Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,643)

Search Parameters:
Keywords = tungsten

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 21430 KB  
Article
Comparative Analysis of Microstructure, Phase Composition, and Wear Characterization of Fe-Cr-C, Fe-Mn-Mo-B, and Ni-WC Hardfacing Alloys
by Jan Pawlik, Pavlo Prysyazhnyuk, Vasyl Vytvytskyi, Iuliia Medvid and Michał Bembenek
Coatings 2026, 16(2), 178; https://doi.org/10.3390/coatings16020178 - 30 Jan 2026
Abstract
Wear resistance of hardfaced or cladded protective layers is commonly assessed through hardness measurements. Traditionally, this involves single-point diamond indenter tests. However, in complex cladding alloys, such methods often yield inconsistent results due to significant differences between the hardness of the metallic matrix [...] Read more.
Wear resistance of hardfaced or cladded protective layers is commonly assessed through hardness measurements. Traditionally, this involves single-point diamond indenter tests. However, in complex cladding alloys, such methods often yield inconsistent results due to significant differences between the hardness of the metallic matrix and harder constituents, such as carbides or nitrides. To address this, the authors performed a series of scratch tests on four wear-resistant hardfacing materials. The method involves producing a scratch under constant load on a polished bead surface and measuring the resulting groove width as an indirect measure of hardness and wear behavior. The study focuses on four FCAW hardfacing wires: a Cr-Si-C-Mn solid cored wire (Alloy A), a Cr-Mo-C-Si-Mn cored wire (Alloy B), a nickel-sheathed macrocrystalline tungsten carbide cored wire (Alloy C), and an original Fe(Mn)-Mo-B-C hardfacing alloy (Alloy D) developed by one of the authors. All materials were deposited on C45 steel substrates. Comparative analysis included scratch tests, abrasion wear tests, and thermodynamic modeling. The scratch test approach proved effective in evaluating and optimizing deposition parameters to achieve improved wear resistance of the investigated Fe–Cr–C, Ni–WC, and Fe–Mo–Mn–B hardfacing systems. Full article
Show Figures

Figure 1

26 pages, 40179 KB  
Article
Electron Beam Remelting for Enhancing Thermally Sprayed Coatings: A Case Study on Self-Fluxing NiCrBSi Powders with Tungsten Carbide
by Piotr Śliwiński, Mateusz Kopyściański, Andrzej N. Wieczorek, Paweł Pogorzelski, Wojciech Szymański and Krzysztof Szymański
Coatings 2026, 16(2), 175; https://doi.org/10.3390/coatings16020175 - 30 Jan 2026
Abstract
Thermally sprayed, self-fluxing NiCrBSi-based coatings, subsequently flame-remelted, exhibit notable abrasion and corrosion resistance. While flame remelting facilitates the formation of a homogeneous, pore-free microstructure and promotes adhesion to the substrate, it suffers from low processing efficiency and introduces considerable thermal loads into the [...] Read more.
Thermally sprayed, self-fluxing NiCrBSi-based coatings, subsequently flame-remelted, exhibit notable abrasion and corrosion resistance. While flame remelting facilitates the formation of a homogeneous, pore-free microstructure and promotes adhesion to the substrate, it suffers from low processing efficiency and introduces considerable thermal loads into the material. In contrast, electron beam remelting (EBR) offers enhanced efficiency, reduced heat input, and the potential to achieve metallurgical bonding with the substrate. This study investigates the influence of EBR parameters on the microstructure, hardness, and elemental distribution of NiCrBSi-based coatings. Four powder compositions—with and without tungsten or tungsten carbide (WC) additives—were deposited via thermal spraying and subjected to EBR. The resulting coatings were analyzed using light and scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Vickers microhardness testing. The optimized EBR process yielded dense, crack- and pore-free coatings with uniform elemental distribution and effective metallurgical bonding. Maximum matrix hardness values up to 881 HV0.1 were achieved, confirming the efficacy of EBR in enhancing the structural and mechanical integrity of thermally sprayed NiCrBSi coatings. It was also found that the addition of different reinforcement phases to the NiCrBSi matrix can significantly affect the overall microstructure and properties of the matrix itself. Full article
(This article belongs to the Special Issue Advanced Coatings for Alloy Protection and Performance Enhancement)
Show Figures

