Observation of Thickness-Modulated Out-of-Plane Spin–Orbit Torque in Polycrystalline Few-Layer Td-WTe2 Film
Abstract
:1. Introduction
2. Experimental Methods
2.1. Preparation Methods
2.2. Device Fabrication
2.3. Characterization Methods and Instruments
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miron, I.M.; Garello, K.; Gaudin, G.; Zermatten, P.-J.; Costache, M.V.; Auffret, S.; Bandiera, S.; Rodmacq, B.; Schuhl, A.; Gambardella, P. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 2011, 476, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Cubukcu, M.; Boulle, O.; Drouard, M.; Garello, K.; Onur Avci, C.; Mihai Miron, I.; Langer, J.; Ocker, B.; Gambardella, P.; Gaudin, G. Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction. Appl. Phys. Lett. 2014, 104, 042406. [Google Scholar] [CrossRef]
- Fong, X.; Kim, Y.; Venkatesan, R.; Choday, S.H.; Raghunathan, A.; Roy, K. Spin-transfer torque memories: Devices, circuits, and systems. Proc. IEEE 2016, 104, 1449–1488. [Google Scholar] [CrossRef]
- Asifuzzaman, K.; Verdejo, R.S.; Radojković, P. Performance and Power Estimation of STT-MRAM main memory with reliable system-level simulation. ACM Trans. Embed. Comput. Syst. 2022, 21, 6. [Google Scholar] [CrossRef]
- Manchon, A.; Železný, J.; Miron, I.M.; Jungwirth, T.; Sinova, J.; Thiaville, A.; Garello, K.; Gambardella, P. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 2019, 91, 035004. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, Q. Two-dimensional materials for energy-efficient spin–orbit torque devices. ACS Nano 2020, 14, 9389–9407. [Google Scholar] [CrossRef]
- Liu, L.; Pai, C.F.; Li, Y.; Tseng, H.W.; Ralph, D.C.; Buhrman, R.A. Spin-torque switching with the giant spin Hall effect of tantalum. Science 2012, 336, 555–558. [Google Scholar] [CrossRef]
- Shao, Q.; Yu, G.; Lan, Y.-W.; Shi, Y.; Li, M.-Y.; Zheng, C.; Zhu, X.; Li, L.-J.; Amiri, P.K.; Wang, K.L. Strong rashba-edelstein effect-induced spin–orbit torques in monolayer transition metal dichalcogenide/ferromagnet bilayers. Nano Lett. 2016, 16, 7514–7520. [Google Scholar] [CrossRef]
- Pai, C.-F.; Liu, L.; Li, Y.; Tseng, H.W.; Ralph, D.C.; Buhrman, R.A. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 2012, 101, 122404. [Google Scholar] [CrossRef]
- Oh, Y.-W.; Ryu, J.; Kang, J.; Park, B.-G. Material and thickness investigation in ferromagnet/Ta/CoFeB trilayers for enhancement of spin–orbit torque and field-free switching. Adv. Electron. Mater. 2019, 5, 1900598. [Google Scholar] [CrossRef]
- de la Venta, J.J.; Wang, S.; Ramirez, J.G.; Schuller, I.K. Control of magnetism across metal to insulator transitions. Appl. Phys. Lett. 2013, 102, 122404. [Google Scholar] [CrossRef]
- Feng, J.; Li, K.; Zheng, M.; Zhang, W.; Liu, Y.; Wang, D.; Zhang, Z.; Zuo, C.; Xiong, R.; Lu, Z. Excellent spin-filtering and giant tunneling magnetoresistance in a dual-electrode van der Waals magnetic tunnel junction based on ferromagnetic CrSe2. Appl. Surf. Sci. 2023, 611, 155588. [Google Scholar] [CrossRef]
