Photostability of Perovskite Solar Cells: Challenges and Strategies
Abstract
:1. Introduction
2. Photostability of PSCs
2.1. Ultraviolet Irradiation
2.2. Degradation Mechanisms and Contributing Factors
2.2.1. Ultraviolet-Induced Degradation Mechanism
2.2.2. Defects
2.2.3. Ion Migration
3. Strategies for Enhancing Photostability
3.1. External Strategies
3.2. Internal Strategies
3.2.1. Perovskite Bulk Phase
3.2.2. Perovskite Buried Interface
3.2.3. Charge Transport Layers
4. Conclusions and Outlook
4.1. Conclusions
4.2. Outlook
Funding
Data Availability Statement
Conflicts of Interest
References
- Hayat, M.B.; Ali, D.; Monyake, K.C.; Alagha, L.; Ahmed, N. Solar energy-A look into power generation, challenges, and a solar-powered future. Int. J. Energy Res. 2019, 43, 1049–1067. [Google Scholar] [CrossRef]
- Guney, M.S. Solar power and application methods. Renew. Sustain. Energy Rev. 2016, 57, 776–785. [Google Scholar] [CrossRef]
- Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (version 51). Prog. Photovolt. 2017, 26, 3–12. [Google Scholar] [CrossRef]
- Celik, I.; Phillips, A.B.; Song, Z.; Yan, Y.; Ellingson, R.J.; Heben, M.J.; Apul, D. Environmental analysis of perovskites and other relevant solar cell technologies in a tandem configuration. Energy Environ. Sci. 2017, 10, 1874–1884. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Siefer, G.; Hao, X. Solar Cell Efficiency Tables (Version 65). Prog. Photovolt. Res. Appl. 2024, 33, 3–15. [Google Scholar] [CrossRef]
- Nelson, J.A. The Physics of Solar Cells; World Scientific Publishing Company: Singapore, 2003. [Google Scholar]
- Stranks, S.D.; Snaith, H.J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 2015, 10, 391–402. [Google Scholar] [CrossRef]
- Mariotti, S.; Köhnen, E.; Scheler, F.; Sveinbjörnsson, K.; Zimmermann, L.; Piot, M.; Yang, F.; Li, B.; Warby, J.; Musiienko, A.; et al. Interface engineering for high-performance, triple-halide perovskite–silicon tandem solar cells. Science 2023, 381, 63–69. [Google Scholar] [CrossRef]
- Du, J.; Chen, J.; Ouyang, B.; Sun, A.; Tian, C.; Zhuang, R.; Chen, C.; Liu, S.; Chen, Q.; Li, Z.; et al. Face-on Oriented Self-Assembled Molecules with Enhanced π-π Stacking for Highly Efficient Inverted Perovskite Solar Cells on Rough FTO Substrates. Energy Environ. Sci. 2025, 18, 3196–3210. [Google Scholar] [CrossRef]
- Yang, S.; Chen, S.; Mosconi, E.; Fang, Y.; Xiao, X.; Wang, C.; Zhou, Y.; Yu, Z.; Zhao, J.; Gao, Y.; et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 2019, 365, 473–478. [Google Scholar] [CrossRef]
- Bag, M.; Renna, L.A.; Adhikari, R.Y.; Karak, S.; Liu, F.; Lahti, P.M.; Russell, T.P.; Tuominen, M.T.; Venkataraman, D. Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability. J. Am. Chem. Soc. 2015, 137, 13130–13137. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, S.; Zhu, X.; Li, S.; Zheng, Z.; Zhao, K.; Ji, L.; Li, R.; Liu, Y.; Liu, C.; et al. Inverted perovskite solar cells with over 2000 h operational stability at 85 °C using fixed charge passivation. Nat. Energy 2024, 9, 37–46. [Google Scholar] [CrossRef]
- Hartono, N.T.P.; Köbler, H.; Graniero, P.; Khenkin, M.; Schlatmann, R.; Ulbrich, C.; Abate, A. Stability follows efficiency based on the analysis of a large perovskite solar cells ageing dataset. Nat. Commun. 2023, 14, 4869. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Z.; Yu, P.; Tong, G.; Chen, R.; Ono, L.K.; Chen, R.; Wang, H.; Ren, F.; Liu, S.; et al. Modulation of perovskite degradation with multiple-barrier for light-heat stable perovskite solar cells. Nat. Commun. 2023, 14, 6120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cao, Z.; Shen, L.; Garden, K.; Chakraborty, N.; Baral, P.; Brooks, L.W.; Gong, X.; Luther, J.M.; Wang, H. Unraveling the Combined Photothermal Stability of Common Perovskite Solar Cell Compositions. ACS Energy Lett. 2024, 9, 5728–5736. [Google Scholar] [CrossRef]