Figure 1

19 pages, 5673 KB  
Article
Amphibole Endmember Geothermobarometry in Metabasite Host Rocks of the Felbertal Tungsten Deposit (Eastern Alps, Austria)
by Bernhard Schulz, Daniel Perplies and Joachim Krause
Minerals 2026, 16(2), 158; https://doi.org/10.3390/min16020158 - 30 Jan 2026
Abstract
The Felbertal tungsten mineralisation in the Tauern Window (Eastern Alps) is hosted by the Early Paleozoic Habach Complex belonging to the Lower Schieferhülle. In predominantly mafic meta-volcanic rocks, mostly amphibolites, green amphibole crystallised in assemblages with plagioclase, epidote, chlorite, sphene and quartz. Microstructural [...] Read more.
The Felbertal tungsten mineralisation in the Tauern Window (Eastern Alps) is hosted by the Early Paleozoic Habach Complex belonging to the Lower Schieferhülle. In predominantly mafic meta-volcanic rocks, mostly amphibolites, green amphibole crystallised in assemblages with plagioclase, epidote, chlorite, sphene and quartz. Microstructural features and preferential orientation of the amphiboles define planar-linear structures of finite strain and indicate that their crystallisation is coeval to the main deformation event. Amphibole crystals display core-to-rim zonations with increasing IVAl, VIAl, Na and Ti and decreasing Si, covering actinolite over magnesio-hornblende to tschermakite compositions. Amphibole zonations and assemblages are similar to metabasites in the classical Barrovian mineral zones in the Dalradian of Scotland and typical of a prograde metamorphism from the greenschist over epidote-amphibolite to the lower amphibolite facies. Amphibole endmember geothermobarometry defines an early P-T path segment from 400 °C/2 kbar to 540 °C/6 kbar, and a consecutive later P-T path segment from ~500–540 °C/6 kbar to maximal P-T conditions of ~620–640 °C/7–8 kbar. As Carboniferous granitoid intrusions within the Habach Complex underwent penetrative ductile deformation, an Alpine Tertiary age of the lower amphibolite facies metamorphism, as observed in other parts of the Lower Schieferhülle, appears suitable. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

17 pages, 7880 KB  
Article
Mechanical and Wear Behaviour of Microwave Sintered Copper Composites Reinforced with Tungsten Carbide and Graphite Under Different Lubrication Conditions
by V. S. S. Venkatesh, B. Surekha, Pandu Ranga Vundavilli and Manas Mohan Mahapatra
Lubricants 2026, 14(2), 54; https://doi.org/10.3390/lubricants14020054 - 27 Jan 2026
Viewed by 194
Abstract
This present study epitomises the fabrication of Cu-15%WC-X%Gr (X = 0, 3, 6, 9, 12) hybrid composites through a microwave sintering process. The synthesised composites were evaluated for hardness and compression strength as per ASTM standards. The composite corresponding to Cu-15%WC-9%Gr shows the [...] Read more.
This present study epitomises the fabrication of Cu-15%WC-X%Gr (X = 0, 3, 6, 9, 12) hybrid composites through a microwave sintering process. The synthesised composites were evaluated for hardness and compression strength as per ASTM standards. The composite corresponding to Cu-15%WC-9%Gr shows the optimal compression strength of 395 MPa. Based on this, the composite corresponding to the maximum compression strength was selected for subsequent wear investigations under dry, oil, and SiC nanofluid lubrication conditions. The SiC nanofluids were prepared by dispersing 1 wt% SiC, 1.5 wt% SiC, and 2 wt% SiC nanoparticles in soluble oils. Increasing the nanoparticle content enhanced both the thermal conductivity and zeta potential, indicating an improved heat transfer and dispersion stability. The wear test under different lubricating regimes demonstrates that the lubricating type had a pronounced influence on the wear rate and C.O.F. The minimum rate of wear of 0.0235 mm3/m and C.O.F. of 0.28 were achieved for the 2 wt% SiC nanofluid lubrication. The worn surfaces under dry and oil-lubricated regimes revealed prominent microcracks and delamination wear. In contrast, surfaces tested under nanofluid lubrication exhibited smoother grooves with minimal surface damage and an absence of microcracking. Full article
(This article belongs to the Special Issue Tribology for Lightweighting)
Show Figures