- Ali, M.N.; Xiong, J.; Flynn, S.; Tao, J.; Gibson, Q.D.; Schoop, L.M.; Liang, T.; Haldolaarachchige, N.; Hirschberger, M.; Ong, N.P.; et al. Large, non-saturating magnetoresistance in WTe2. Nature 2014, 514, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Das, P.K.; Di Sante, D.; Vobornik, I.; Fujii, J.; Okuda, T.; Bruyer, E.; Gyenis, A.; Feldman, B.E.; Tao, J.; Ciancio, R.; et al. Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2. Nat. Commun. 2016, 7, 10847. [Google Scholar] [CrossRef]
- Lin, X.; Zhu, L. Magnetization switching in van der Waals systems by spin-orbit torque. Mater. Today Electron. 2023, 4, 100037. [Google Scholar] [CrossRef]
- Feng, B.; Chan, Y.-H.; Feng, Y.; Liu, R.-Y.; Chou, M.-Y.; Kuroda, K.; Yaji, K.; Harasawa, A.; Moras, P.; Barinov, A.; et al. Spin texture in type-II Weyl semimetal WTe2. Phys. Rev. B 2016, 94, 195134. [Google Scholar] [CrossRef]
- Husain, S.; Chen, X.; Gupta, R.; Behera, N.; Kumar, P.; Edvinsson, T.; García-Sánchez, F.; Brucas, R.; Chaudhary, S.; Sanyal, B.; et al. Large damping-like spin–orbit torque in a 2D conductive 1T-TaS2 monolayer. Nano Lett. 2020, 20, 6372–6380. [Google Scholar] [CrossRef]
- Stiehl, G.M.; Li, R.; Gupta, V.; Baggari, I.E.; Jiang, S.; Xie, H.; Kourkoutis, L.F.; Mak, K.F.; Shan, J.; Buhrman, R.A.; et al. Layer-dependent spin-orbit torques generated by the centrosymmetric transition metal dichalcogenide β-MoTe2. Phys. Rev. B 2019, 100, 184402. [Google Scholar] [CrossRef]
- Xu, H.; Wei, J.; Zhou, H.; Feng, J.; Xu, T.; Du, H.; He, C.; Huang, Y.; Zhang, J.; Liu, Y.; et al. High Spin Hall Conductivity in Large-Area Type-II Dirac Semimetal PtTe2. Adv. Mater. 2020, 32, 2000513. [Google Scholar] [CrossRef]
- Guimarães, M.H.D.; Stiehl, G.M.; MacNeill, D.; Reynolds, N.D.; Ralph, D.C. Spin–orbit torques in NbSe2/permalloy bilayers. Nano Lett. 2018, 18, 1311–1316. [Google Scholar] [CrossRef]
- Lv, W.; Jia, Z.; Wang, B.; Lu, Y.; Luo, X.; Zhang, B.; Zeng, Z.; Liu, Z. Electric-field control of spin–orbit torques in WS2/permalloy bilayers. ACS Appl. Mater. Interfaces 2018, 10, 2843–2849. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wu, W.; Wen, Y.; Zhang, C.; Zhang, J.; Zhang, S.; Yu, Z.; Yang, S.A.; Manchon, A.; Zhang, X. Spin-momentum locking and spin-orbit torques in magnetic nano-heterojunctions composed of Weyl semimetal WTe2. Nat. Commun. 2018, 9, 3990. [Google Scholar] [CrossRef] [PubMed]
- MacNeill, D.; Stiehl, G.M.; Guimaraes, M.H.D.; Buhrman, R.A.; Park, J.; Ralph, D.C. Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 2017, 13, 300–305. [Google Scholar] [CrossRef]
- MacNeill, D.; Stiehl, G.M.; Guimarães, M.H.D.; Reynolds, N.D.; Buhrman, R.A.; Ralph, D.C. Thickness dependence of spin-orbit torques generated by WTe2. Phys. Rev. B 2017, 96, 054450. [Google Scholar] [CrossRef]
- Peng, C.-W.; Liao, W.-B.; Chen, T.-Y.; Pai, C.-F. Efficient spin-orbit torque generation in semiconducting WTe2 with hopping transport. ACS Appl. Mater. Interfaces 2021, 13, 15950–15957. [Google Scholar] [CrossRef]
