Flexible Inorganic/Organic Memristor Based on W-Doped MoOx/Poly(methyl methacrylate) Heterostructure
Abstract
1. Introduction
2. Experimental Section
2.1. Film Preparation and Characterization
2.2. Memristive Device Fabrication and Characsterization
3. Results and Discussion
3.1. Deposition of W-Doped MoOx Thin Films
3.2. Computational Results
3.3. Fabrication of Memristor Using W-MoOx/PMMA Heterostructure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Haji, M. Enhancing communication networks in the new era with artificial intelligence: Techniques, applications, and future directions. Network 2025, 5, 1. [Google Scholar] [CrossRef]
- Ielmini, D.; Wong, H.S.P. In-Memory Computing with Resistive Switching Devices. Nat. Electron. 2018, 1, 333–343. [Google Scholar] [CrossRef]
- Zidan, M.A.; Strachan, J.P.; Lu, W.D. The Future of Electronics Based on Memristive Systems. Nat. Electron. 2018, 1, 22–29. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, K.-M.; Kim, M.; Lee, H.-S.; Waser, R.; Wouter, D.; Dittmann, R.; Yang, J.J.; Park, H.-H. Mott-transition-based RRAM. Mater. Today 2019, 28, 63–80. [Google Scholar] [CrossRef]
- Yoon, J.H.; Song, Y.-W.; Ham, W.; Park, J.-M.; Kwon, J.-Y. A review on device requirements of resistive random access memory (RRAM)-based neuromorphic computing. APL Mater. 2023, 11, 090701. [Google Scholar] [CrossRef]
- Khan, R.; Ilyas, N.; Shamim, M.Z.M.; Khan, M.I.; Sohail, M.; Rahman, N.; Khan, A.A.; Khan, S.N.; Khan, A. Oxide-based resistive switching-based devices: Fabrication, influence parameters and applications. J. Mater. Chem. C 2021, 9, 15755–15788. [Google Scholar] [CrossRef]
- Elshekh, H.; Wang, H.; Zhu, S.; Yang, C.; Wang, J. Nonvolatile resistive switching memory behavior of the TiOx-based memristor. Chem. Phys. 2024, 580, 112217. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, Y.; Wei, M.; Qiu, X. Ultralow voltage resistive switching characteristics of HfOx/NiOx stacks. J. Appl. Phys. 2025, 137, 075701. [Google Scholar] [CrossRef]
- Xiong, X.; Wu, F.; Ouyang, Y.; Liu, Y.; Wang, Z.; Tian, H.; Dong, M. Oxygen incorporated MoS2 for rectification-mediated resistive switching and artificial neural network. Adv. Funct. Mater. 2024, 34, 2213348. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.C.; Li, J.; Chen, X.-D.; Kong, Y.; Wang, F.-D.; Zhang, G.-X.; Lu, T.-B.; Zhang, J. Low-voltage ultrafast nonvolatile memory via direct charge injection through a threshold resistive-switching layer. Nat. Commun. 2022, 13, 4591. [Google Scholar] [CrossRef]
- Jian, J.; Dong, P.; Jian, Z.; Zhao, T.; Miao, C.; Chang, H.; Chen, J.; Chen, Y.-F.; Chen, Y.-B.; Feng, H.; et al. Ultralow-power RRAM with high switching ratio based on the large van der Waals interstice radius of TMDs. ACS Nano 2022, 16, 20445–20456. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, M.K.; Khan, S.A.; Geum, D.-M.; Jeon, H.; Park, S.Y.; Yun, C.; Kang, M.H. Enhanced resistive switching behaviors of organic resistive random access memory devices by adding polyethyleneimine interlayer. Org. Electron. 2024, 132, 107089. [Google Scholar] [CrossRef]