Figure 1

13 pages, 1249 KB  
Article
Optimization of Efficient Tungsten Extraction Process from Wolframite by Na2CO3 Alkaline Melting
by Yang Zheng, Liwen Zhang, Hailong Bai and Xiaoli Xi
Minerals 2026, 16(2), 126; https://doi.org/10.3390/min16020126 - 24 Jan 2026
Viewed by 157
Abstract
Tungsten is a critical metal for advanced industrial applications, yet its supply is challenged by the depletion of high-grade ores. This study presents a comprehensive optimization and mechanistic analysis of the alkaline fusion process for extracting tungsten from wolframite ((Fe,Mn)WO4) using [...] Read more.
Tungsten is a critical metal for advanced industrial applications, yet its supply is challenged by the depletion of high-grade ores. This study presents a comprehensive optimization and mechanistic analysis of the alkaline fusion process for extracting tungsten from wolframite ((Fe,Mn)WO4) using sodium carbonate (Na2CO3). Experimental investigations systematically evaluated the effects of alkali-to-ore ratio, reaction temperature (650–1000 °C), and reaction duration (30–270 min). Optimal conditions were established at a 2:1 Na2CO3-to-ore molar ratio, a reaction temperature of 750 °C, and a holding time of 30 min, achieving a tungsten extraction efficiency exceeding 99.9%. This represents a significant improvement in energy and process efficiency over conventional methods. A novel kinetic analysis reveals a two-stage reaction mechanism, transitioning from a slow, diffusion-controlled solid-state reaction (Ea = 243 kJ/mol) to a rapid, autocatalytic liquid-phase reaction (Ea = 212 kJ/mol) upon the formation of a Na2WO4–Na2CO3 eutectic above approximately 590 °C. The optimal temperature of 750 °C is rationalized as the point that ensures operation within this kinetically favorable liquid-phase regime. Furthermore, a thermochemical analysis of ore impurities indicates that silicon, lead, sulfur, and calcium are effectively sequestered into the slag phase as stable silicates, insoluble lead compounds, and sulfates, highlighting an intrinsic purification benefit. X-ray fluorescence (XRF) and X-ray diffraction (XRD) analyses confirmed minimal residual tungsten in the processed slag. This streamlined process, supported by a robust mechanistic understanding, reduces alkaline consumption, shortens reaction times, and maintains high yields, offering a sustainable and efficient pathway for leveraging declining wolframite resources. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

20 pages, 5518 KB  
Article
First-Principles Calculation and Experimental Study on Interface Stability, Electronic Characteristics, and Mechanical Properties of WC-Co-Y Cemented Carbide
by Zewen Li, Hao Chen, Liyong Chen, Jianbo Zhang, Fan Zhang and Xiaolong Xie
Materials 2026, 19(2), 441; https://doi.org/10.3390/ma19020441 - 22 Jan 2026
Viewed by 130
Abstract
This study aims to clarify the optimization mechanism of yttrium (Y) doping on the interfacial bonding and macroscopic properties of WC/Co cemented carbides, with the goal of achieving materials that combine high hardness, high toughness, and excellent wear resistance through interfacial regulation. Combining [...] Read more.
This study aims to clarify the optimization mechanism of yttrium (Y) doping on the interfacial bonding and macroscopic properties of WC/Co cemented carbides, with the goal of achieving materials that combine high hardness, high toughness, and excellent wear resistance through interfacial regulation. Combining first-principles calculations and experimental verification, the interfacial energy, density of states, and charge density of WC/Co and WC/CoY interfaces were systematically investigated. Three alloys (WC-10Co, WC-10Co-0.5Y, and WC-10Co-1Y) were prepared, and the effects of Y addition were quantitatively evaluated through microstructural characterization, mechanical testing, and tribological experiments. The calculation results indicate that Y doping reduces interfacial energy, enhances interfacial bonding, and increases surface energy, which contributes to improved toughness. At the atomic scale, the orbital hybridization between Y and W promotes the formation of strong covalent bonds at the interface, thereby enhancing interfacial bonding strength. The experimental results show that the introduction of Y significantly improves the overall performance of the material, with the alloy containing 0.5 wt.% Y exhibiting the best performance. Its Vickers hardness reaches (1454 ± 1.3) HV, fracture toughness is (9.84 ± 0.15) MPa·m1/2, and the wear rate is as low as 0.794 × 10−5 mm3·N−1·m−1. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Graphical abstract