- Wang, F.; Shi, G.; Kim, K.-W.; Park, H.-J.; Jang, J.G.; Tan, H.R.; Lin, M.; Liu, Y.; Kim, T.; Yang, D.; et al. Field-free switching of perpendicular magnetization by two-dimensional PtTe2/WTe2 van der Waals heterostructures with high spin Hall conductivity. Nat. Mater. 2024, 23, 768–774. [Google Scholar] [CrossRef]
- Shi, S.; Liang, S.; Zhu, Z.; Cai, K.; Pollard, S.D.; Wang, Y.; Wang, J.; Wang, Q.; He, P.; Yu, J.; et al. All-electric magnetization switching and Dzyaloshinskii-Moriya interaction in WTe2/ferromagnet heterostructures. Nat. Nanotechnol. 2019, 14, 945–949. [Google Scholar] [CrossRef]
- Zhao, B.; Khokhriakov, D.; Zhang, Y.; Fu, H.; Karpiak, B.; Hoque, A.M.; Xu, X.; Jiang, Y.; Yan, B.; Dash, S.P. Observation of charge to spin conversion in Weyl semimetal WTe2 at room temperature. Phys. Rev. Res. 2020, 2, 013286. [Google Scholar] [CrossRef]
- Wang, Q.; Li, J.; Besbas, J.; Hsu, C.-H.; Cai, K.; Yang, L.; Cheng, S.; Wu, Y.; Zhang, W.; Wang, K.; et al. Room-temperature nanoseconds spin relaxation in WTe2 and MoTe2 thin films. Adv. Sci. 2018, 5, 1700912. [Google Scholar] [CrossRef]
- Zhou, Y.; Jang, H.; Woods, J.M.; Xie, Y.; Kumaravadivel, P.; Pan, G.A.; Liu, J.; Liu, Y.; Cahill, D.G.; Cha, J.J. Direct synthesis of large-Scale WTe2 thin films with low thermal conductivity. Adv. Funct. Mater. 2017, 27, 1605928. [Google Scholar] [CrossRef]
- Li, J.; Cheng, S.; Liu, Z.; Zhang, W.; Chang, H. Centimeter-Scale, large-area, few-Layer 1T’-WTe2 films by chemical vapor deposition and its long-term stability in ambient condition. J. Phys. Chem. C 2018, 122, 7005–7012. [Google Scholar] [CrossRef]
- Kim, Y.; Jhon, Y.I.; Park, J.; Kim, J.H.; Lee, S.; Jhon, Y.M. Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2. Nanoscale 2016, 8, 2309–2316. [Google Scholar] [CrossRef] [PubMed]
- Pandey, L.; Kumar, N.; Khan, A.; Kumar Gupta, N.; Hait, S.; Barwal, V.; Mishra, V.; Sharma, N.; Chaudhary, S. Growth and characterization of the sputtered type-II topological semimetal PdTe2 thin films and PdTe2/Co60Fe20B20 heterostructures. J. Magn. Magn. Mater. 2023, 584, 171075. [Google Scholar] [CrossRef]
- Zhang, E.; Chen, R.; Huang, C.; Yu, J.; Zhang, K.; Wang, W.; Liu, S.; Ling, J.; Wan, X.; Lu, H.-Z.; et al. Tunable positive to negative magnetoresistance in atomically thin WTe2. Nano Lett. 2017, 17, 878–885. [Google Scholar] [CrossRef]
- Song, P.; Hsu, C.; Zhao, M.; Zhao, X.; Chang, T.R.; Teng, J.; Lin, H.; Loh, K.P. Few-layer 1T′ MoTe2 as gapless semimetal with thickness dependent carrier transport. 2D Mater. 2018, 5, 031010. [Google Scholar] [CrossRef]
- Adhikari, R.; Adhikari, S.; Faina, B.; Terschanski, M.; Bork, S.; Leimhofer, C.; Cinchetti, M.; Bonanni, A. Positive magnetoresistance and chiral anomaly in exfoliated type-II weyl semimetal Td-WTe2. Nanomaterials 2021, 11, 2755. [Google Scholar] [CrossRef]
- Wang, L.; Gutiérrez-Lezama, I.; Barreteau, C.; Ubrig, N.; Giannini, E.; Morpurgo, A.F. Tuning magnetotransport in a compensated semimetal at the atomic scale. Nat. Commun. 2015, 6, 8892. [Google Scholar] [CrossRef]
