a planar device structure, we found the PCE of a FACl–Cs3Sb2I9-based device to be 1.66%. The device, stored for 2 months under N2 conditions, showed a negligible loss in PCE. Overall, this study provides a new strategy to further enhance the performance of Sb-based PSCs. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

51 pages, 4627 KiB  
Review
Advancements and Strategies in CsPbI2Br Perovskite Solar Cells for Enhanced Efficiency and Stability
by Fanbei Sun, Tingting Hou, Kexuan Xie, Xinghua Zhu, Dingyu Yang and Xin Liu
Nanomaterials 2025, 15(7), 483; https://doi.org/10.3390/nano15070483 - 24 Mar 2025
Viewed by 1227
Abstract
In recent years, inorganic perovskite solar cells (IPSCs), especially those based on CsPbI2Br, have attracted considerable attention owing to their exceptional thermal stability and a well-balanced combination of light absorption and phase stability. This review provides an extensive overview of the [...] Read more.
In recent years, inorganic perovskite solar cells (IPSCs), especially those based on CsPbI2Br, have attracted considerable attention owing to their exceptional thermal stability and a well-balanced combination of light absorption and phase stability. This review provides an extensive overview of the latest progress in CsPbI2Br PSCs, focusing on film deposition techniques, crystallization control, interface engineering, and charge transport layers (CTLs). High-efficiency CsPbI2Br PSCs can be achieved through the optimization of these key aspects. Various strategies, such as solvent engineering, component/additive engineering, and interface optimization, have been explored to enhance the quality of CsPbI2Br films and improve device performance. Despite significant progress, challenges remain, including the need for even higher quality films, a deeper understanding of interface energetics, and the exploration of novel CTLs. Additionally, long-term stability continues to be a critical concern. Future research should focus on refining film preparation methods, developing sophisticated interfacial layers, exploring compatible charge transport materials, and ensuring device durability through encapsulation and moisture-resistant materials. Full article
(This article belongs to the Special Issue Nanostructured Materials for Electric Applications)
Show Figures

Figure 1

15 pages, 5983 KiB  
Article
Mn2+-Doped CsPbBr2I Quantum Dots Photosensitive Films for High-Performance Photodetectors
by Mengwei Chen, Wei Huang, Chenguang Shen, Yingping Yang and Jie Shen
Nanomaterials 2025, 15(6), 444; https://doi.org/10.3390/nano15060444 - 15 Mar 2025
Viewed by 819
Abstract
The variable bandgap and high absorption coefficient of all-inorganic halide perovskite quantum dots (QDs), particularly CsPbBr2I make them highly promising for photodetector applications. However, their high defect density and poor stability limit their performance. To overcome these problems, Mn2+-doped [...] Read more.
The variable bandgap and high absorption coefficient of all-inorganic halide perovskite quantum dots (QDs), particularly CsPbBr2I make them highly promising for photodetector applications. However, their high defect density and poor stability limit their performance. To overcome these problems, Mn2+-doped CsPbBr2I QDs with varying concentrations were synthesized via the one-pot method in this work. By replacing Pb2+ ions, moderate Mn2+ doping caused lattice contraction and improved crystallinity. At the same time, Mn2+-doping effectively passivated surface defects, reducing the defect density by 33%, and suppressed non-radiative recombination, thereby improving photoluminescence (PL) intensity and carrier mobility. The optimized Mn:CsPbBr2I QDs-based photodetector exhibited superior performance, with a dark current of 1.19 × 10−10 A, a photocurrent of 1.29 × 10−5 A, a responsivity (R) of 0.83 A/W, a specific detectivity (D*) of 3.91 × 1012 Jones, an on/off ratio up to 105, and the response time reduced to less than 10 ms, all outperforming undoped CsPbBr2I QDs devices. Stability tests demonstrated enhanced durability, retaining 80% of the initial photocurrent after 200 s of cycling (compared to 50% for undoped devices) and stable operation over 20 days. This work offers a workable strategy for rational doping and structural optimization in the construction of high-performance perovskite optoelectronic devices. Full article
(This article belongs to the Special Issue Advances in Polymer Nanofilms)
Show Figures

Figure 1

12 pages, 1742 KiB  
Article
Simulation of Lead-Free Perovskite Solar Cells with Improved Performance
by Saood Ali, Praveen Kumar, Khursheed Ahmad and Rais Ahmad Khan
Crystals 2025, 15(2), 171; https://doi.org/10.3390/cryst15020171 - 10 Feb 2025
Cited by 5 | Viewed by 1097
Abstract
At present, lead halide PVSKSCs are promising photovoltaic cells but have some limitations, including their low stability in ambient conditions and the toxicity of lead. Thus, it will be of great significance to explore lead-free perovskite materials as an alternative absorber layer. In [...] Read more.
At present, lead halide PVSKSCs are promising photovoltaic cells but have some limitations, including their low stability in ambient conditions and the toxicity of lead. Thus, it will be of great significance to explore lead-free perovskite materials as an alternative absorber layer. In recent years, the numerical simulation of perovskite solar cells (PVSKSCs) via the solar cell capacitance simulation (SCAPS) method has attracted the attention of the scientific community. In this work, we adopted SCAPS for the theoretical study of lead (Pb)-free PVSKSCs. A cesium bismuth iodide (CsBi3I10; CBI) perovskite-like material was used as an absorber layer. The thickness of the CBI layer was optimized. In addition, different electron transport layers (ETLs), such as titanium dioxide (TiO2), tin oxide (SnO2), zinc oxide (ZnO), and zinc selenide (ZnSe), and different hole transport layers, such as spiro-OMeTAD (2,2,7,7-tetrakis(N,N-di(4-methoxyphenylamine)-9,9′-spirobifluorene), poly(3-hexylthiophene-2,5-diyl) (P3HT), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA), and copper oxide (Cu2O), were explored for the simulation of CBI-based PVSKSCs. A device structure of FTO/ETL/CBI/HTL/Au was adopted for simulation studies. The simulation studies showed the improved photovoltaic performance of CBI-based PVSKSCs using spiro-OMeTAD and TiO2 as the HTL and ETL, respectively. An acceptable PCE of 11.98% with a photocurrent density (Jsc) of 17.360258 mA/cm2, a fill factor (FF) of 67.10%, and an open-circuit voltage (Voc) of 1.0282 V were achieved under the optimized conditions. It is expected that the present study will be beneficial for researchers working towards the development of CBI-based PVSKSCs. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

Back to TopTop