- Fei, C.; Kuvayskaya, A.; Shi, X.; Wang, M.; Shi, Z.; Jiao, H.; Silverman, T.J.; Bellini, M.O.; Dong, Y.; Xian, Y.; et al. Strong-bonding hole-transport layers reduce ultraviolet degradation of perovskite solar cells. Science 2024, 384, 1126–1134. [Google Scholar] [CrossRef]
- Chen, C.; Li, H.; Jin, J.; Chen, X.; Cheng, Y.; Zheng, Y.; Liu, D.; Xu, L.; Song, H.; Dai, Q. Long-lasting nanophosphors applied to UV-resistant and energy storage perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700758. [Google Scholar] [CrossRef]
- Sheng, W.; He, J.; Yang, J.; Cai, Q.; Xiao, S.; Zhong, Y.; Tan, L.; Chen, Y. Multifunctional Metal-Organic Frameworks Capsules Modulate Reactivity of Lead Iodide toward Efficient Perovskite Solar Cells with UV Resistance. Adv. Mater. 2023, 35, 2301852. [Google Scholar] [CrossRef]
- WHO. Global Solar UV Index: A Practical Guide; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Shi, H.; An, Z. Ultraviolet afterglow. Nat. Photonics 2019, 13, 74–75. [Google Scholar] [CrossRef]
- Bender, E. Disinfecting the air with far-ultraviolet light. Nature 2022, 610, S46–S47. [Google Scholar] [CrossRef]
- Pile, D.F.P. Vacuum-ultraviolet source. Nat. Photonics 2018, 12, 568. [Google Scholar] [CrossRef]
- Norrbo, I.; Curutchet, A.; Kuusisto, A.; Mäkelä, J.; Laukkanen, P.; Paturi, P.; Laihinen, T.; Sinkkonen, J.; Wetterskog, E.; Mamedov, F.; et al. Solar UV index and UV dose determination with photochromic hackmanites: From the assessment of the fundamental properties to the device. Mater. Horiz. 2018, 5, 569–576. [Google Scholar] [CrossRef]
- Fantini, R.; Vezzalini, G.; Zambon, A.; Ferrari, E.; Renzo, F.D.; Fabbiani, M.; Arletti, R. Boosting sunscreen stability: New hybrid materials from UV filters encapsulation. Microporous Mesoporous Mater. 2021, 328, 111478. [Google Scholar] [CrossRef]
- Gu, S.; Lu, Z.; Zou, S.; Wu, C.; Peng, C.; Ni, M.; Chen, Z.; Huang, H.; Sun, H.; Wang, H.; et al. In situ generating YVO4: Eu3+, Bi3+ downshifting phosphors in SiO2 antireflection coating for efficiency enhancement and ultraviolet stability of silicon solar cells. Sol. RRL 2023, 7, 2300215. [Google Scholar] [CrossRef]
- Son, M.K.; Seo, H. Effect of ultraviolet radiation on the long-term stability of dye-sensitized solar cells. Electron. Mater. Lett. 2020, 16, 556–563. [Google Scholar] [CrossRef]
- Yu, R.; Wu, G.; Shi, R.; Ma, Z.; Dang, Q.; Qing, Y.; Zhang, C.; Xu, K.; Tan, Z. Multidentate coordination induced crystal growth regulation and trap passivation enables over 24% efficiency in perovskite solar cells. Adv. Energy Mater. 2023, 13, 2203127. [Google Scholar] [CrossRef]
- Hang, P.; Xie, J.; Li, G.; Wang, Y.; Fang, D.; Yao, Y.; Xie, D.; Cui, C.; Yan, K.; Xu, J.; et al. An interlayer with strong Pb-Cl bond delivers ultraviolet-filter-free, efficient, and photostable perovskite solar cells. iScience 2019, 21, 217–227. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; Wang, C.; Ecker, B.; Yang, J.; Huang, J.; Gao, Y. Light-induced degradation of CH3NH3PbI3 hybrid perovskite thin film. J. Phys. Chem. C 2017, 121, 3904–3910. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, H.; Hu, J.; Huang, B.; Sun, M.; Dong, B.; Zheng, G.; Huang, Y.; Chen, Y.; Li, L.; et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 2019, 363, 265–270. [Google Scholar] [CrossRef]
- McGettrick, J.D.; Hooper, K.; Pockett, A.; Baker, J.; Troughton, J.; Carnie, M.; Watson, T. Sources of Pb (0) artefacts during XPS analysis of lead halide perovskites. Mater. Lett. 2019, 251, 98–101. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, X.; Liu, Z.; Guo, M.; Zhang, Y.; Li, Y.; Li, J.; Wei, M. UV-robust and efficient perovskite solar cells enabled by interfacial photocatalysis suppression and defect passivation. J. Mater. Chem. A 2023, 11, 14959–14970. [Google Scholar] [CrossRef]