- Tian, Z.K.; Guo, J.J.; Luo, Z.y.; Nie, Y.Z.; Xia, Q.l.; Zhou, Y.; Guo, G.H. Abnormal sign change of angle-dependent magnetoresistance in polycrystalline WTe2 nanoplate. Phys. E Low-Dimens. Syst. Nanostruct. 2023, 150, 115699. [Google Scholar] [CrossRef]
- Nepal, R.; Sharma, V.; Pogue, L.; Drichko, N.; Budhani, R.C. Disorder driven variations in magnetoresistance and planar Hall effect in Bi2Te3 thin films. Thin Solid Films 2022, 761, 139520. [Google Scholar] [CrossRef]
- Zheng, M.; Zhang, W.; Lv, Y.; Liu, Y.; Xiong, R.; Zhang, Z.; Lu, Z. Low-temperature fabrication, magnetoresistance and spin pumping studies of polycrystalline few-layer 1T’-MoTe2 films. J. Alloys Compd. 2025, 1015, 178775. [Google Scholar] [CrossRef]
- Kondou, K.; Sukegawa, H.; Kasai, S.; Mitani, S.; Niimi, Y.; Otani, Y. Influence of inverse spin Hall effect in spin-torque ferromagnetic resonance measurements. Appl. Phys. Express 2016, 9, 023002. [Google Scholar] [CrossRef]
- Fan, Y.; Li, H.; DC, M.; Peterson, T.; Held, J.; Sahu, P.; Chen, J.; Zhang, D.; Mkhoyan, A.; Wang, J.P. Spin pumping and large field-like torque at room temperature in sputtered amorphous WTe2−x films. APL Mater. 2020, 8, 041102. [Google Scholar] [CrossRef]
- Kittel, C. On the Theory of Ferromagnetic Resonance Absorption. Phys. Rev. 1948, 73, 155–161. [Google Scholar] [CrossRef]
- Behera, N.; Kumar, A.; Chaudhary, S.; Pandya, D.K. Two magnon scattering and anti-damping behavior in a two-dimensional epitaxial TiN/Py(tPy)/β-Ta(tTa) system. RSC Adv. 2017, 7, 8106–8117. [Google Scholar] [CrossRef]
- Weber, R.; Han, D.-S.; Boventer, I.; Jaiswal, S.; Lebrun, R.; Jakob, G.; Kläui, M. Gilbert damping of CoFe-alloys. J. Phys. D Appl. Phys. 2019, 52, 325001. [Google Scholar] [CrossRef]
- Tao, X.; Liu, Q.; Miao, B.; Yu, R.; Feng, Z.; Sun, L.; You, B.; Du, J.; Chen, K.; Zhang, S.; et al. Self-consistent determination of spin Hall angle and spin diffusion length in Pt and Pd: The role of the interface spin loss. Sci. Adv. 2018, 4, eaat1670. [Google Scholar] [CrossRef]
- Hait, S.; Gupta, N.K.; Sharma, N.; Pandey, L.; Kumar, N.; Barwal, V.; Kumar, P.; Chaudhary, S. Spin pumping in nanolayers of WS2/Co2FeAl heterostructures: Large spin mixing conductance and spin transparency. J. Appl. Phys. 2022, 132, 133901. [Google Scholar] [CrossRef]
- Mendes, J.B.S.; Aparecido-Ferreira, A.; Holanda, J.; Azevedo, A.; Rezende, S.M. Efficient spin to charge current conversion in the 2D semiconductor MoS2 by spin pumping from yttrium iron garnet. Appl. Phys. Lett. 2018, 112, 242407. [Google Scholar] [CrossRef]
- Sun, W.; Chen, Y.; Zhuang, W.; Chen, Z.; Song, A.; Liu, R.; Wang, X. Sizable spin-to-charge conversion in PLD-grown amorphous (Mo, W)Te2−x films. Nanotechnology 2023, 34, 135001. [Google Scholar] [CrossRef]
- You, Y.; Sakimura, H.; Harumoto, T.; Nakamura, Y.; Shi, J.; Song, C.; Pan, F.; Ando, K. Study of spin mixing conductance of single oriented Pt in Pt/Ni81Fe19 heterostructure by spin pumping. AIP Adv. 2021, 11, 035211. [Google Scholar] [CrossRef]