18 pages, 2082 KB  
Article
Proline Accumulation in Barley Under Salinity Is ABA-Independent, but Relies on the Level of Oxidative Stress When Modulated by Mo and W Ions
by Moldir Beisekova, Beata Michniewska, Weronika Kusek, Alua Zh. Akbassova, Rustem Omarov, Sławomir Orzechowski and Edyta Zdunek-Zastocka
Int. J. Mol. Sci. 2026, 27(2), 1104; https://doi.org/10.3390/ijms27021104 - 22 Jan 2026
Viewed by 129
Abstract
The accumulation of proline, an important osmoprotective and antioxidant compound, is a key defense mechanism induced in plants in response to stress factors, including salinity, and is likely dependent on abscisic acid (ABA). However, in barley grown for 8 days under salinity conditions [...] Read more.
The accumulation of proline, an important osmoprotective and antioxidant compound, is a key defense mechanism induced in plants in response to stress factors, including salinity, and is likely dependent on abscisic acid (ABA). However, in barley grown for 8 days under salinity conditions (125 mM NaCl), proline accumulation was not accompanied by changes in ABA content. Co-application of 0.5 mM molybdenum (Mo) significantly reduced NaCl-induced oxidative stress, as measured by H2O2, O2, MDA, and chlorophyll content, and increased the activity of Mo-containing aldehyde oxidase (AO), an enzyme involved in de novo ABA synthesis. As a result, elevated ABA levels were observed, but proline content under salinity conditions was similar in Mo-treated and non-Mo-treated plants. In contrast, exposing plants to 0.5 mM tungsten (W), an antagonist of Mo, inhibited AO activity without significantly altering ABA content, while proline and oxidative stress marker levels increased dramatically under both non-saline and saline conditions. The observed changes in proline content are mainly due to modulation of the rate of synthesis and, to a lesser extent, the rate of degradation, as revealed by transcript abundance of P5CS1 and PDH, which encode D1-pyrroline-5-carboxylate synthetase and proline dehydrogenase, respectively. The results indicate that in barley grown under salinity conditions, proline accumulation is ABA-independent but depends on the level of oxidative stress modulated by Mo and W ions. Full article
(This article belongs to the Special Issue Abiotic Stress in Plants: Physiological and Molecular Responses)
Show Figures

