Dual Defect-Engineered BiVO4 Nanosheets for Efficient Peroxymonosulfate Activation
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, Y.; Qian, J.; Wang, P.; Xie, T.; Dionysiou, D.D.; Lu, B.; Tang, S. Synergized selenium-vacancy heterogeneous interface and carbon nanotubes for insight into efficient oxidation of pollutants via photocatalytic peroxymonosulfate activation. Appl. Catal. B Environ. 2023, 330, 122620. [Google Scholar] [CrossRef]
- Wistrand-Yuen, E.; Knopp, M.; Hjort, K.; Koskiniemi, S.; Berg, O.G.; Andersson, D.I. Evolution of high-level resistance during low-level antibiotic exposure. Nat. Commun. 2018, 9, 1599. [Google Scholar] [CrossRef]
- Parvulescu, V.I.; Epron, F.; Garcia, H.; Granger, P. Recent Progress and Prospects in Catalytic Water Treatment. Chem. Rev. 2022, 122, 2981–3121. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Tian, X.; Nie, Y.; Lin, H.-M.; Yang, C.; Han, B.; Wang, Y. Surface Facet of CuFeO2 Nanocatalyst: A Key Parameter for H2O2 Activation in Fenton-Like Reaction and Organic Pollutant Degradation. Environ. Sci. Technol. 2018, 52, 6518–6525. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhu, Y.; Li, T.; Chen, Z.; Jiang, Q.; Zhao, Z.; Liang, X.; Hu, C. Unraveling the High-Activity Origin of Single-Atom Iron Catalysts for Organic Pollutant Oxidation via Peroxymonosulfate Activation. Environ. Sci. Technol. 2021, 55, 8318–8328. [Google Scholar] [CrossRef]
- Duan, X.; Sun, H.; Kang, J.; Wang, Y.; Indrawirawan, S.; Wang, S. Insights into Heterogeneous Catalysis of Persulfate Activation on Dimensional-Structured Nanocarbons. ACS Catal. 2015, 5, 4629–4636. [Google Scholar] [CrossRef]
- Ming, H.; Wei, D.; Yang, Y.; Chen, B.; Yang, C.; Zhang, J.; Hou, Y. Photocatalytic activation of peroxymonosulfate by carbon quantum dots functionalized carbon nitride for efficient degradation of bisphenol A under visible-light irradiation. Chem. Eng. J. 2021, 424, 130296. [Google Scholar] [CrossRef]
- Feng, S.; Yu, M.; Xie, T.; Li, T.; Kong, D.; Yang, J.; Cheng, C.; Chen, H.; Wang, J. MoS2/CoFe2O4 heterojunction for boosting photo-generated carrier separation and the dominant role in enhancing peroxymonosulfate activation. Chem. Eng. J. 2022, 433, 134467. [Google Scholar] [CrossRef]
- Gueorguiev, G.K.; Goyenola, C.; Schmidt, S.; Hultman, L. CFx: A first-principles study of structural patterns arising during synthetic growth. Chem. Phys. Lett. 2011, 516, 62–67. [Google Scholar] [CrossRef]
- Furlan, A.; Gueorguiev, G.K.; Högberg, H.; Stafström, S.; Hultman, L. Fullerene-like CPx: A first-principles study of the relative stability of precursors and defect energetics during synthetic growth. Thin Solid Film. 2006, 515, 1028–1032. [Google Scholar] [CrossRef]
- He, Y.; Lei, Q.; Li, C.; Han, Y.; Shi, Z.; Feng, S. Defect engineering of photocatalysts for solar-driven conversion of CO2 into valuable fuels. Mater. Today 2021, 50, 358–384. [Google Scholar] [CrossRef]
- Zhang, Y.; Di, J.; Qian, X.; Ji, M.; Tian, Z.; Ye, L.; Zhao, J.; Yin, S.; Li, H.; Xia, J. Oxygen vacancies in Bi2Sn2O7 quantum dots to trigger efficient photocatalytic nitrogen reduction. Appl. Catal. B Environ. 2021, 299, 120680. [Google Scholar] [CrossRef]