- Paikaray, B.; Sahoo, S.K.; Manoj, T.; Sriram, K.; Basumatary, H.; Haldar, A.; Murapaka, C. Large spin pumping and inverse spin Hall effect in Ta/Py bilayer structures. Phys. Status Solidi A 2022, 219, 2100608. [Google Scholar] [CrossRef]
- Hait, S.; Husain, S.; Bangar, H.; Pandey, L.; Barwal, V.; Kumar, N.; Gupta, N.K.; Mishra, V.; Sharma, N.; Gupta, P.; et al. Spin pumping through different spin–orbit coupling interfaces in β-W/interlayer/Co2FeAl heterostructures. ACS Appl. Mater. Interfaces 2022, 14, 37182–37191. [Google Scholar] [CrossRef] [PubMed]
- Mosendz, O.; Pearson, J.E.; Fradin, F.Y.; Bauer, G.E.W.; Bader, S.D.; Hoffmann, A. Quantifying spin hall angles from spin pumping: Experiments and theory. Phys. Rev. Lett. 2010, 104, 046601. [Google Scholar] [CrossRef] [PubMed]
- Rogdakis, K.; Sud, A.; Amado, M.; Lee, C.M.; McKenzie-Sell, L.; Jeon, K.R.; Cubukcu, M.; Blamire, M.G.; Robinson, J.W.A.; Cohen, L.F.; et al. Spin transport parameters of NbN thin films characterized by spin pumping experiments. Phys. Rev. Mater. 2019, 3, 014406. [Google Scholar] [CrossRef]
- Azevedo, A.; Vilela-Leão, L.H.; Rodríguez-Suárez, R.L.; Lacerda Santos, A.F.; Rezende, S.M. Spin pumping and anisotropic magnetoresistance voltages in magnetic bilayers: Theory and experiment. Phys. Rev. B 2011, 83, 144402. [Google Scholar] [CrossRef]
- Feng, Z.; Hu, J.; Sun, L.; You, B.; Wu, D.; Du, J.; Zhang, W.; Hu, A.; Yang, Y.; Tang, D.M.; et al. Spin Hall angle quantification from spin pumping and microwave photoresistance. Phys. Rev. B 2012, 85, 214423. [Google Scholar] [CrossRef]
- Yu, R.; Miao, B.F.; Sun, L.; Liu, Q.; Du, J.; Omelchenko, P.; Heinrich, B.; Wu, M.; Ding, H.F. Determination of spin Hall angle and spin diffusion length in β-phase-dominated tantalum. Phys. Rev. Mater. 2018, 2, 074406. [Google Scholar] [CrossRef]
- Bai, H.; Zhou, X.F.; Zhang, H.W.; Kong, W.W.; Liao, L.Y.; Feng, X.Y.; Chen, X.Z.; You, Y.F.; Zhou, Y.J.; Han, L.; et al. Control of spin-orbit torques through magnetic symmetry in differently oriented noncollinear antiferromagnetic Mn3Pt. Phys. Rev. B 2021, 104, 104401. [Google Scholar] [CrossRef]
- Liu, L.; Moriyama, T.; Ralph, D.C.; Buhrman, R.A. Spin-torque ferromagnetic resonance induced by the spin hall effect. Phys. Rev. Lett. 2011, 106, 036601. [Google Scholar] [CrossRef]
- Amin, V.P.; Stiles, M.D. Spin transport at interfaces with spin-orbit coupling: Formalism. Phys. Rev. B 2016, 94, 104419. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, Q.; Li, R.; Wang, Y.; Lv, W.; Zhang, B.; Fan, Y.; Wu, H.; Zeng, Z. Enhanced spin–orbit torque and field-free switching in Au/TMDs/Ni hybrid structures. Nanoscale 2023, 15, 3142–3149. [Google Scholar] [CrossRef] [PubMed]
- Bose, A.; Schreiber, N.J.; Jain, R.; Shao, D.-F.; Nair, H.P.; Sun, J.; Zhang, X.S.; Muller, D.A.; Tsymbal, E.Y.; Schlom, D.G.; et al. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nat. Electron. 2022, 5, 267–274. [Google Scholar] [CrossRef]