- Tao, Y.; Liu, H.; Kong, H.-Y.; Bian, X.-Y.; Yao, B.-W.; Li, Y.J.; Gu, C.; Ding, X.; Sun, L.; Han, B.-H. Resistive memristors using robust electropolymerized porous organic polymer films as switching materials. J. Am. Chem. Soc. 2024, 146, 16511–16520. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Xia, F.; Du, B.; Zhang, S.; Xu, L.; Su, Q.; Zhang, D.; Yang, J. 2D halide perovskites for high-performance resistive switching memory and artificial synapse applications. Adv. Sci. 2024, 11, 2310263. [Google Scholar] [CrossRef]
- Yan, K.; Peng, M.; Yu, X.; Cai, X.; Chen, S.; Hu, H.; Chen, B.; Gao, X.; Dong, B.; Zou, D. High-performance perovskite memristor based on methyl ammonium lead halides. J. Mater. Chem. C 2016, 4, 1375–1381. [Google Scholar] [CrossRef]
- John, R.A.; Milozzi, A.; Tsarev, S.; Brönnimann, R.; Boehme, S.C.; Wu, E.; Shorubalko, I.; Kovalenko, M.V.; Ielmini, D. IonicElectronic Halide Perovskite Memdiodes Enabling Neuromorphic Computing with a Second-Order Complexity. Sci. Adv. 2022, 8, eade0072. [Google Scholar] [CrossRef]
- Fatheema, J.; Shahid, T.; Mohammad, M.A.; Islam, A.; Malik, F.; Akinwande, D.; Rizwan, S. A comprehensive investigation of MoO3 based resistive random access memory. RSC Adv. 2020, 10, 19337–19345. [Google Scholar] [CrossRef]
- Shi, T.; Yin, X.-B.; Yang, R.; Guo, X. Pt/WO3/FTO memristive devices with recoverable pseudo-electroforming for time-delay switches in neuromorphic computing. Phys. Chem. Chem. Phys. 2016, 18, 9338–9343. [Google Scholar] [CrossRef]
- Qin, J.; Sun, B.; Mao, S.; Yang, Y.; Liu, M.; Rao, Z.; Ke, C.; Zhao, Y. Improved resistive switching performance and mechanism analysis of MoO3 nanorods based memristors. Mater. Today Commun. 2023, 36, 106770. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, P.; Xing, R.; Xing, Y.; Ge, Y.; Wei, L.; Wang, D.; Zhao, L.; Yan, S.; Chen, Y. Quasi-two-dimensional α-molybdenum oxide thin film prepared by magnetron sputtering for neuromorphic computing. RSC Adv. 2022, 12, 17706–17714. [Google Scholar] [CrossRef]
- Rudrapal, K.; Bisws, M.; Jana, B.; Adyam, V.; Chaudhuri, A.R. Tuning resistive switching properties of WO3−x-memristors by oxygen vacancy engineering for neuromorphic and memory storage applications. J. Phys. D Appl. Phys. 2023, 56, 205302. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, A.; Humayun, M.; Wang, C. Recent advances of oxygen vacancies in MoO3: Preparation and roles. Chem. Eng. J. 2024, 498, 155246. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Y.; Ai, C.; Wen, D. Resistive switching characteristics of Li-doped ZnO thin films based on magnetron sputtering. Materials 2019, 12, 1282. [Google Scholar] [CrossRef]
- Tan, T.; Du, Y.; Cao, A.; Sun, Y.; Zha, G.; Lei, H.; Zheng, X. The resistive switching characteristics of Ni-doped HfOx film and its application as a synapse. J. Alloys Compd. 2018, 766, 918–924. [Google Scholar] [CrossRef]
- Yadav, D.; Dwivedi, A.K.; Verma, S.; Avasthi, D.K. Transition metal oxide based resistive random-access memory: An overview of materials and device performance enhancement techniques. J. Sci. Adv. Mater. Dev. 2024, 9, 100813. [Google Scholar] [CrossRef]
- Ke, S.; Jiang, L.; Zhao, Y.; Xiao, Y.; Jiang, B.; Cheng, G.; Wu, F.; Cao, G.; Peng, Z.; Zhu, M.; et al. Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing. Front. Phys. 2022, 17, 53508. [Google Scholar] [CrossRef]
- Bharathi, M.; Balraj, B.; Sivakumar, C.; Wang, Z.; Shuai, J.; Ho, M.; Guo, D. Effect of Ag doping on bipolar switching operation in molybdenum trioxide (MoO3) nanostructures for non-volatile memory. J. Alloys Compd. 2021, 862, 158035. [Google Scholar] [CrossRef]