- Yu, H.; Chen, F.; Li, X.; Huang, H.; Zhang, Q.; Su, S.; Wang, K.; Mao, E.; Mei, B.; Mul, G.; et al. Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction. Nat. Commun. 2021, 12, 4594. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Ao, Z.; Zhou, L.; Sun, H.; Wang, G.; Wang, S. Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation. Appl. Catal. B Environ. 2016, 188, 98–105. [Google Scholar] [CrossRef]
- Bu, Y.; Li, H.; Yu, W.; Pan, Y.; Li, L.; Wang, Y.; Pu, L.; Ding, J.; Gao, G.; Pan, B. Peroxydisulfate Activation and Singlet Oxygen Generation by Oxygen Vacancy for Degradation of Contaminants. Environ. Sci. Technol. 2021, 55, 2110–2120. [Google Scholar] [CrossRef]
- Wu, L.; Sun, Z.; Zhen, Y.; Zhu, S.; Yang, C.; Lu, J.; Tian, Y.; Zhong, D.; Ma, J. Oxygen Vacancy-Induced Nonradical Degradation of Organics: Critical Trigger of Oxygen (O2) in the Fe–Co LDH/Peroxymonosulfate System. Environ. Sci. Technol. 2021, 55, 15400–15411. [Google Scholar] [CrossRef]
- Ma, T.; Yang, C.; Guo, L.; Soomro, R.A.; Wang, D.; Xu, B.; Fu, F. Refining electronic properties of Bi2MoO6 by In-doping for boosting overall nitrogen fixation via relay catalysis. Appl. Catal. B Environ. 2023, 330, 122643. [Google Scholar] [CrossRef]
- Dong, H.; Zuo, Y.; Song, N.; Hong, S.; Xiao, M.; Zhu, D.; Sun, J.; Chen, G.; Li, C. Bimetallic synergetic regulating effect on electronic structure in cobalt/vanadium co-doped carbon nitride for boosting photocatalytic performance. Appl. Catal. B Environ. 2021, 287, 119954. [Google Scholar] [CrossRef]
- Zhu, J.; Shao, W.; Li, X.; Jiao, X.; Zhu, J.; Sun, Y.; Xie, Y. Asymmetric Triple-Atom Sites Confined in Ternary Oxide Enabling Selective CO2 Photothermal Reduction to Acetate. J. Am. Chem. Soc. 2021, 143, 18233–18241. [Google Scholar] [CrossRef]
- Zhang, N.; Jalil, A.; Wu, D.; Chen, S.; Liu, Y.; Gao, C.; Ye, W.; Qi, Z.; Ju, H.; Wang, C.; et al. Refining Defect States in W18O49 by Mo Doping: A Strategy for Tuning N2 Activation towards Solar-Driven Nitrogen Fixation. J. Am. Chem. Soc. 2018, 140, 9434–9443. [Google Scholar] [CrossRef]
- Yang, X.; Ma, Y.; Liu, Y.; Wang, K.; Wang, Y.; Liu, M.; Qiu, X.; Li, W.; Li, J. Defect-Induced Ce-Doped Bi2WO6 for Efficient Electrocatalytic N2 Reduction. ACS Appl. Mater. Interfaces 2021, 13, 19864–19872. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Z.; Si, Y.; Li, B.; Deng, F.; Yang, L.; Liu, X.; Dai, W.; Luo, S. Gradient Hydrogen Migration Modulated with Self-Adapting S Vacancy in Copper-Doped ZnIn2S4 Nanosheet for Photocatalytic Hydrogen Evolution. ACS Nano 2021, 15, 15238–15248. [Google Scholar] [CrossRef]
- Du, M.; Xing, M.; Yuan, W.; Zhang, L.; Sun, T.; Sheng, T.; Zhou, C.; Qiu, B. Upgrading polyethylene terephthalate plastic into commodity chemicals paired with hydrogen evolution over a partially oxidized CuIn5S8 nanosheet photocatalyst. Green Chem. 2023, 25, 9818–9825. [Google Scholar] [CrossRef]
