Iron-Only Metasurface Broadband Absorber for Solar Energy Harvesting
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, L.; Hasanuzzaman, M.; Rahim, N.A. Global Advancement of Solar Thermal Energy Technologies for Industrial Process Heat and Its Future Prospects: A Review. Energy Convers. Manag. 2019, 195, 885–908. [Google Scholar] [CrossRef]
- Zhou, L.; Tan, Y.; Wang, J.; Xu, W.; Yuan, Y.; Cai, W.; Zhu, S.; Zhu, J. 3D Self-Assembly of Aluminium Nanoparticles for Plasmon-Enhanced Solar Desalination. Nat. Photonics 2016, 10, 393–398. [Google Scholar] [CrossRef]
- Massiot, I.; Cattoni, A.; Collin, S. Progress and Prospects for Ultrathin Solar Cells. Nat. Energy 2020, 5, 959–972. [Google Scholar] [CrossRef]
- Zhou, L.; Tan, Y.; Ji, D.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q.; Yu, Z.; Zhu, J. Self-Assembly of Highly Efficient, Broadband Plasmonic Absorbers for Solar Steam Generation. Sci Adv. 2016, 2, e1501227. [Google Scholar] [CrossRef]
- Bae, K.; Kang, G.; Cho, S.K.; Park, W.; Kim, K.; Padilla, W.J. Flexible Thin-Film Black Gold Membranes with Ultrabroadband Plasmonic Nanofocusing for Efficient Solar Vapour Generation. Nat. Commun. 2015, 6, 10103. [Google Scholar] [CrossRef]
- Ng, C.; Yap, L.W.; Roberts, A.; Cheng, W.; Gómez, D.E. Black Gold: Broadband, High Absorption of Visible Light for Photochemical Systems. Adv. Funct. Mater. 2017, 27, 1604080. [Google Scholar] [CrossRef]
- Zhong, H.; Zheng, Y.; Sun, J.; Wang, Z.; Wu, R.; Zhang, L.; Liang, Y.; Hua, Q.; Ning, M.; Ji, J.; et al. Gigahertz-Rate-Switchable Wavefront Shaping through Integration of Metasurfaces with Photonic Integrated Circuit. Adv. Photonics 2024, 6, 016005. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef]
- Ni, X.; Emani, N.; Kildishev, A.; Boltasseva, A.; Shalaev, V. Broadband Light Bending with Plasmonic Nanoantennas. Science 2012, 335, 427. [Google Scholar] [CrossRef]
- Zhang, G.; Hu, Z.; Ma, Q.; Huang, J.; Deng, J.; Li, G. Retrieving Jones Matrix from an Imperfect Metasurface Polarizer. Adv. Photonics Nexus 2024, 3, 026005. [Google Scholar] [CrossRef]
- Maguid, E.; Yulevich, I.; Veksler, D.; Kleiner, V.; Brongersma, M.; Hasman, E. Photonic Spin-Controlled Multifunctional Shared-Aperture Antenna Array. Science 2016, 352, 1202–1206. [Google Scholar] [CrossRef]
- Yao, J.; Lin, R.; Chen, M.; Tsai, D. Integrated-Resonant Metadevices: A Review. Adv. Photonics 2023, 5, 024001. [Google Scholar] [CrossRef]
- Xie, B.; Yang, Z.; Liu, L. All-Season Smart Film with Multimode Modulation of Solar-Thermal Radiation Based on Phase Change Materials VO2/IST. Appl. Therm. Eng. 2025, 266, 125690. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Yi, Z.; Yang, H.; Tang, Y.; Yi, Y.; Yao, W.; Wang, J.; Yi, Y. Broadband Solar Energy Absorber Based on Monolayer Molybdenum Disulfide Using Tungsten Elliptical Arrays. Mater. Today Energy 2020, 16, 100390. [Google Scholar] [CrossRef]
- Hu, X.; Xu, W.; Fan, Q.; Yue, T.; Yan, F.; Lu, Y.; Xu, T. Metasurface-Based Computational Imaging: A Review. Adv. Photonics 2024, 6, 014002. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Yang, W.; Ji, Z.; Jin, L.; Ma, X.; Song, Q.; Boltasseva, A.; Han, J.; Shalaev, V.M.; et al. High-Efficiency Broadband Achromatic Metalens for near-IR Biological Imaging Window. Nat. Commun. 2021, 12, 5560. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Zhong, Q.; Li, N.; Dong, Y.; Xu, Z.; Fu, Y.H.; Li, D.; Bliznetsov, V.; Zhou, Y.; Lai, K.H.; et al. CMOS-Compatible a-Si Metalenses on a 12-Inch Glass Wafer for Fingerprint Imaging. Nanophotonics 2020, 9, 823–830. [Google Scholar] [CrossRef]