- Hasan, M.; Dong, R.; Lee, D.; Seong, D.; Choi, H.; Pyun, M.; Hwang, H. A materials approach to resistive switching memory oxides. J. Semicond. Technol. Sci. 2008, 8, 66–79. [Google Scholar] [CrossRef]
- Soultati, A.; Aidinis, K.; Chroneos, A.; Vasilopoulou, M.; Davazoglou, D. Ambipolar surface conduction in oxygen sub-stoichiometric molybdenum oxide films. Sci. Rep. 2023, 13, 21166. [Google Scholar] [CrossRef]
- Vasilopoulou, M.; Douvas, A.M.; Georgiadou, D.G.; Palilis, L.C.; Kennou, S.; Sygellou, L.; Soultati, A.; Kostis, I.; Papadimitropoulos, G.; Davazoglou, D.; et al. The influence of hydrogenation and oxygen vacancies on molybdenum oxides work function and gap states for application in organic optoelectronics. J. Am. Chem. Soc. 2012, 134, 16178–16187. [Google Scholar] [CrossRef]
- Zhang, J.; Tu, J.P.; Xia, X.H.; Qiao, Y.; Lu, Y. An all-solid-state electrochromic device based on NiO/WO3 complementary structure and solid hybrid polyelectrolyte. Sol. Energy Mater. Sol. Cells 2009, 93, 1840–1845. [Google Scholar] [CrossRef]
- Criinert, W.; Stakheev, A.Y.; Feldhaus, R.; Anders, K.; Shpiro, E.S.; Minachev, K.M. Analysis of molybdenum(3d) XPS spectra of supported molybdenum catalysts: An alternative approach. J. Phys. Chem. 1991, 95, 1323. [Google Scholar] [CrossRef]
- Fleisch, T.H.; Mains, G.J. An XPS study of the UV reduction and photochromism of MoO3 and WO3. J. Chem. Phys. 1982, 76, 780. [Google Scholar] [CrossRef]
- Weinhardt, L.; Blum, M.; Bär, M.; Heske, C.; Cole, B.; Marsen, B.; Miller, E.L. Electronic Surface Level Positions of WO3 Thin Films for Photoelectrochemical Hydrogen Production. J. Phys. Chem. C 2008, 112, 3078–3082. [Google Scholar] [CrossRef]
- Höchst, H.; Bringans, R.D. Electronic structure of evaporated and annealed tungsten oxide films studied with UPS. Appl. Surf. Sci. 1982, 11–12, 768–773. [Google Scholar] [CrossRef]
- Wang, B.B.; Zhong, X.X.; Shao, R.W.; Chen, Y.A.; Cvelbar, U.; Ostrikov, K. Effects of tungsten doping on structure and amorphous photoluminescence of MoO3-x nanomaterials. J. Phys. D Appl. Phys. 2020, 53, 415109. [Google Scholar] [CrossRef]
- Layegh, M.; Ghodsi, F.E.; Hadipour, H. Experimental and theoretical study of Fe doping as a modifying factor in electrochemical behavior of mixed-phase molybdenum oxide thin films. Appl. Phys. A 2020, 126, 14. [Google Scholar] [CrossRef]
- Wang, X.; Jin, H.; Lu, H.; Fei, Y.; Zhu, X.; Yang, G. Movement of oxygen vacancies in oxide film during annealing observed by an optical reflectivity difference technique. J. Appl. Phys. 2007, 102, 053107. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Furness, J.W.; Kaplan, A.D.; Ning, J.; Perdew, J.P.; Sun, J. Accurate and Numerically Efficient r2SCAN Meta-Generalized Gradient Approximation. J. Phys. Chem. Lett. 2020, 11, 8208–8215. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Mosquera-Lois, I.; Kavanagh, S.R.; Walsh, A.; Scanlon, D.O. ShakeNBreak: Navigating the defect configurational landscape. J. Open Source Softw. 2022, 7, 4817. [Google Scholar] [CrossRef]
- Kavanagh, S.R.; Squires, A.G.; Nicolson, A.; Mosquera-Lois, I.; Ganose, A.M.; Zhu, B.; Brlec, K.; Walsh, A.; Scanlon, D.O. doped: Python toolkit for robust and repeatable charged defect supercell calculations. J. Open Source Softw. 2024, 9, 6433. [Google Scholar] [CrossRef]
