Mechanical Properties of Nano-TiO2-Modified Concrete Under Freeze–Thaw Environment
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Specimen Preparation
2.3. Freeze–Thaw Test Design and Surface Deterioration Analysis
3. Results and Discussion
3.1. Mass Loss Rate
3.2. Ultrasonic Wave Velocity
3.3. Three-Point Bending Test
3.4. Compressive Strength
4. Compression Simulation
4.1. Generation and Servo of Compression Specimens
4.2. Analysis of the Simulation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, X.; Zhou, X.; Xia, Y.; Chen, X. Performance Degradation Law and Model Construction of Hydraulic Concrete Under Freeze-Thaw Cycles: A Comprehensive Review. Buildings 2025, 15, 1596. [Google Scholar] [CrossRef]
- Li, F.; Luo, D.; Niu, D. Durability evaluation of concrete structure under freeze-thaw environment based on pore evolution derived from deep learning. Constr. Build. Mater. 2025, 467, 140422. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, J.; Cheng, L.; An, S.; Huo, L. Pore structures and deterioration mechanism of concrete after cryogenic freeze-thaw cycles: Effects of moisture contents and aggregates. J. Build. Eng. 2024, 96, 110620. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, J.; Yin, Z. Experimental study on mechanical properties and pore structure deterioration of concrete under freeze–thaw cycles. Materials 2021, 14, 6568. [Google Scholar] [CrossRef] [PubMed]
- Pushpalal, D.; Danzandorj, S.; Bayarjavkhlan, N.; Nishiwaki, T.; Yamamoto, K. Compressive strength development and durability properties of high-calcium fly ash incorporated concrete in extremely cold weather. Constr. Build. Mater. 2022, 316, 125801. [Google Scholar] [CrossRef]
- Luo, S.; Bai, T.; Guo, M.; Wei, Y.; Ma, W. Impact of freeze–thaw cycles on the long-term performance of concrete pavement and related improvement measures: A review. Materials 2022, 15, 4568. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.M.; Muntean, R. The Effectiveness of Different Additives on Concrete’s Freeze–Thaw Durability: A Review. Materials 2025, 18, 978. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Lu, N. Hydration, fresh, mechanical, and freeze-thaw properties of cement mortar incorporated with polymeric microspheres. Adv. Compos. Hybrid Mater. 2024, 7, 92. [Google Scholar] [CrossRef]
- Döndüren, M.S.; Al-Hagri, M.G. A review of the effect and optimization of use of nano-TiO2 in cementitious composites. Res. Eng. Struct. Mater. 2022, 8, 283–305. [Google Scholar] [CrossRef]
- Xu, C.; Liao, H.H.; Chen, Y.L.; Du, X.; Peng, B.; Fernandez-Steeger, T.M. Corrosion performance of nano-TiO2-modified concrete under a dry–wet sulfate environment. Materials 2021, 14, 5900. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.P.; Wu, D.W.; Zhou, Q.F.; Shung, K.K. Lead zirconate titanate thick film with enhanced electrical properties for high frequency transducer applications. Appl. Phys. Lett. 2008, 93, 70–73. [Google Scholar] [CrossRef]
- Sui, X.; Zeng, J.; Chen, Q.; Gu, G. High spatial resolution recording of near-infrared hologram based on photo-induced phase transition of vanadium dioxide film. Opt. Lett. 2015, 40, 1595-8. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Jiang, W.H.; Feng, G.; Liu, J.M.; Wu, Q. Low Temperature Preparation of Aluminum Titanate Film via Sol-Gel Method. Adv. Mater. Res. 2014, 936, 238–242. [Google Scholar] [CrossRef]