- Tian, X.; Huang, Y.; Xu, J.; Jiang, T.; Ding, P.; Xu, Y.; Zhang, S.; Li, Z.-Y. Differentiated Design Strategies toward Broadband Achromatic and Polarization-Insensitive Metalenses. Adv. Photonics Nexus 2023, 2, 056002. [Google Scholar] [CrossRef]
- Liu, B.; Peng, Y.; Hao, Y.; Zhu, Y.; Chang, S.; Zhuang, S. Ultra-Wideband Terahertz Fingerprint Enhancement Sensing and Inversion Model Supported by Single-Pixel Reconfigurable Graphene Metasurface. Photonix 2024, 5, 10. [Google Scholar] [CrossRef]
- Conteduca, D.; Barth, I.; Pitruzzello, G.; Reardon, C.; Martins, E.; Krauss, T. Dielectric Nanohole Array Metasurface for High-Resolution near-Field Sensing and Imaging. Nat. Commun. 2021, 12, 3293. [Google Scholar] [CrossRef]
- Qin, J.; Jiang, S.; Wang, Z.; Cheng, X.; Li, B.; Shi, Y.; Tsai, D.P.; Liu, A.Q.; Huang, W.; Zhu, W. Metasurface Micro/Nano-Optical Sensors: Principles and Applications. ACS Nano 2022, 16, 11598–11618. [Google Scholar] [CrossRef]
- Landy, N.; Sajuyigbe, S.; Mock, J.; Smith, D.; Padilla, W. Perfect Metamaterial Absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.; Suen, J.; Liu, X.; Padilla, W. All-Dielectric Metasurface Absorbers for Uncooled Terahertz Imaging. Optica 2017, 4, 601–604. [Google Scholar] [CrossRef]
- Azad, A.; Kort-Kamp, W.; Sykora, M.; Weisse-Bernstein, N.; Luk, T.; Taylor, A.; Dalvit, D.; Chen, H. Metasurface Broadband Solar Absorber. Sci. Rep. 2016, 6, 20347. [Google Scholar] [CrossRef]
- Wu, Y.; Tan, S.; Zhao, Y.; Liang, L.; Zhou, M.; Ji, G. Broadband Multispectral Compatible Absorbers for Radar, Infrared and Visible Stealth Application. Prog. Mater. Sci. 2023, 135, 101088. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Z.; Liu, G.; Pan, P.; Liu, X.; Tang, C.; Liu, Z.; Wang, J. Ultra-Broadband Solar Absorbers for High-Efficiency Thermophotovoltaics. Opt. Express 2020, 28, 36476–36486. [Google Scholar] [CrossRef]
- Nie, A.; He, X.; Cao, W. Carbon-Based Ultrabroadband Tunable Terahertz Metasurface Absorber. Adv. Photonics Nexus 2024, 3, 016007. [Google Scholar] [CrossRef]
- Zhang, K.; Dong, S.; Wu, X.; Yu, K.; Liu, Y. Graphene-Based Tunable Broadband Metamaterial Absorber for Terahertz Waves. Opt. Laser Technol. 2025, 180, 111490. [Google Scholar] [CrossRef]
- Asgari, S.; Fabritius, T. Multi-Band Terahertz Graphene-Based Anisotropic Metamaterial Absorber Comprised of Two Circular Split Ring Resonator Arrays with Two Gaps and a Connection Rod. Opt. Quant. Electron. 2025, 57, 182. [Google Scholar] [CrossRef]
- Cui, Y.; He, Y.; Jin, Y.; Ding, F.; Yang, L.; Ye, Y.; Zhong, S.; Lin, Y.; He, S. Plasmonic and Metamaterial Structures as Electromagnetic Absorbers. Laser Photonics Rev. 2014, 8, 495–520. [Google Scholar] [CrossRef]
- Liu, C.; Maier, S.; Li, G. Genetic-Algorithm-Aided Meta-Atom Multiplication for Improved Absorption and Coloration in Nanophotonics. ACS Photonics 2020, 7, 1716–1722. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Cao, Y.; Liu, Y.; Zhang, H. Graphene Induced Tunable and Polarization-Insensitive Broadband Metamaterial Absorber. Opt. Commun. 2017, 382, 281–287. [Google Scholar] [CrossRef]
- Yu, P.; Yang, H.; Chen, X.; Yi, Z.; Yao, W.; Chen, J.; Yi, Y.; Wu, P. Ultra-Wideband Solar Absorber Based on Refractory Titanium Metal. Renew. Energy 2020, 158, 227–235. [Google Scholar] [CrossRef]
- Qin, F.; Chen, X.; Yi, Z.; Yao, W.; Yang, H.; Tang, Y.; Yi, Y.; Li, H.; Yi, Y. Ultra-Broadband and Wide-Angle Perfect Solar Absorber Based on TiN Nanodisk and Ti Thin Film Structure. Sol. Energy Mater. Sol. Cells 2020, 211, 110535. [Google Scholar] [CrossRef]
- Li, Y.; Li, D.; Zhou, D.; Chi, C.; Yang, S.; Huang, B. Efficient, Scalable, and High-Temperature Selective Solar Absorbers Based on Hybrid-Strategy Plasmonic Metamaterials. Sol. RRL 2018, 2, 201800057. [Google Scholar] [CrossRef]