- Shi, Y.; Shou, H.; Li, H.; Zhan, G.; Liu, X.; Yang, Z.; Mao, C.; Cheng, J.; Zhang, X.; Jiang, Y.; et al. Visible Light-Driven Conversion of Carbon-Sequestrated Seawater into Stoichiometric CO and HClO with Nitrogen-Doped BiOCl Atomic Layers. Angew. Chem. Int. Ed. 2023, 62, e202302286. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Lin, Y.; Jiao, X.; Sun, Y.; Luo, Q.; Zhang, W.; Li, D.; Yang, J.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.; Novoselov, K.S.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Hu, X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, Y.; Waterhouse, G.I.N.; Zheng, L.; Cao, X.; Teng, F.; Wu, L.-Z.; Tung, C.-H.; O’Hare, D.; Zhang, T. Layered-Double-Hydroxide Nanosheets as Efficient Visible-Light-Driven Photocatalysts for Dinitrogen Fixation. Adv. Mater. 2017, 29, 1703828. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.; Ji, M.; Xu, L.; Yin, S.; Chen, Z.; Li, H. Bidirectional acceleration of carrier separation spatially via N-CQDs/atomically-thin BiOI nanosheets nanojunctions for manipulating active species in a photocatalytic process. J. Mater. Chem. A 2016, 4, 5051–5061. [Google Scholar] [CrossRef]
- Liang, Q.; Li, Z.; Huang, Z.-H.; Kang, F.; Yang, Q.-H. Holey Graphitic Carbon Nitride Nanosheets with Carbon Vacancies for Highly Improved Photocatalytic Hydrogen Production. Adv. Funct. Mater. 2015, 25, 6885–6892. [Google Scholar] [CrossRef]
- Lei, F.; Sun, Y.; Liu, K.; Gao, S.; Liang, L.; Pan, B.; Xie, Y. Oxygen Vacancies Confined in Ultrathin Indium Oxide Porous Sheets for Promoted Visible-Light Water Splitting. J. Am. Chem. Soc. 2014, 136, 6826–6829. [Google Scholar] [CrossRef]
- Liang, L.; Lei, F.; Gao, S.; Sun, Y.; Jiao, X.; Wu, J.; Qamar, S.; Xie, Y. Single Unit Cell Bismuth Tungstate Layers Realizing Robust Solar CO2 Reduction to Methanol. Angew. Chem. Int. Ed. 2015, 54, 13971–13974. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, G.; Bian, T.; Zhou, C.; Waterhouse, G.I.N.; Wu, L.-Z.; Tung, C.-H.; Smith, L.J.; O’Hare, D.; Zhang, T. Defect-Rich Ultrathin ZnAl-Layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO2 to CO with Water. Adv. Mater. 2015, 27, 7824–7831. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, L.; Xie, J.; Zhang, X.; Liu, Q.; Yao, T.; Wei, S.; Zhang, Q.; Xie, Y. Enhanced Photoexcited Carrier Separation in Oxygen-Doped ZnIn2S4 Nanosheets for Hydrogen Evolution. Angew. Chem. Int. Ed. 2016, 55, 6716–6720. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Feng, J.; Zhao, J.; Zhang, Y.; Wang, B.; Di, J.; Xu, X.; Chen, Z.; Xia, J.; Li, H. Defect-Engineered Bi24O31Cl10 Nanosheets for Photocatalytic CO2 Reduction to CO. ACS Appl. Nano Mater. 2022, 5, 17226–17233. [Google Scholar] [CrossRef]
- Wang, J.-T.; Cai, Y.-L.; Liu, X.-J.; Zhang, X.-D.; Cai, F.-Y.; Cao, H.-L.; Zhong, Z.; Li, Y.-F.; Lü, J. Unveiling the visible–light–driven photodegradation pathway and products toxicity of tetracycline in the system of Pt/BiVO4 nanosheets. J. Hazard. Mater. 2022, 424, 127596. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, J.; Shi, R.; Zhou, C.; Zhang, T. Facile Fabrication of N-Doped K2Nb2O6 Nanocrystals with Defective Pyrochlore Structure for Improved Visible-Light Photocatalytic Hydrogen Production. Small Struct. 2023, 4, 2200105. [Google Scholar] [CrossRef]
