Uncovering Stability Origins in Layered Ferromagnetic Electrocatalysts Through Homolog Comparison
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karki, N.; Mufoyongo, F.; Wilson, A.J. Utilizing the magnetic properties of electrodes and magnetic fields in electrocatalysis. Inorg. Chem. Front. 2024, 11, 5414–5434. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, P.; Li, S.; Sun, J.; Wang, W.; Song, B.; Yang, X.; Wang, X.; Jiang, Z.; Wu, G.; et al. Magnetic field assisted electrocatalytic oxygen evolution reaction of nickel-based materials. J. Mater. Chem. A 2022, 10, 1760–1767. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Fu, J. Magnetic Field Assisted Oxygen Evolution Reaction: Beyond Spin Effects. Renewables 2024, 2, 264–269. [Google Scholar] [CrossRef]
- Xu, H.; Qi, J.; Zhang, Y.; Liu, H.; Hu, L.; Feng, M.; Lü, W. Magnetic field-enhanced oxygen evolution reaction via the tuneability of spin polarization in a half-metal catalyst. ACS Appl. Mater. Interfaces 2023, 15, 32320–32328. [Google Scholar] [CrossRef]
- Szalay, D.; Radford, A.; Li, Y.; Tsang, S.C.E. System Design Considerations for Magneto-Electrocatalysis of the Oxygen Evolution Reaction. Small 2025, 2500001. [Google Scholar] [CrossRef]
- Ren, X.; Wu, T.; Sun, Y.; Li, Y.; Xian, G.; Liu, X.; Shen, C.; Gracia, J.; Gao, H.-J.; Yang, H.; et al. Spin-polarized oxygen evolution reaction under magnetic field. Nat. Commun. 2021, 12, 2608. [Google Scholar] [CrossRef]
- Garcés-Pineda, F.A.; Blasco-Ahicart, M.; Nieto-Castro, D.; López, N.; Galán-Mascarós, J.R. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat. Energy 2019, 4, 519–525. [Google Scholar] [CrossRef]
- van der Minne, E.; Korol, L.; Krakers, L.; Verhage, M.; Rosário, C.M.; Roskamp, T.J.; Spiteri, R.J.; Biz, C.; Fianchini, M.; Boukamp, B.A.; et al. The effect of intrinsic magnetic order on electrochemical water splitting. Appl. Phys. Rev. 2024, 11, 011420. [Google Scholar] [CrossRef]
- Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273. [Google Scholar] [CrossRef]
- Gong, C.; Li, L.; Li, Z.; Ji, H.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.; Wang, Y.; et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, M.; Kolekar, S.; Ma, Y.; Diaz, H.C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H.R.; Phan, M.-H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293. [Google Scholar] [CrossRef]
- Li, X.; Fan, D.; Zhao, C.; Yang, X. Fabrication of two-dimensional FePS3 nanosheets for promising photo/electrocatalytic applications. Surfaces Interfaces 2024, 51, 104732. [Google Scholar] [CrossRef]
- Zhao, Y.; Gu, J.; Chen, Z. Oxygen Evolution Reaction on 2D Ferromagnetic Fe3GeTe2: Boosting the Reactivity by the Self-Reduction of Surface Hydroxyl. Adv. Funct. Mater. 2019, 29, 1904782. [Google Scholar] [CrossRef]
- Roy, R.; Mondal, R. Anisotropic magnetic, magnetocaloric properties, and critical behavior studies of CVT-grown single-crystalline Fe3−x GeTe2. Phys. Rev. B 2024, 109, 024416. [Google Scholar] [CrossRef]
- Fei, Z.; Huang, B.; Malinowski, P.; Wang, W.; Song, T.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X.; May, A.F.; et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782. [Google Scholar] [CrossRef]
- Deng, Y.; Yu, Y.; Song, Y.; Zhang, J.; Wang, N.Z.; Sun, Z.; Yi, Y.; Wu, Y.Z.; Wu, S.; Zhu, J.; et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99. [Google Scholar] [CrossRef]