- Piao, R.; Zhang, D. Ultra-Broadband Perfect Absorber Based on Nanoarray of Titanium Nitride Truncated Pyramids for Solar Energy Harvesting. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 134, 114829. [Google Scholar] [CrossRef]
- Yuan, H.; Zeng, Q.; Wang, Z.; Sun, T.; Song, Q.; Yi, Z.; Liu, Z.; Cheng, S.; Wu, P. Ultra-Broadband Solar Absorber and Near-Perfect Thermal Emitter Based on Columnar Titanium Micro-Structure. Appl. Therm. Eng. 2025, 262, 125294. [Google Scholar] [CrossRef]
- Yue, S.; Hou, M.; Wang, R.; Guo, H.; Hou, Y.; Li, M.; Zhang, Z.; Wang, Y.; Zhang, Z. Ultra-Broadband Metamaterial Absorber from Ultraviolet to Long-Wave Infrared Based on CMOS-Compatible Materials. Opt. Express 2020, 28, 31844–31861. [Google Scholar] [CrossRef]
- Pan, Y.; Li, Y.; Chen, F.; Cheng, S.; Yang, W.; Wang, B.; Yi, Z.; Yao, D. Ultra-Broadband Solar Absorber Based on TiN Metamaterial from Visible Light to Mid-Infrared. J. Opt. Soc. Am. B 2023, 40, 3057–3064. [Google Scholar] [CrossRef]
- Li, Y.; Chen, F.; Yang, W.; Ke, S. A Wide Angle Broadband Solar Absorber with a Horizontal Multi-Cylinder Structure Based on an MXene Material. Phys. Chem. Chem. Phys. 2024, 26, 20619–20628. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Qi, B.; Chen, W.; Niu, T.; Mei, Z. Ultra-Broadband Refractory All-Metal Metamaterial Selective Absorber for Solar Thermal Energy Conversion. Nanomaterials 2021, 11, 1872. [Google Scholar] [CrossRef]
- Balli, F.; Sultan, M.; Lami, S.K.; Hastings, J.T. A Hybrid Achromatic Metalens. Nat. Commun. 2020, 11, 3892. [Google Scholar] [CrossRef]
- Shrestha, S.; Overvig, A.C.; Lu, M.; Stein, A.; Yu, N. Broadband Achromatic Dielectric Metalenses. Light Sci. Appl. 2018, 7, 85. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Z.; Zhang, H.; Tang, P.; Wu, B.; Liu, G. Ultra-Broadband Perfect Absorber Utilizing Refractory Materials in Metal-Insulator Composite Multilayer Stacks. Opt. Express 2019, 27, 11809–11818. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liu, L.; Pu, M.; Li, X.; Ma, X.; Luo, X. A Refractory Metamaterial Absorber for Ultra-Broadband, Omnidirectional and Polarization-Independent Absorption in the UV-NIR Spectrum. Nanoscale 2018, 10, 8298–8303. [Google Scholar] [CrossRef] [PubMed]
References | Structures | Materials | Range (nm) | Absorptivity | Layers |
---|---|---|---|---|---|
[31] | Disk | Gold | 350–800 | 93.4% | 2 |
[42] | Pyramid | Titanium | 200–2620 | 98.68% | 2 |
[45] | Multilayer Stacks | Titanium, Chromium, Tungsten, Alumina | 570–3539 | 97% | 6 |
[26] | Triangular | Titanium, Alumina | 200–2980 | 97.85% | 3 |
[34] | Multilayer Disk | Gold, Titanium, Silica, Titanium Nitride | 514–2710 | >90% | 6 |
[46] | Multilayer Cylinder | Tungsten, Silicon Carbide, Silica | 200–900 | 95% | 3 |
This work | Disk | Iron | 400–760 | 97% | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Chen, X.; Zhang, D. Iron-Only Metasurface Broadband Absorber for Solar Energy Harvesting. Nanomaterials 2025, 15, 1263. https://doi.org/10.3390/nano15161263
Wu L, Chen X, Zhang D. Iron-Only Metasurface Broadband Absorber for Solar Energy Harvesting. Nanomaterials. 2025; 15(16):1263. https://doi.org/10.3390/nano15161263
Chicago/Turabian StyleWu, Lejia, Xin Chen, and Dawei Zhang. 2025. "Iron-Only Metasurface Broadband Absorber for Solar Energy Harvesting" Nanomaterials 15, no. 16: 1263. https://doi.org/10.3390/nano15161263
APA StyleWu, L., Chen, X., & Zhang, D. (2025). Iron-Only Metasurface Broadband Absorber for Solar Energy Harvesting. Nanomaterials, 15(16), 1263. https://doi.org/10.3390/nano15161263