Figure 1

42 pages, 3294 KB  
Review
Fusion Welding Processes Parameter Optimization for Critical Piping Systems: A Comprehensive Review
by Mohammad Sohel, Vishal S. Sharma and Aravinthan Arumugam
J. Manuf. Mater. Process. 2026, 10(1), 40; https://doi.org/10.3390/jmmp10010040 - 21 Jan 2026
Viewed by 264
Abstract
Weld quality plays a critical role in ensuring the structural integrity and long-term performance of critical piping systems used across petrochemical, oil and gas, marine, and healthcare sectors. Although gas tungsten arc welding, shielded metal arc welding, and gas metal arc welding are [...] Read more.
Weld quality plays a critical role in ensuring the structural integrity and long-term performance of critical piping systems used across petrochemical, oil and gas, marine, and healthcare sectors. Although gas tungsten arc welding, shielded metal arc welding, and gas metal arc welding are widely applied in pipe fabrication, existing studies often examine these processes independently and provide limited insight into the comparative influence of process parameters on weld morphology, microstructure, and mechanical performance. This review consolidates findings from recent research to evaluate how welding current, arc voltage, heat input, travel speed, shielding gas composition, and joint preparation interact to affect weld bead geometry, heat-affected zone evolution, tensile properties, hardness, and overall weld integrity in piping systems. The primary objective of this review is to critically compare fusion welding process parameter optimization strategies and to identify unresolved challenges in achieving controlled weld root geometry for high-integrity piping applications. Recent industrial failure investigations, particularly in ethylene oxide service piping, further underscore the importance of weld root control. Several documented leak events were traced to excessive root protrusion and inadequate interpretation of non-destructive testing data, where elevated reinforcement disrupted internal flow and promoted turbulence-induced degradation. These recurring issues highlight a broader industry challenge and strengthen the need for improved root-height optimization in critical piping applications. A significant research gap is identified in the limited optimization of weld root reinforcement, particularly in gas tungsten arc welding processes, where most reported studies document root heights exceeding 3 mm. Achieving a root height below 2 mm, which is an important requirement for reducing flow-induced turbulence and meeting industry acceptance criteria, remains insufficiently addressed. This review highlights this gap and outlines future research opportunities involving advanced parameter optimization and improved process monitoring techniques. The synthesis presented here provides a comprehensive reference for enhancing weld quality in critical piping systems and establishes a pathway for next-generation welding strategies aimed at producing high-integrity weld joints compliant with the American Society of Mechanical Engineers B31.3 requirements. Full article
Show Figures

Figure 1

12 pages, 1369 KB  
Article
Fabrication Process and Particle Dispersion Characteristics of W–PETG-Based 3D-Printed Composites for Medical Radiation Shielding
by Seon-Chil Kim
Polymers 2026, 18(2), 268; https://doi.org/10.3390/polym18020268 - 19 Jan 2026
Viewed by 215
Abstract
In this study, a W–polyethylene terephthalate glycol (PETG)-based 3D-printed composite was designed for medical radiation shielding, and syringe shielding components were fabricated to evaluate shielding performance and particle dispersion characteristics. Up to 70 wt% of tungsten powder was incorporated into the PETG polymer [...] Read more.
In this study, a W–polyethylene terephthalate glycol (PETG)-based 3D-printed composite was designed for medical radiation shielding, and syringe shielding components were fabricated to evaluate shielding performance and particle dispersion characteristics. Up to 70 wt% of tungsten powder was incorporated into the PETG polymer matrix to produce W–PETG filaments suitable for 3D printing. Using the fused deposition modeling (FDM) method, a 3.0 mm-thick radiation shielding cover for a 10 mL syringe was fabricated. Radiation shielding performance was assessed using a 99mTc (200 µCi) source at distances of 30, 50, and 100 cm. While a conventional 1.0 mm Pb shield exhibited shielding efficiencies of 92.24%, 94.26%, and 95.13% at each distance, the 3.0 mm W–PETG shield demonstrated efficiencies of 70.67%, 75.64%, and 77.57%, respectively. Higher temperatures improved shielding efficiency by approximately 5.48 percentage points. When processed above 160 °C, tungsten particle clustering decreased and a more uniform dispersion was achieved, enhancing shielding performance. The interrelationship among filament fabrication parameters, particle dispersion behavior, and shielding performance of W–PETG composites was quantitatively demonstrated. The lightweight, geometric design flexibility, and compatibility with 3D-printing processes of W–PETG composites suggest strong potential as alternative materials for custom medical radiation shielding devices. Full article
(This article belongs to the Special Issue Multiscale Design for Polymer Advanced Manufacturing)
Show Figures