- Ren, X.; Wang, J.; Lin, Y.; Wang, Y.; Xie, H.; Huang, H.; Yang, B.; Yan, Y.; Gao, Y.; He, J.; et al. Mobile iodides capture for highly photolysis-and reverse-bias-stable perovskite solar cells. Nat. Mater. 2024, 23, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Phung, N.; Mattoni, A.; Smith, J.A.; Skroblin, D.; Köbler, H.; Choubrac, L.; Breternitz, J.; Li, J.; Unold, T.; Schorr, S.; et al. Photoprotection in metal halide perovskites by ionic defect formation. Joule 2022, 6, 2152–2174. [Google Scholar] [CrossRef]
- Tan, S.; Yavuz, I.; Weber, M.H.; Huang, T.; Chen, C.H.; Wang, R.; Wang, H.C.; Ko, J.H.; Nuryyeva, S.; Xue, J.; et al. Shallow iodine defects accelerate the degradation of α-phase formamidinium perovskite. Joule 2020, 4, 2426–2442. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, Y.; Juarez-Perez, E.J.; Ono, L.K.; Qi, Y. Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour. Nat. Energy 2016, 2, 16195. [Google Scholar] [CrossRef]
- Yuan, Y.; Huang, J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 2016, 49, 286–293. [Google Scholar] [CrossRef]
- Wu, N.; Yang, T.; Wang, Z.; Wu, Y.; Wang, Y.; Ma, C.; Li, H.; Du, Y.; Zhao, D.; Wang, S.; et al. Stabilizing precursor solution and controlling crystallization kinetics simultaneously for high-performance perovskite solar cells. Adv. Mater. 2023, 35, 2304809. [Google Scholar] [CrossRef]
- Li, W.; Li, J.; Niu, G.; Wang, L. Effect of cesium chloride modification on the film morphology and UV-induced stability of planar perovskite solar cells. J. Mater. Chem. A 2016, 4, 11688–11695. [Google Scholar] [CrossRef]
- Ito, S.; Tanaka, S.; Manabe, K.; Nishino, H. Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J. Phys. Chem. C 2014, 118, 16995–17000. [Google Scholar] [CrossRef]
- Cheng, H.; Feng, Y.; Fu, Y.; Zheng, Y.; Shao, Y.; Bai, Y. Understanding and minimizing non-radiative recombination losses in perovskite light-emitting diodes. J. Mater. Chem. C 2022, 10, 13590–13610. [Google Scholar] [CrossRef]
- Luo, D.; Su, R.; Zhang, W.; Gong, Q.; Zhu, R. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 2020, 5, 44–60. [Google Scholar] [CrossRef]
- Zhou, J.; Li, M.; Wang, S.; Tan, L.; Liu, Y.; Jiang, C.; Zhao, X.; Ding, L.; Yi, C. 2-CF3-PEAI to eliminate Pb0 traps and form a 2D perovskite layer to enhance the performance and stability of perovskite solar cells. Nano Energy 2022, 95, 107036. [Google Scholar] [CrossRef]
- Liu, R.; Wang, L.; Fan, Y.; Li, Z.; Pang, S. UV degradation of the interface between perovskites and the electron transport layer. RSC Adv. 2020, 10, 11551–11556. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Ge, Y.; Sui, M. Degradation Mechanism of CH3NH3PbI3-based Perovskite Solar Cells under Ultraviolet Illumination. Acta Phys.-Chim. Sin. 2022, 5, 2007088. [Google Scholar]
- Li, J.; Qi, W.; Li, Y.; Jiao, S.; Ling, H.; Wang, P.; Zhou, X.; Sohail, K.; Wang, G.; Hou, G.; et al. UV light absorbers executing synergistic effects of passivating defects and improving photostability for efficient perovskite photovoltaics. J. Energy Chem. 2022, 67, 138–146. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, D.H.; Kim, H.S.; Seo, S.W.; Cho, S.M.; Park, N.G. Formamidinium and cesium hybridization for photo-and moisture-stable perovskite solar cell. Adv. Energy Mater. 2015, 5, 1501310. [Google Scholar] [CrossRef]
- Juarez-Perez, E.J.; Ono, L.K.; Maeda, M.; Jiang, Y.; Hawash, Z.; Qi, Y. Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. J. Mater. Chem. A 2018, 6, 9604–9612. [Google Scholar] [CrossRef]
- Luo, W.; Wen, H.; Guo, Y.; Yin, T.; Tan, H.; Zhang, Z.; Si, S.; Zhang, Z.; Wu, H.; Huang, S. Simultaneous ultraviolet conversion and defect passivation stabilize efficient and operational durable perovskite solar cells. Adv. Funct. Mater. 2024, 34, 2400474. [Google Scholar] [CrossRef]