- Roemer, R.; Lee, D.H.D.; Smit, S.; Zhang, X.; Godin, S.; Hamza, V.; Jian, T.; Larkin, J.; Shin, H.; Liu, C.; et al. Unraveling the electronic structure and magnetic transition evolution across monolayer, bilayer, and multilayer ferromagnetic Fe3GeTe2. Npj 2D Mater. Appl. 2024, 8, 63. [Google Scholar] [CrossRef]
- Algaidi, H.; Zhang, C.; Ma, Y.; Liu, C.; Chen, A.; Zheng, D.; Zhang, X. Magnetic critical behavior of van der Waals Fe3GaTe2 with above-room-temperature ferromagnetism. APL Mater. 2024, 12, 011124. [Google Scholar] [CrossRef]
- You, Y.; Liu, J.; Ding, B.; Xu, F.; Sun, Z. Critical behavior and anisotropic magnetocaloric effect in off-stoichiometric van der Waals ferromagnet Fe3-GaTe2. J. Magn. Magn. Mater. 2025, 623, 172997. [Google Scholar] [CrossRef]
- Li, Y.; Hu, X.; Fereidouni, A.; Basnet, R.; Pandey, K.; Wen, J.; Liu, Y.; Zheng, H.; Churchill, H.O.H.; Hu, J.; et al. Visualizing the effect of oxidation on magnetic domain behavior of nanoscale Fe3GeTe2 for applications in spintronics. ACS Appl. Nano Mater. 2023, 6, 4390–4397. [Google Scholar] [CrossRef]
- Chyczewski, S.T.; Shi, J.; Lee, H.; Furlanetto, P.F.; Xu, K.; van der Zande, A.M.; Zhu, W. Probing antiferromagnetism in exfoliated Fe3GeTe2 using magneto-transport measurements. Nanoscale 2023, 15, 14061–14067. [Google Scholar] [CrossRef]
- Puthirath Balan, A.; Kumar, A.; Scholz, T.; Lin, Z.; Shahee, A.; Fu, S.; Denneulin, T.; Vas, J.; Kovács, A.; Dunin-Borkowski, R.E.; et al. Harnessing Van der Waals CrPS4 and Surface Oxides for Nonmonotonic Preset Field Induced Exchange Bias in Fe3GeTe2. ACS Nano 2024, 18, 8383–8391. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, M.; Yan, X.; Jia, H.; Fei, B.; Ha, Y.; Qing, H.; Yang, H.; Liu, M.; Wu, R. Vacancy occupation-driven polymorphic transformation in cobalt ditelluride for boosted oxygen evolution reaction. ACS Nano 2020, 14, 6968–6979. [Google Scholar] [CrossRef] [PubMed]
- Albaqami, M.D.; Nisa, M.U.; Manzoor, S.; Shah, J.H.; Mohammad, S.; Yalcin, S.; Abid, A.G.; Allakhverdiev, S.I. Controlled fabrication of various nanostructures iron-based tellurides as highly performed oxygen evolution reaction. Int. J. Hydrogrn Energy 2024, 60, 593–600. [Google Scholar] [CrossRef]
- Oliveira, F.M.; Antonatos, N.; Mazánek, V.; Sedmidubský, D.; Sofer, Z.; Gusmão, R. Exfoliated Fe3GeTe2 and Ni3GeTe2 materials as water splitting electrocatalysts. FlatChem 2022, 32, 100334. [Google Scholar] [CrossRef]
- Tan, C.; Lee, J.; Jung, S.-G.; Park, T.; Albarakati, S.; Partridge, J.; Field, M.R.; McCulloch, D.G.; Wang, L.; Lee, C. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun. 2018, 9, 1554. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, C.; Lv, X.; Zhao, T.; Shi, W.; Li, W.; Liang, J.; Che, R. Creation of Magnetic Skyrmions in Two-Dimensional Van Der Waals Ferromagnets by Lattice Distortion. Mater. Today, 2025; in press. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, F.; Wu, H.; Wen, X.; Yang, L.; Jin, W.; Zhang, W.; Chang, H. Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy. Nat. Commun. 2022, 13, 5067. [Google Scholar] [CrossRef]
- Lim, H.; Ahn, H.-B.; Lee, C. Magnetic properties of ferromagnetic nanoparticles of FexGeTe2 (x= 3, 5) directly exfoliated and dispersed in pure water. Nanotechnology 2024, 35, 395604. [Google Scholar] [CrossRef]