- Bangar, H.; Gupta, P.; Singh, R.; Muduli, P.K.; Dewan, S.; Das, S. Optimization of growth of large-area SnS thin films and heterostructures for spin pumping and spin-orbit torque. Phys. Rev. Mater. 2023, 7, 094406. [Google Scholar] [CrossRef]
- Bainsla, L.; Zhao, B.; Behera, N.; Hoque, A.M.; Sjöström, L.; Martinelli, A.; Abdel-Hafiez, M.; Åkerman, J.; Dash, S.P. Large out-of-plane spin–orbit torque in topological Weyl semimetal TaIrTe4. Nat. Commun. 2024, 15, 4649. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, H.; Jia, K.; Lan, G.; Huang, Z.; He, B.; He, C.; Shao, Q.; Wang, Y.; Zhao, M.; et al. Room temperature field-free switching of perpendicular magnetization through spin-orbit torque originating from low-symmetry type II Weyl semimetal. Sci. Adv. 2023, 9, eadg9819. [Google Scholar] [CrossRef]
- Shi, S.; Li, J.; Hsu, C.-H.; Lee, K.; Wang, Y.; Yang, L.; Wang, J.; Wang, Q.; Wu, H.; Zhang, W.; et al. Observation of the out-of-plane polarized spin current from CVD grown WTe2. Adv. Quantum Technol. 2021, 4, 2100038. [Google Scholar] [CrossRef]
Sample | Ms (kA/m) | Meff (kA/m) | α | Δα/10−3 | /(1019 m−2) | JS (A/m2) | θSH |
---|---|---|---|---|---|---|---|
NiFe(6) | 605 | 522 | 0.01089 | — | — | — | — |
Td-WTN-4 | 552 | 549 | 0.01276 | 1.87 | 0.400 | 3918.63 | 0.0785 |
Td-WTN-6 | 544 | 547 | 0.01357 | 2.68 | 0.564 | 4965.47 | 0.0756 |
Td-WTN-8 | 537 | 488 | 0.01593 | 5.04 | 1.048 | 6776.04 | 0.0744 |
Td-WTN-10 | 533 | 473 | 0.01742 | 6.53 | 1.347 | 7341.57 | 0.0779 |
Td-WTN-12 | 522 | 454 | 0.01835 | 7.46 | 1.508 | 7558.32 | 0.0960 |
Sample | Meff (kA/m) | α | σSH, y (103 ħ/2e Ω−1m–1) | σSH, z (103 ħ/2e Ω−1m–1) | θSH, y | θSH, z |
---|---|---|---|---|---|---|
Td-WTN-4 | 517 | 0.01266 | 2.83 | 0.09 | 0.050 | 0.002 |
Td-WTN-6 | 510 | 0.01286 | 4.13 | 0.15 | 0.071 | 0.003 |
Td-WTN-8 | 498 | 0.01569 | 4.35 | 0.24 | 0.074 | 0.005 |
Td-WTN-10 | 470 | 0.02249 | 4.68 | 0.58 | 0.077 | 0.010 |
Td-WTN-12 | 441 | 0.02426 | 4.93 | 0.81 | 0.078 | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, M.; Zhang, W.; Lv, Y.; Liu, Y.; Xiong, R.; Zhang, Z.; Lu, Z. Observation of Thickness-Modulated Out-of-Plane Spin–Orbit Torque in Polycrystalline Few-Layer Td-WTe2 Film. Nanomaterials 2025, 15, 762. https://doi.org/10.3390/nano15100762
Zheng M, Zhang W, Lv Y, Liu Y, Xiong R, Zhang Z, Lu Z. Observation of Thickness-Modulated Out-of-Plane Spin–Orbit Torque in Polycrystalline Few-Layer Td-WTe2 Film. Nanomaterials. 2025; 15(10):762. https://doi.org/10.3390/nano15100762
Chicago/Turabian StyleZheng, Mingkun, Wancheng Zhang, You Lv, Yong Liu, Rui Xiong, Zhenhua Zhang, and Zhihong Lu. 2025. "Observation of Thickness-Modulated Out-of-Plane Spin–Orbit Torque in Polycrystalline Few-Layer Td-WTe2 Film" Nanomaterials 15, no. 10: 762. https://doi.org/10.3390/nano15100762
APA StyleZheng, M., Zhang, W., Lv, Y., Liu, Y., Xiong, R., Zhang, Z., & Lu, Z. (2025). Observation of Thickness-Modulated Out-of-Plane Spin–Orbit Torque in Polycrystalline Few-Layer Td-WTe2 Film. Nanomaterials, 15(10), 762. https://doi.org/10.3390/nano15100762