- Zhu, X.; Lau, C.F.J.; Mo, K.; Cheng, S.; Xu, Y.; Li, R.; Wang, C.; Zheng, Q.; Liu, Y.; Wang, T.; et al. Inverted planar heterojunction perovskite solar cells with high ultraviolet stability. Nano Energy 2022, 103, 107849. [Google Scholar] [CrossRef]
- Khenkin, M.V.; Katz, E.A.; Abate, A.; Bardizza, G.; Berry, J.J.; Brabec, C.; Brunetti, F.; Bulović, V.; Burlingame, Q.; Carlo, A.D.; et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 2020, 5, 35–49. [Google Scholar] [CrossRef]
- Kosar, S.; Winchester, A.J.; Doherty, T.A.S.; Macpherson, S.; Petoukhoff, C.E.; Frohna, K.; Anaya, M.; Chan, N.S.; Madéo, J.; Man, M.K.L.; et al. Unraveling the varied nature and roles of defects in hybrid halide perovskites with time-resolved photoemission electron microscopy. Energy Environ. Sci. 2021, 14, 6320–6328. [Google Scholar] [CrossRef]
- Marchezi, P.E.; Therézio, E.M.; Szostak, R.; Loureiro, H.C.; Bruening, K.; Gold-Parker, A.; Melo, M.A.; Tassone, C.J.; Tolentino, H.C.N.; Toney, M.F.; et al. Degradation mechanisms in mixed-cation and mixed-halide CsxFA1−xPb(BryI1−y)3 perovskite films under ambient conditions. J. Mater. Chem. A 2020, 8, 9302–9312. [Google Scholar] [CrossRef]
- Chen, Z.; Brocks, G.; Tao, S.; Bobbert, P.A. Unified theory for light-induced halide segregation in mixed halide perovskites. Nat. Commun. 2021, 12, 2687. [Google Scholar] [CrossRef] [PubMed]
- Brennan, M.C.; Ruth, A.; Kamat, P.V.; Kuno, M. Photoinduced anion segregation in mixed halide perovskites. Trends Chem. 2020, 2, 282–301. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Chen, X.; Cui, X.; Guo, C.; Feng, X.; Ren, D.; Mo, Y.; Yang, M.; Huang, H.; et al. In situ epitaxial growth of blocking structure in mixed-halide wide-band-gap perovskites for efficient photovoltaics. Joule 2023, 7, 1363–1381. [Google Scholar] [CrossRef]
- Merten, L.; Eberle, T.; Kneschaurek, E.; Scheffczyk, N.; Zimmermann, P.; Zaluzhnyy, I.; Khadiev, A.; Bertram, F.; Fabian Paulus, F.; Hinderhofer, A.; et al. Halide Segregated Crystallization of Mixed-Halide Perovskites Revealed by In Situ GIWAXS. ACS Appl. Mater. Interfaces 2024, 16, 8913–8921. [Google Scholar] [CrossRef]
- Tan, Q.; Zeng, P.; Yang, Z. Reconstructive Optical Spectrometer Using Perovskite Filter Arrays. Laser Optoelectron. Prog. 2024, 61, 0504002. [Google Scholar]
- Guan, Y.; He, H.; Tang, D.; Guo, P.; Han, X.; Zhang, H.; Xu, J.; Dai, L.; Huang, Z.; Si, C. Functional cellulose paper with high transparency, high haze, and UV-blocking for perovskite solar cells. Adv. Compos. Hybrid Mater. 2024, 7, 12. [Google Scholar] [CrossRef]
- Zhang, P.; Liang, L.; Liu, X. Lanthanide-doped nanoparticles in photovoltaics–more than just upconversion. J. Mater. Chem. C 2021, 9, 16110–16131. [Google Scholar] [CrossRef]
- Qin, Y.; Hu, Z.; Lim, B.H.; Yang, B.; Chong, K.K.; Chang, W.S.; Zhang, P.; Zhang, H. Performance improvement of dye-sensitized solar cell by introducing Sm3+/Y3+ co-doped TiO2 film as an efficient blocking layer. Thin Solid Film. 2017, 631, 141–146. [Google Scholar] [CrossRef]
- Deng, K.; Chen, Q.; Shen, Y.; Li, L. Improving UV stability of perovskite solar cells without sacrificing efficiency through light trapping regulated spectral modification. Sci. Bull. 2021, 66, 2362–2368. [Google Scholar] [CrossRef]
- Zhang, G.; Zheng, Y.; Wang, H.; Ding, G.; Yang, F.; Xu, Y.; Yu, J.; Shao, Y. Shellac protects perovskite solar cell modules under real-world conditions. Joule 2024, 8, 496–508. [Google Scholar] [CrossRef]
- IEC 61215-1:2021; RLV - Terrestrial Photovoltaic (PV) Modules - Design Qualification and Type Approval—Part 1: Test Requirements. International Electrotechnical Commission: Geneva, Switzerland, 2021.