Figure 1

13 pages, 2128 KB  
Article
Remarkably High Effective Mobility of 301 cm2/V·s in 3 nm Ultra-Thin-Body SnO2 Transistor by UV Annealing
by An-Chieh Shih, Yi-Hao Zhan and Albert Chin
Nanomaterials 2026, 16(2), 133; https://doi.org/10.3390/nano16020133 - 19 Jan 2026
Viewed by 294
Abstract
At an ultra-thin 3 nm SnO2 channel thickness, a record-high effective mobility (µeff) of 301 cm2/V·s, field-effect mobility (µFE) of 304 cm2/V·s, and a sharp subthreshold swing (SS) of 201 mV/decade are [...] Read more.
At an ultra-thin 3 nm SnO2 channel thickness, a record-high effective mobility (µeff) of 301 cm2/V·s, field-effect mobility (µFE) of 304 cm2/V·s, and a sharp subthreshold swing (SS) of 201 mV/decade are achieved at a high carrier density (Ne) of 5 × 1012 cm−2. These excellent transport properties are attributed to ultraviolet (UV) light annealing. The resulting µeff is significantly higher than that of Molybdenum Disulfide (MoS2) and Tungsten Diselenide (WSe2), and is more than twice that of single-crystalline Si channel transistors at the same quasi-two-dimensional (2D) thickness of 3 nm (equivalent to five monolayers of MoS2). UV annealing not only enhances µeff and µFE but also sharpens the SS, which is crucial for low-power operation. This improved SS is attributed to reduced scattering from charged interface traps, as supported by µeff-Ne analysis, thereby increasing the transistor’s mobility. The realization of such high-mobility devices at a quasi-2D thickness of only 3 nm is of particular importance for the further downscaling of ultra-thin-body transistors for high-speed computing and monolithic three-dimensional (M3D) integration. Furthermore, the wide bandgap of SnO2 (3.7 eV) enables operation at relatively high voltages, paving the way for pioneering ternary logic applications. Full article
Show Figures

Figure 1

17 pages, 2230 KB  
Article
Direct Production of Na2WO4-Based Salt by Scheelite Smelting
by Baojun Zhao
Minerals 2026, 16(1), 90; https://doi.org/10.3390/min16010090 - 17 Jan 2026
Viewed by 104
Abstract
Tungsten is one of the critical materials with important applications in many areas. Electrolysis of Na2WO4-based salt is a short and green process for the production of tungsten metal and alloys. The conventional process for producing Na2WO [...] Read more.
Tungsten is one of the critical materials with important applications in many areas. Electrolysis of Na2WO4-based salt is a short and green process for the production of tungsten metal and alloys. The conventional process for producing Na2WO4 is expensive and time-consuming. Scheelite (CaWO4) is becoming the most important resource for the extraction of tungsten. Based on thermodynamic calculations and phase equilibrium studies, a novel process is proposed to prepare Na2WO4-based salt directly from scheelite through a high-temperature process. By reacting with silica and sodium oxide, immiscible layers of liquid salt and slag are formed from scheelite between 1200 and 1300 °C. High-density salt containing Na2WO4 is separated from the silicate slag, which is composed of impurities and fluxes. The effects of fluxing agents, smelting temperature, and reaction time on the direct yield of WO3 and purity of sodium tungsten are investigated in combination with thermodynamic calculations and high-temperature experiments. The salt containing up to 99% Na2WO4 is obtained directly in a single process, which can be used for the production of other tungsten chemicals. This study provides a novel research method and detailed information to produce low-cost sodium tungstate directly from scheelite. Full article
Show Figures