- Yang, C.; Qin, C.; Zhong, J.; Li, J.; Huang, S.; Wang, Q.; Ma, L. Photocatalytic enhancement mechanism insight for BiVO4 induced by plasma treatment under different atmospheres. J. Alloys Compd. 2022, 890, 161883. [Google Scholar] [CrossRef]
- Xu, X.; Xu, Y.; Xu, F.; Jiang, G.; Jian, J.; Yu, H.; Zhang, E.; Shchukin, D.; Kaskel, S.; Wang, H. Black BiVO4: Size tailored synthesis, rich oxygen vacancies, and sodium storage performance. J. Mater. Chem. A 2020, 8, 1636–1645. [Google Scholar] [CrossRef]
- Chen, C.; He, X.; Wang, L.; Cao, W.; Boda, M.A.; Yi, Z. Enhanced Self-Biased Photoelectric Performance of BiVO4 Ceramics via Nitrogen Doping. Energy Fuels 2022, 36, 11542–11549. [Google Scholar] [CrossRef]
- Ouyang, X.; Feng, C.; Zhu, X.; Liao, Y.; Zhou, Z.; Fan, X.; Zhang, Z.; Chen, L.; Tang, L. 3D printed bionic self-powered sensing device based on fern-shaped nitrogen doped BiVO4 photoanode with enriched oxygen vacancies. Biosens. Bioelectron. 2023, 220, 114817. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Shi, L.; Ge, H.; Liu, J.; Deng, X.; Li, Z.; Liang, Q. Regulating the Oxygen Vacancy on Bi2MoO6/Co3O4 Core-Shell Nanocage Enables Highly Selective CO2 Photoreduction to CH4. Adv. Funct. Mater. 2025, 35, 2412078. [Google Scholar] [CrossRef]
- Liu, Q.; Qie, H.; Sun, Z.; Zhen, Y.; Wu, L.; Zhao, Y.; Ma, J. Elevated degradation of di-n-butyl phthalate by activating peroxymonosulfate over GOCoFe2O4 composites: Synergistic effects and mechanisms. Chin. Chem. Lett. 2023, 34, 108397. [Google Scholar] [CrossRef]
- Yu, D.; He, J.; Xie, T.; Yang, J.; Wang, J.; Xie, J.; Shi, H.; Gao, Z.; Xiang, B.; Dionysiou, D.D. Boosting catalytic activity of SrCoO2.52 perovskite by Mn atom implantation for advanced peroxymonosulfate activation. J. Hazard. Mater. 2023, 442, 130085. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Gao, M.; Guo, X.; Ai, F.; Wang, Z. Enhanced degradation performance of bisphenol M using peroxymonosulfate activated by zero-valent iron in aqueous solution: Kinetic study and product identification. Chemosphere 2019, 221, 314–323. [Google Scholar] [CrossRef]
- Ma, J.; Chen, L.; Liu, Y.; Xu, T.; Ji, H.; Duan, J.; Sun, F.; Liu, W. Oxygen defective titanate nanotubes induced by iron deposition for enhanced peroxymonosulfate activation and acetaminophen degradation: Mechanisms, water chemistry effects, and theoretical calculation. J. Hazard. Mater. 2021, 418, 126180. [Google Scholar] [CrossRef]
- Wang, M.; Jin, C.; Kang, J.; Liu, J.; Tang, Y.; Li, Z.; Li, S. CuO/g-C3N4 2D/2D heterojunction photocatalysts as efficient peroxymonosulfate activators under visible light for oxytetracycline degradation: Characterization, efficiency and mechanism. Chem. Eng. J. 2021, 416, 128118. [Google Scholar] [CrossRef]
- Wang, B.; Feng, W.; Zhang, L.; Zhang, Y.; Huang, X.; Fang, Z.; Liu, P. In situ construction of a novel Bi/CdS nanocomposite with enhanced visible light photocatalytic performance. Appl. Catal. B Environ. 2017, 206, 510–519. [Google Scholar] [CrossRef]