- Alexandre, M.; Chapa, M.; Haque, S.; Mendes, M.J.; Águas, H.; Fortunato, E.; Martins, R. Optimum luminescent down-shifting properties for high efficiency and stable perovskite solar cells. ACS Appl. Energy Mater. 2019, 2, 2930–2938. [Google Scholar] [CrossRef]
- Wang, D.; Wright, M.; Elumalai, N.K.; Uddin, A. Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 2016, 147, 255–275. [Google Scholar] [CrossRef]
- Farinhas, J.; Correia, S.F.H.; Fu, L.; Botas, A.M.P.; André, P.S.; Ferreira, R.A.S.; Charas, A. Ultraviolet-filtering luminescent transparent coatings for high-performance PTB7-Th: ITIC–based organic solar cells. Front. Nanotechnol. 2021, 3, 635929. [Google Scholar] [CrossRef]
- Correia, S.F.H.; Lima, P.P.; André, P.S.; Ferreira, M.R.S.; Carlos, L.A.D. High-efficiency luminescent solar concentrators for flexible waveguiding photovoltaics. Sol. Energy Mater. Sol. Cells 2015, 138, 51–57. [Google Scholar] [CrossRef]
- Rondao, R.; Frias, A.R.; Correia, S.F.H.; Fu, L.; Bermudez, V.D.Z.; André, P.S.; Ferreira, R.A.S.; Carlos, L.D. High-performance near-infrared luminescent solar concentrators. ACS Appl. Mater. Interfaces 2017, 9, 12540–12546. [Google Scholar] [CrossRef]
- Ferreira, R.A.S.; Correia, S.F.H.; Monguzzi, A.; Liu, X.; Meinardi, F. Spectral converters for photovoltaics–What’s ahead. Mater. Today 2020, 33, 105–121. [Google Scholar] [CrossRef]
- Haque, S.; Alexandre, M.; Vicente, A.T.; Li, K.; Schuster, C.S.; Yang, S.; Águas, H.; Martins, R.; Ferreira, R.A.S.; Mendes, M.J. Photon shifting and trapping in perovskite solar cells for improved efficiency and stability. Light Sci. Appl. 2024, 13, 238. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Wu, T.; Li, S. Correlating the Composition-Dependent Structural and Electronic Dynamics of Inorganic Mixed Halide Perovskites. Chem. Mater. 2020, 32, 2470–2481. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Yu, B.; Tan, S.; Cui, Y.; Wu, H.; Luo, Y.; Shi, J.; Li, D.; Meng, Q. Efficient, stable formamidinium-cesium perovskite solar cells and minimodules enabled by crystallization regulation. Joule 2022, 6, 676–689. [Google Scholar] [CrossRef]
- Iqbal, A.N.; Orr, K.W.P.; Nagane, S.; Orri, J.F.; Doherty, T.A.S.; Jung, Y.K.; Chiang, Y.H.; Selby, T.A.; Lu, Y.; Mirabelli, A.J.; et al. Composition dictates octahedral tilt and photostability in halide perovskites. Adv. Mater. 2024, 36, 2307508. [Google Scholar] [CrossRef] [PubMed]
- Frohna, K.; Anaya, M.; Macpherson, S.; Sung, J.; Doherty, T.A.S.; Chiang, Y.H.; Winchester, A.J.; Orr, K.W.P.; Parker, J.E.; Quinn, P.D.; et al. Nanoscale chemical heterogeneity dominates the optoelectronic response of alloyed perovskite solar cells. Nat. Nanotechnol. 2022, 17, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Gratia, P.; Zimmermann, I.; Schouwink, P.; Yum, J.H.; Audinot, J.N.; Sivula, K.; Wirtz, T.; Nazeeruddin, M.K. The many faces of mixed ion perovskites: Unraveling and understanding the crystallization process. ACS Energy Lett. 2017, 2, 2686–2693. [Google Scholar] [CrossRef]
- Di Girolamo, D.; Phung, N.; Kosasih, F.U.; Giacomo, F.D.; Matteocci, F.; Smith, J.A.; Flatken, M.A.; Köbler, H.; Cruz, S.H.T.; Mattoni, A.; et al. Ion migration-induced amorphization and phase segregation as a degradation mechanism in planar perovskite solar cells. Adv. Energy Mater. 2020, 10, 2000310. [Google Scholar] [CrossRef]