Figure 1

18 pages, 6562 KB  
Article
Optimal CeO2 Doping for Synergistically Enhanced Mechanical, Tribological, and Thermal Properties in Zirconia Ceramics
by Feifan Chen, Yongkang Liu, Zhenye Tang, Xianwen Zeng, Yuwei Ye and Hao Chen
Materials 2026, 19(2), 362; https://doi.org/10.3390/ma19020362 - 16 Jan 2026
Viewed by 161
Abstract
CeO2 doping is a well-established strategy for enhancing the properties of zirconia (ZrO2) ceramics, with the prior literature indicating an optimal doping range of around 10–15 wt.% for specific attributes. Building upon this foundation, this study provides a systematic investigation [...] Read more.
CeO2 doping is a well-established strategy for enhancing the properties of zirconia (ZrO2) ceramics, with the prior literature indicating an optimal doping range of around 10–15 wt.% for specific attributes. Building upon this foundation, this study provides a systematic investigation into the concurrent evolution of mechanical, tribological, and thermophysical properties across a broad compositional spectrum (0–20 wt.% CeO2). The primary novelty lies in the holistic correlation of these often separately examined properties, revealing their interdependent trade-offs governed by microstructural development. The 15Ce-ZrO2 composition, consistent with the established optimal range, achieved a synergistic balance: hardness increased by 27.6% to 310 HV1, the friction coefficient was minimized to 0.205, and the wear rate was reduced to 1.81 × 10−3 mm3/(N m). Thermally, it exhibited a 72.2% reduction in the thermal expansion coefficient magnitude at 1200 °C and a low thermal conductivity of 0.612 W/(m·K). The enhancement mechanisms are consistent with solid solution strengthening, grain refinement, and likely enhanced phonon scattering, potentially from point defects such as oxygen vacancies commonly associated with aliovalent doping in oxide ceramics, while performance degradation beyond 15 wt.% is linked to CeO2 agglomeration and duplex microstructure formation. This work provides a relatively comprehensive insight into the dataset and mechanism, which is conducive to the fine design of multifunctional ZrO2 bulk ceramics. It is not limited to determining the optimal doping level, but also aims to clarify the comprehensive performance map, providing reference significance for the development of advanced ceramic materials with synergistically optimized hardness, wear resistance, and thermal properties. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

15 pages, 3128 KB  
Article
Ammonium Paratungstate Production from Scheelite Ore: Process Study, Morphology and Thermal Stability
by Maria José Lima, Fernando E. S. Silva, Cleber da Silva Lourenço, Ariadne Silva, Jussier Vitoriano, Kivia Araujo, Matheus Silva, Marco Morales and Uílame Gomes
Powders 2026, 5(1), 3; https://doi.org/10.3390/powders5010003 - 16 Jan 2026
Viewed by 188
Abstract
Ammonium paratungstate (APT) was synthesized from scheelite ore concentrates from the Brejuí Mine in Currais Novos, Rio Grande do Norte, Northeast Brazil. The process involved acid leaching to obtain tungstic acid (H2WO4), followed by its conversion to APT. A [...] Read more.
Ammonium paratungstate (APT) was synthesized from scheelite ore concentrates from the Brejuí Mine in Currais Novos, Rio Grande do Norte, Northeast Brazil. The process involved acid leaching to obtain tungstic acid (H2WO4), followed by its conversion to APT. A 23 factorial design evaluated the influence of temperature, HCl concentration, and reaction time on the leaching efficiency, revealing temperature and acid concentration as significant variables. Tungsten extraction reached 98.6% under moderate time and temperature conditions. The resulting H2WO4 phase exhibited a lamellar and porous morphology, facilitating its rapid dissolution and crystallization into APT at 60 °C. The produced nanometric APT exhibited high purity, a mixed rod-like/cubic morphology, and thermal stability above 600 °C. This work adds value to the Brazilian tungsten deposits by supporting more efficient and sustainable extraction routes for obtaining APT. Full article
Show Figures