- Filippatos, P.-P.; Chroneos, A.; Kelaidis, N. A first-principles investigation of halogen doped diamond and its application to quantum technologies. J. Appl. Phys. 2025, 138, 094401. [Google Scholar] [CrossRef]
- Carcia, P.F.; McCarron, E.M. Synthesis and properties of thin film polymorphs of molybdenum trioxide. Thin Solid Films 1987, 155, 53–63. [Google Scholar] [CrossRef]
- De La Flor, G.; Aroyo, M.I.; Gimondi, I.; Ward, S.C.; Momma, K.; Hanson, R.M.; Suescun, L. Free tools for crystallographic symmetry handling and visualization. J. Appl. Crystallogr. 2024, 57, 1618–1639. [Google Scholar] [CrossRef]
- Scanlon, D.O.; Watson, G.W.; Payne, D.J.; Atkinson, G.R.; Egdell, R.G.; Law, D.S.L. Theoretical and Experimental Study of the Electronic Structures of MoO3 and MoO2. J. Phys. Chem. C 2010, 114, 4636–4645. [Google Scholar] [CrossRef]
- Abbas, G.; Bulancea-Lindvall, O.; Davidsson, J.; Armiento, R.; Abrikosov, I.A. Theoretical characterization of NV-like defects in 4H-SiC using ADAQ with the SCAN and r2SCAN meta-GGA functionals. arXiv 2025. [Google Scholar] [CrossRef]
- Wang, D.; Liu, L.; Zhuang, H.L. Spin qubit based on the nitrogen-vacancy center analog in a diamond-like compound C3BN. J. Appl. Phys. 2021, 130, 225702. [Google Scholar] [CrossRef]
- Matsushima, T.; Jin, G.-H.; Murata, H. Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide. J. Appl. Phys. 2008, 104, 054501. [Google Scholar] [CrossRef]
- Joung, D.; Chunder, A.; Khondaker, S.I. Space charge limited conduction with exponential trap distribution in reduced graphene oxide sheets. Appl. Phys. Lett. 2010, 97, 093105. [Google Scholar] [CrossRef]
- Ayesh, A.S. Electrical and optical characterization of PMMA doped with Y0.0025Si0.025Ba0.9725 (Ti(0.9)Sn0.1)O3 ceramic. Chin. J. Polym. Sci. 2010, 28, 537–546. [Google Scholar] [CrossRef]






| Element | Weight Ratio (%) | Atomic Ratio (%) |
|---|---|---|
| O (K series) | 21.76 | 68.08 |
| Mo (L series) | 42.55 | 22.20 |
| W (L series) | 35.69 | 9.72 |
| Total | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalemai, G.; Aidinis, K.; Sakellis, E.; Filippatos, P.-P.; Tsipas, P.; Davazoglou, D.; Soultati, A. Flexible Inorganic/Organic Memristor Based on W-Doped MoOx/Poly(methyl methacrylate) Heterostructure. Nanomaterials 2025, 15, 1707. https://doi.org/10.3390/nano15221707
Kalemai G, Aidinis K, Sakellis E, Filippatos P-P, Tsipas P, Davazoglou D, Soultati A. Flexible Inorganic/Organic Memristor Based on W-Doped MoOx/Poly(methyl methacrylate) Heterostructure. Nanomaterials. 2025; 15(22):1707. https://doi.org/10.3390/nano15221707
Chicago/Turabian StyleKalemai, Gion, Konstantinos Aidinis, Elias Sakellis, Petros-Panagis Filippatos, Polychronis Tsipas, Dimitris Davazoglou, and Anastasia Soultati. 2025. "Flexible Inorganic/Organic Memristor Based on W-Doped MoOx/Poly(methyl methacrylate) Heterostructure" Nanomaterials 15, no. 22: 1707. https://doi.org/10.3390/nano15221707
APA StyleKalemai, G., Aidinis, K., Sakellis, E., Filippatos, P.-P., Tsipas, P., Davazoglou, D., & Soultati, A. (2025). Flexible Inorganic/Organic Memristor Based on W-Doped MoOx/Poly(methyl methacrylate) Heterostructure. Nanomaterials, 15(22), 1707. https://doi.org/10.3390/nano15221707