- Kim, D.; Safdari, M.; Lee, S.W.; Liu, C.; Yang, Y.; Namgung, S.D.; Sargent, E.H.; Hersam, M.C.; Kim, D.H.; Kanatzidis, M.G. Enhanced Photostability of “Hollow” Mixed Halide Wide-Bandgap Perovskite Films. ACS Energy Lett. 2023, 8, 5221–5228. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Lan, Y.; Song, Q.; Li, M.; Song, Y. Tautomeric molecule acts as a “sunscreen” for metal halide perovskite solar cells. Angew. Chem. 2021, 133, 8755–8759. [Google Scholar] [CrossRef]
- Xu, H.; Miao, Y.; Wei, N.; Chen, H.; Qin, Z.; Liu, X.; Wang, X.; Qi, Y.; Zhang, T.; Zhao, Y. CsI enhanced buried interface for efficient and UV-robust perovskite solar cells. Adv. Energy Mater. 2022, 12, 2103151. [Google Scholar] [CrossRef]
- Dou, J.; Zhu, C.; Wang, H.; Han, Y.; Ma, S.; Niu, X.; Li, N.; Shi, C.; Qiu, Z.; Zhou, H.; et al. Synergistic effects of Eu-MOF on perovskite solar cells with improved stability. Adv. Mater. 2021, 33, 2102947. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, P.; Liu, T.; Tian, B.; Jiang, Y.; Zhang, J.; Tang, Y.; Li, B.; Xue, M.; Zhang, W.; et al. Operationally stable perovskite solar modules enabled by vapor-phase fluoride treatment. Science 2024, 385, 433–438. [Google Scholar] [CrossRef]
- Hu, Y.; Zhong, Q.; Song, B.; Xu, H.; Li, Q.; Li, S.; Qiu, Y.; Yang, X.; Chen, J.; Zhang, Q.; et al. Seed-Mediated Growth for High-Efficiency Perovskite Solar Cells: The Important Role of Seed Surface. Angew. Chem. Int. Ed. 2024, 63, e202316154. [Google Scholar]
- Chen, Y.; Wei, N.; Miao, Y.; Chen, H.; Ren, M.; Liu, X.; Zhao, Y. Inorganic CsPbBr3 perovskite nanocrystals as interfacial ion reservoirs to stabilize FAPbI3 perovskite for efficient photovoltaics. Adv. Energy Mater. 2022, 12, 2200203. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, R.; Zeng, H.; Zhao, Y.; Liu, X.; You, S.; Li, M.; Luo, L.; Lira-Cantu, M.; Li, L.; et al. Improved performance and stability of perovskite solar modules by interface modulating with graphene oxide crosslinked CsPbBr3 quantum dots. Energy Environ. Sci. 2022, 15, 244–253. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, Y.; Qu, J.; Gao, B.; Sun, L.; Wang, X.; Chen, G. Cesium Lead Chloride Nanocrystals Interface Blocking Layer Enables Stable and Efficient Perovskite Solar Cells. Adv. Funct. Mater. 2025, 2421104. [Google Scholar] [CrossRef]
- Yu, S.; Xiong, Z.; Zhou, H.; Zhang, Q.; Wang, Z.; Ma, F.; Qu, Z.; Zhao, Y.; Chu, X.; Zhang, X.; et al. Homogenized NiOx nanoparticles for improved hole transport in inverted perovskite solar cells. Science 2023, 382, 1399–1404. [Google Scholar] [CrossRef]
- Tan, Q.; Li, Z.; Luo, G.; Zhang, X.; Che, B.; Chen, G.; Gao, H.; He, D.; Ma, G.; Wang, J.; et al. Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 2023, 620, 545–551. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Z.; Zhang, H.; Yan, W.; Li, Y.; Liang, L.; Yu, W.; Yu, X.; Wang, Y.; Yang, Y.; et al. Fully Aromatic Self-Assembled Hole-Selective Layer toward Efficient Inverted Wide-Bandgap Perovskite Solar Cells with Ultraviolet Resistance. Angew. Chem. Int. Ed. 2024, 63, e202315281. [Google Scholar]
- You, J.; Meng, L.; Song, T.B.; Guo, T.F.; Yang, Y.; Chang, W.H.; Hong, Z.; Chen, H.; Zhou, H.; Chen, Q.; et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 2016, 11, 75–81. [Google Scholar] [CrossRef]
- Kung, P.K.; Li, M.H.; Lin, P.Y.; Chiang, Y.H.; Chan, C.R.; Guo, T.F.; Chen, P. A review of inorganic hole transport materials for perovskite solar cells. Adv. Mater. Interfaces 2018, 5, 1800882. [Google Scholar] [CrossRef]
- Liang, J.W.; Firdaus, Y.; Azmi, R.; Faber, H.; Kaltsas, D.; Kang, C.H.; Nugraha, M.I.; Yengel, E.; Ng, T.K.; Wolf, S.D.; et al. Cl2-doped CuSCN Hole transport layer for organic and perovskite solar cells with improved stability. ACS Energy Lett. 2022, 7, 3139–3148. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, J.; Lin, F.; He, H.; Mao, J.; Wong, K.S.; Jen, A.K.Y.; Choy, W.C.H. Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano 2016, 10, 1503–1511. [Google Scholar] [CrossRef]