- Alghamdi, M.; Lohmann, M.; Li, J.; Jothi, P.R.; Shao, Q.; Aldosary, M.; Su, T.; Fokwa, B.P.; Shi, J. Highly efficient spin–orbit torque and switching of layered ferromagnet Fe3GeTe2. Nano Lett. 2019, 19, 4400–4405. [Google Scholar] [CrossRef]
- Yin, H.; Zhang, P.; Jin, W.; Di, B.; Wu, H.; Zhang, G.; Zhang, W.; Chang, H. Fe3GaTe2/MoSe2 ferromagnet/semiconductor 2D van der Waals heterojunction for room-temperature spin-valve devices. CrystEngComm 2023, 25, 1339–1346. [Google Scholar] [CrossRef]
- Rezaie, A.A.; Lee, E.; Luong, D.; Yapo, J.A.; Fokwa, B.P. Abundant active sites on the basal plane and edges of layered van der Waals Fe3GeTe2 for highly efficient hydrogen evolution. ACS Mater. Lett. 2021, 3, 313–319. [Google Scholar] [CrossRef]
- Raman, R.; Muthu, J.; Yen, Z.-L.; Qorbani, M.; Chen, Y.-X.; Chen, D.-R.; Hofmann, M.; Hsieh, Y.-P. Selective activation of MoS2 grain boundaries for enhanced electrochemical activity. Nanoscale Horiz. 2024, 9, 946–955. [Google Scholar] [CrossRef]
- Muthu, J.; Khurshid, F.; Chin, H.-T.; Yao, Y.-C.; Hsieh, Y.-P.; Hofmann, M. The HER performance of 2D materials is underestimated without morphology correction. Chem. Eng. J. 2023, 465, 142852. [Google Scholar] [CrossRef]
- Kumar, M.; Cervantes-Lee, F.; Pannell, K.H.; Shao, J. Synthesis and Cyclic Voltammetric Studies of the Diiron Complexes ER2 [(η5-C5H4) Fe (L2) Me] 2 (E= C, Si, Ge, Sn; R= H, alkyl; L2= diphosphine) and (η5-C5H5) Fe (L2) ER2Fc (Fc=(η5-C5H4) Fe (η5-C5H5)). Organometallics 2008, 27, 4739–4748. [Google Scholar] [CrossRef] [PubMed]
- Favero, S.; Chen, R.; Cheung, J.; Higgins, L.; Luo, H.; Wang, M.; Barrio, J.; Titirici, M.M.; Bagger, A.; Stephens, I.E.L. Same FeN4 Active Site, Different Activity: How Redox Peaks Control Oxygen Reduction on Fe Macrocycles. ACS Electrochem. 2025, 1, 617–632. [Google Scholar] [CrossRef]
- Rudnik, E.; Biskup, P. Electrochemical behavior of tellurium in acidic nitrate solutions. Metall. Foundry Eng. 2014, 40, 15–31. [Google Scholar] [CrossRef]
- Aoki, K.J.; Chen, J.; Liu, Y.; Jia, B. Peak potential shift of fast cyclic voltammograms owing to capacitance of redox reactions. J. Electroanal. Chem. 2020, 856, 113609. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gujela, O.P.; Kuppusamy, S.; Chen, Y.-X.; Kao, C.-C.; Lee, J.-J.; Papnai, B.; Hsieh, Y.-P.; Sankar, R.; Hofmann, M. Uncovering Stability Origins in Layered Ferromagnetic Electrocatalysts Through Homolog Comparison. Nanomaterials 2025, 15, 1210. https://doi.org/10.3390/nano15151210
Gujela OP, Kuppusamy S, Chen Y-X, Kao C-C, Lee J-J, Papnai B, Hsieh Y-P, Sankar R, Hofmann M. Uncovering Stability Origins in Layered Ferromagnetic Electrocatalysts Through Homolog Comparison. Nanomaterials. 2025; 15(15):1210. https://doi.org/10.3390/nano15151210
Chicago/Turabian StyleGujela, Om Prakash, Sivasakthi Kuppusamy, Yu-Xiang Chen, Chang-Chi Kao, Jian-Jhang Lee, Bhartendu Papnai, Ya-Ping Hsieh, Raman Sankar, and Mario Hofmann. 2025. "Uncovering Stability Origins in Layered Ferromagnetic Electrocatalysts Through Homolog Comparison" Nanomaterials 15, no. 15: 1210. https://doi.org/10.3390/nano15151210
APA StyleGujela, O. P., Kuppusamy, S., Chen, Y.-X., Kao, C.-C., Lee, J.-J., Papnai, B., Hsieh, Y.-P., Sankar, R., & Hofmann, M. (2025). Uncovering Stability Origins in Layered Ferromagnetic Electrocatalysts Through Homolog Comparison. Nanomaterials, 15(15), 1210. https://doi.org/10.3390/nano15151210