- Wang, B.; He, S.; Feng, W.; Zhang, L.; Huang, X.; Wang, K.; Zhang, S.; Liu, P. Rational design and facile in situ coupling non-noble metal Cd nanoparticles and CdS nanorods for efficient visible-light-driven photocatalytic H2 evolution. Appl. Catal. B Environ. 2018, 236, 233–239. [Google Scholar] [CrossRef]
- Wang, B.; He, S.; Zhang, L.; Huang, X.; Gao, F.; Feng, W.; Liu, P. CdS nanorods decorated with inexpensive NiCd bimetallic nanoparticles as efficient photocatalysts for visible-light-driven photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2019, 243, 229–235. [Google Scholar] [CrossRef]
- Wang, S.-D.; Huang, L.-Y.; Xue, L.-J.; Kang, Q.; Wen, L.-L.; Lv, K.-L. Sulfur-vacancy-modified ZnIn2S4/TpPa-1 S-scheme heterojunction with enhanced internal electric field for boosted photocatalytic hydrogen production. Appl. Catal. B Environ. Energy 2024, 358, 124366. [Google Scholar] [CrossRef]
- Hou, J.; Wang, K.; Zhang, X.; Wang, Y.; Su, H.; Yang, C.; Zhou, X.; Liu, W.; Hu, H.; Wang, J.; et al. Synergistic Defect Sites and CoOx Nanoclusters in Polymeric Carbon Nitride for Enhanced Photocatalytic H2O2 Production. ACS Catal. 2024, 14, 10893–10903. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, J.; Chen, C.; Jiang, Y.; Ni, P.; Zhang, C.; Liu, X.; Lu, Y. Rational design and fabrication of MoSx nanoclusters decorated Mn0.3Cd0.7S nanorods with promoted interfacial charge transfer toward robust photocatalytic H2 generation. J. Colloid Interface Sci. 2023, 630, 37–46. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Xie, T.; Luo, T.; Xu, Q.; Ye, F.; An, J.; Yang, J.; Wang, J. Enhanced peroxymonosulfate activation over heterogeneous catalyst Cu0.76Co2.24O4/SBA-15 for efficient degradation of sulfapyridine antibiotic. Ecotoxicol. Environ. Saf. 2021, 216, 112189. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, Q.; Xie, Z.; Wang, Y.; Wang, J.; Peng, Y.; Fang, Y.; Deng, L.; Xie, T.; Xu, L. Enhancement mechanism of photocatalytic activity for MoS2/Ti3C2 Schottky junction: Experiment and DFT calculation. J. Alloys Compd. 2021, 887, 161411. [Google Scholar] [CrossRef]
- Li, X.; Wu, D.; Yang, J.; Zhu, Q.; Wang, J.; Peng, Y.; Xie, T.; Chen, H. Monoclinic BiPO4: Preparation, photocatalytic properties in experiment and theoretical calculation. Sol. Energy 2021, 220, 440–449. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Xu, M.; Li, Z.; Li, M.; Zhou, W. Dual Defect-Engineered BiVO4 Nanosheets for Efficient Peroxymonosulfate Activation. Nanomaterials 2025, 15, 373. https://doi.org/10.3390/nano15050373
Wu J, Xu M, Li Z, Li M, Zhou W. Dual Defect-Engineered BiVO4 Nanosheets for Efficient Peroxymonosulfate Activation. Nanomaterials. 2025; 15(5):373. https://doi.org/10.3390/nano15050373
Chicago/Turabian StyleWu, Jiabao, Meiyu Xu, Zhenzi Li, Mingxia Li, and Wei Zhou. 2025. "Dual Defect-Engineered BiVO4 Nanosheets for Efficient Peroxymonosulfate Activation" Nanomaterials 15, no. 5: 373. https://doi.org/10.3390/nano15050373
APA StyleWu, J., Xu, M., Li, Z., Li, M., & Zhou, W. (2025). Dual Defect-Engineered BiVO4 Nanosheets for Efficient Peroxymonosulfate Activation. Nanomaterials, 15(5), 373. https://doi.org/10.3390/nano15050373