- Jiang, W.H.; Feng, G.; Liu, J.; Tan, X. Preparation of aluminum titanate film via non-hydrolytic sol-gel method and its fused salt corrosion resistance. J. Chin. Ceram. Soc. 2010, 38, 783–787. [Google Scholar]
- Xu, F.; Li, X.; Xiong, Q.; Li, Y.; Zhu, J.; Yang, F.; Sun, T.; Peng, C.; Lin, J. Influence of aggregate reinforcement treatment on the performance of geopolymer recycled aggregate permeable concrete: From experimental studies to PFC 3D simulations. Constr. Build. Mater. 2022, 354, 129222. [Google Scholar] [CrossRef]
- Zhou, M.; He, X.; Wang, H.; Wu, C.; Wei, B.; Li, Y. 3D mesoscale discrete element modeling of hybrid fiber-reinforced concrete. Constr. Build. Mater. 2024, 447, 138006. [Google Scholar] [CrossRef]
- Wan, X.; Zhou, H.; Zhou, F.; Zhu, J.; Shahab, K.M. Mesoscopic shear evolution characteristics of frozen soil-concrete interface. Cold Reg. Sci. Technol. 2025, 229, 104342. [Google Scholar] [CrossRef]
- Xu, C.; Chen, Y.; Wang, S.; Javadi, A.; Du, X.; Azzam, R. Mechanical properties of tonalite subjected to combined effects of chemical corrosion and freeze-thaw cycles. Appl. Sci. 2019, 9, 3890. [Google Scholar] [CrossRef]
Component | SiO2 | Al2O3 | CaO | Fe2O3 | MgO | SO3 |
---|---|---|---|---|---|---|
Cement | 22.02 | 5.2 | 64.42 | 5.23 | 1.02 | 2.1 |
Properties | Density | Melting Point/°C | Boiling Point/°C | Particle Size/nm |
---|---|---|---|---|
Nano-TiO2 | 4.26 | 1855 | 2900 | 25 |
Group | Cement | Sand | Gravel | Water | Water Reducer | Nano-TiO2 |
---|---|---|---|---|---|---|
Ordinary concrete | 17.27 | 24.26 | 50.93 | 7.37 | 0.17 | 0 |
Nano-TiO2-modified concrete | 16.76 | 24.26 | 50.93 | 7.37 | 0.17 | 0.51 |
Type | Specimen No. | 0 | 25 | 50 | 75 | 100 |
---|---|---|---|---|---|---|
Ordinary Concrete | 1 | 1.63 | 1.31 | 0.79 | 0.46 | 0.11 |
2 | 1.70 | 1.39 | 0.68 | 0.66 | 0.17 | |
3 | 1.41 | 1.21 | 1.05 | 0.77 | 0.35 | |
Average | 1.58 | 1.30 | 0.84 | 0.63 | 0.21 | |
NTC | 1 | 1.86 | 1.73 | 0.84 | 0.51 | 0.18 |
2 | 2.09 | 1.40 | 1.15 | 0.68 | 0.39 | |
3 | 1.99 | 1.62 | 0.97 | 0.64 | 0.50 | |
Average | 1.84 | 1.48 | 0.94 | 0.61 | 0.26 |
Parameter | Ordinary Concrete | NTC |
---|---|---|
Minimum radius/mm | 0.045 | 0.01 |
Maximum radius/mm | 0.075 | 0.075 |
Normal stiffness/N·m−1 | 1 × 109 | 1 × 109 |
Shear stiffness//N·m−1 | 1 × 109 | 1 × 109 |
Friction factor | 0.577 | 0.577 |
Parallel effective modulus/GPa | 28.05 | 28.05 |
Tensile strength/MPa | 25 | 31 |
Cohesion/MPa | 100 | 100 |
Linear effective modulus/GPa | 99.33 | 99.33 |
Parallel effective modulus after freeze–thaw/GPa | 10 | 10 |
Tensile strength after freeze–thaw/MPa | 5 | 20 |
Cohesion after freeze–thaw/MPa | 50 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Deng, L.; Yang, D. Mechanical Properties of Nano-TiO2-Modified Concrete Under Freeze–Thaw Environment. Nanomaterials 2025, 15, 1254. https://doi.org/10.3390/nano15161254
Xu C, Deng L, Yang D. Mechanical Properties of Nano-TiO2-Modified Concrete Under Freeze–Thaw Environment. Nanomaterials. 2025; 15(16):1254. https://doi.org/10.3390/nano15161254
Chicago/Turabian StyleXu, Chao, Lin Deng, and Dingtao Yang. 2025. "Mechanical Properties of Nano-TiO2-Modified Concrete Under Freeze–Thaw Environment" Nanomaterials 15, no. 16: 1254. https://doi.org/10.3390/nano15161254
APA StyleXu, C., Deng, L., & Yang, D. (2025). Mechanical Properties of Nano-TiO2-Modified Concrete Under Freeze–Thaw Environment. Nanomaterials, 15(16), 1254. https://doi.org/10.3390/nano15161254