- Chen, W.Y.; Deng, L.L.; Dai, S.M.; Wang, X.; Tian, C.B.; Zhan, X.X.; Xie, S.Y.; Huang, R.B.; Zheng, L.S. Low-cost solution-processed copper iodide as an alternative to PEDOT: PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. J. Mater. Chem. A 2015, 3, 19353–19359. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, X.; Guo, T.; Tang, G.; Jin, J.; Zhu, Z.; Chu, D.; Gou, Y.; Li, J.; Guo, Y.; et al. Promising Cobalt Oxide Hole Transport Layer for Efficient and Stable Inverted Perovskite Solar Cells. Adv. Funct. Mater. 2025, 2425119. [Google Scholar] [CrossRef]
- Zhou, J.; Tan, L.; Liu, Y.; Li, H.; Liu, X.; Li, M.; Wang, S.; Zhang, Y.; Jiang, C.; Hua, R.; et al. Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material. Joule 2024, 8, 1691–1706. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, Z.; Lv, S.; Shui, Y.; Zhu, W.; Zhang, Z.; Yang, W.; Zhao, J.; Gu, H.; Xia, J.; et al. A Nd@ C82-polymer interface for efficient and stable perovskite solar cells. Nature 2025. [Google Scholar] [CrossRef]
- Wang, H.; Li, Q.; Zhu, Y.; Sui, X.; Fan, X.; Lin, M.; Shi, Y.; Zheng, Y.; Yuan, H.; Zhou, Y.; et al. Photomechanically accelerated degradation of perovskite solar cells. Energy Environ. Sci. 2025, 18, 2254–2263. [Google Scholar] [CrossRef]
- Heidrich, R.; Barretta, C.; Mordvinkin, A.; Pinter, G.; Oreski, G.; Gottschalg, R. UV lamp spectral effects on the aging behavior of encapsulants for photovoltaic modules. Sol. Energy Mater. Sol. Cells 2024, 266, 112674. [Google Scholar] [CrossRef]
- He, X.; Chen, H.; Yang, J.; Wang, T.; Pu, X.; Feng, G.; Jia, S.; Bai, Y.; Zhou, Z.; Cao, Q.; et al. Enhancing hole transport uniformity for efficient inverted perovskite solar cells through optimizing buried interface contacts and suppressing interface recombination. Angew. Chem. 2024, 136, e202412601. [Google Scholar] [CrossRef]
- Hu, Y.; Hutter, E.M.; Rieder, P.; Grill, I.; Hanisch, J.; Aygüler, M.F.; Hufnagel, A.G.; Handloser, M.; Bein, T.; Hartschuh, A.; et al. Understanding the role of cesium and rubidium additives in perovskite solar cells: Trap states, charge transport, and recombination. Adv. Energy Mater. 2018, 8, 1703057. [Google Scholar] [CrossRef]
- Yang, C.Q.; Yin, Z.W.; Li, W.; Cui, W.J.; Zhou, X.G.; Wang, L.D.; Zhi, R.; Xu, Y.Y.; Tao, Z.W.; Sang, X.; et al. Atomically deciphering the phase segregation in mixed halide perovskite. Adv. Funct. Mater. 2024, 34, 2400569. [Google Scholar] [CrossRef]
- Wang, R.; Xue, J.; Meng, L.; Lee, J.W.; Zhao, Z.; Sun, P.; Cai, L.; Huang, T.; Wang, Z.; Wang, Z.K.; et al. Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 2019, 3, 1464–1477. [Google Scholar] [CrossRef]
- Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J.M.; Alsari, M.; Booker, E.P.; Hutter, E.M.; Pearson, A.J.; et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 2018, 555, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Hu, W.; Liu, J.; Han, C.; Gao, Q.; Mei, A.; Zhou, Y.; Guo, F.; Han, H. Achievements, challenges, and future prospects for industrialization of perovskite solar cells. Light Sci. Appl. 2024, 13, 227. [Google Scholar] [CrossRef] [PubMed]