Graphical abstract

19 pages, 2956 KB  
Article
Mechanisms and Efficacy of Thermally Modified Dolomite-Rich Phosphate Tailings as a Novel Adsorbent for Phosphorus Removal
by Yongjie Guo, Caixia Guo, Jiangli Li, Yuanchong Huang, Shuai Xu, Xing Zhao and Kunzhi Li
Water 2026, 18(2), 235; https://doi.org/10.3390/w18020235 - 16 Jan 2026
Viewed by 265
Abstract
The global environmental challenges of solid waste accumulation and aquatic eutrophication demand innovative and sustainable strategies. This study introduces a circular “waste-treats-waste” approach by converting dolomite-rich phosphate tailings (PT), a widespread industrial by-product, into a high-value adsorbent for phosphorus (P) removal. Thermal modification [...] Read more.
The global environmental challenges of solid waste accumulation and aquatic eutrophication demand innovative and sustainable strategies. This study introduces a circular “waste-treats-waste” approach by converting dolomite-rich phosphate tailings (PT), a widespread industrial by-product, into a high-value adsorbent for phosphorus (P) removal. Thermal modification at 950 °C for 1 h dramatically enhanced the adsorption capacity by approximately 45 times, from 2.52 mg/g (raw PT) to 112.41 mg/g. This performance is highly competitive with, and often superior to, many engineered adsorbents. The calcination process was pivotal, decomposing carbonates into highly active CaO and MgO while developing a porous structure. Using a multi-technique characterization approach (X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), TESCAN VEGA3 tungsten filament scanning electron microscope (SEM), the Brunauer–Emmett–Teller method (BET)), the key immobilization mechanism was identified as hydroxyapatite formation, driven by Ca2+/Mg2+-phosphate precipitation and surface complexation. Nonlinear regression analysis revealed that the adsorption kinetics obeyed the pseudo-second-order model, and the equilibrium data were best described by the Freundlich isotherm. This indicates a chemisorption process occurring on a heterogeneous surface, consistent with the complex structure created by thermal modification. Notably, post-adsorption pore structure expansion suggested synergistic pore-filling and surface reorganization. This work not only demonstrates a circular economy paradigm for repurposing industrial solid waste on a global scale but also offers a cost-effective and high-performance pathway for controlling phosphorus pollution in aquatic systems, contributing directly to resource efficiency and sustainable environmental remediation. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

12 pages, 4205 KB  
Communication
6 H Hydrothermal Synthesis of W-Doped VO2(M) for Smart Windows in Tropical Climates
by Natalia Murillo-Quirós, Fernando Alvarado-Hidalgo, Ricardo Starbird-Perez, Erick Castellón, Natalia Hernández-Montero, Hans Bedoya Ramírez, Giovanni Sáenz-Arce, Fernando A. Dittel-Meza and Esteban Avendaño Soto
Materials 2026, 19(2), 345; https://doi.org/10.3390/ma19020345 - 15 Jan 2026
Viewed by 273
Abstract
Thermochromic smart windows are a promising technology to reduce energy consumption in buildings, particularly in tropical regions where cooling demands are high. Vanadium dioxide (VO2) is the most studied thermochromic material due to its reversible semiconductor-to-metal transition near 68 °C. Conventional [...] Read more.
Thermochromic smart windows are a promising technology to reduce energy consumption in buildings, particularly in tropical regions where cooling demands are high. Vanadium dioxide (VO2) is the most studied thermochromic material due to its reversible semiconductor-to-metal transition near 68 °C. Conventional synthesis routes require long reaction times and post-annealing steps. In this work, we report a rapid hydrothermal synthesis of monoclinic VO2(M) and tungsten-doped VO2(M) powders obtained within only 6 h at 270 °C, using vanadyl sulfate as precursor and controlled precipitation at pH ≈ 8.5. Differential scanning calorimetry confirmed the reversible transition at 59 °C for the undoped VO2, with a hysteresis of 18 °C, while tungsten doping reduced the transition temperature by ~17 °C per wt.% of W. X-ray diffraction verified the monoclinic phase with minor traces of VO2(B), a non-thermochromic polymorph of VO2, and microstructural analysis revealed crystallite sizes below 35 nm. Electron microscopy and dynamic light scattering confirmed particle sizes suitable for dispersion in polymeric matrices. This approach significantly reduces synthesis time compared to typical hydrothermal methods requiring 20–48 h and avoids further annealing. The resulting powders provide a low-cost and scalable route for fabricating thermochromic coatings with transition temperatures closer to ambient conditions, making them relevant for smart-window applications in tropical climates, where lower transition temperatures are generally regarded as beneficial. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

Back to TopTop