- Polyzoidis, C.; Rogdakis, K.; Kymakis, E. Indoor perovskite photovoltaics for the internet of things—Challenges and opportunities toward market uptake. Adv. Energy Mater. 2021, 11, 2101854. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, C.; Gao, Y.; Zhu, S.; Chen, F.; Huang, B.; Xie, Y.; Liu, Y.; Ma, M.; Wang, Z.; et al. Br vacancy defects healed perovskite indoor photovoltaic modules with certified power conversion efficiency exceeding 36%. Adv. Sci. 2022, 9, 2204138. [Google Scholar] [CrossRef]
- Min, J.; Demchyshyn, S.; Sempionatto, J.R.; Song, Y.; Hailegnaw, B.; Xu, C.; Yang, Y.; Solomon, S.; Putz, C.; Lehner, L.E.; et al. An autonomous wearable biosensor powered by a perovskite solar cell. Nat. Electron. 2023, 6, 630–641. [Google Scholar] [CrossRef]
- Cardinaletti, I.; Vangerven, T.; Nagels, S.; Cornelissen, R.; Schreurs, D.; Jaroslav Hruby, J.; Vodnik, J.; Devisscher, D.; Kesters, J.; D’Haen, J.; et al. Organic and perovskite solar cells for space applications. Sol. Energy Mater. Sol. Cells 2018, 182, 121–127. [Google Scholar] [CrossRef]
- Tu, Y.; Wu, J.; Xu, G.; Yang, X.; Cai, R.; Gong, Q.; Zhu, R.; Huang, W. Perovskite solar cells for space applications: Progress and challenges. Adv. Mater. 2021, 33, 2006545. [Google Scholar] [CrossRef]
- Laska, M.; Krzemińska, Z.; Kluczyk-Korch, K.; Schaadt, D.; Popko, E.; Jacak, W.A.; Jacak, J.E. Metallization of solar cells, exciton channel of plasmon photovoltaic effect in perovskite cells. Nano Energy 2020, 75, 104751. [Google Scholar] [CrossRef]
Category | Materials | Groups | PCE (%) | UV Stability * | Test Conditions | Ref. |
---|---|---|---|---|---|---|
Encapsulation | FTH Paper | Target | 20.26 | 81% | 100 h under 253 nm UV lamp, 384.61 mW/cm2 | [59] |
Control | 20.80 | 55% | ||||
Contrast | −0.54 | +26% | ||||
BBOT | Target | 21.10 | 95% | 720 h under 365 nm UV lamp, 5 mW/cm2 | [62] | |
Control | 20.70 | 60% | ||||
Contrast | +0.40 | +35% | ||||
Shellac plate | Target | Not mentioned | 91% | 280 h under 253 nm UV light and heated to 358 K. 15 kWh/m2 | [63] | |
Control | 69% | |||||
Contrast | +22% | |||||
Bulk phase | Sunscreen | Target | 23.09 | 80% | 24 h under 285 nm, 1.35 mW/cm2, 6 h under 365 nm, 600 mW/cm2 | [79] |
Control | 19.82 | 20% | ||||
Contrast | +3.27 | +60% | ||||
Buried interface | CsI-SnO2 | Target | 23.33 | 88% | 500 h under 365 nm UV lamp, 36.4 mW/cm2 | [80] |
Control | 21.95 | 38% | ||||
Contrast | +1.38 | +50% | ||||
Eu-MOF | Target | 22.16 | 85% | 1000 h light with a white LED lamp, at 0.94 V and 1 sun illumination | [81] | |
Control | 19.73 | 75% | ||||
Contrast | +2.43 | +10% | ||||
CsPbCl3 NCs | Target | 24.66 | 80% | 800 h under 365 nm UV lamp | [86] | |
Control | 22.06 | 40% | ||||
Contrast | +2.60 | +40% | ||||
CTLs | MeO-PhPACz | Target | 21.10 | 85% | 24 h under 365 nm UV lamp, 600 mW/cm2 | [89] |
Control | 19.53 | 60% | ||||
Contrast | +1.57 | +25% | ||||
Mg:CoOx | Target | 22.35 | 80% | 150 h under 365 nm UV lamp, 8 W/m2 | [95] | |
Control | 19.46 | 50% | ||||
Contrast | +2.89 | +30% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Yu, R.; Tan, Z. Photostability of Perovskite Solar Cells: Challenges and Strategies. Nanomaterials 2025, 15, 786. https://doi.org/10.3390/nano15110786
Liu R, Yu R, Tan Z. Photostability of Perovskite Solar Cells: Challenges and Strategies. Nanomaterials. 2025; 15(11):786. https://doi.org/10.3390/nano15110786
Chicago/Turabian StyleLiu, Ruohan, Runnan Yu, and Zhan’ao Tan. 2025. "Photostability of Perovskite Solar Cells: Challenges and Strategies" Nanomaterials 15, no. 11: 786. https://doi.org/10.3390/nano15110786
APA StyleLiu, R., Yu, R., & Tan, Z. (2025). Photostability of Perovskite Solar Cells: Challenges and Strategies. Nanomaterials, 15(11), 786. https://doi.org/10.3390/nano15110786