High-Performance Coaxial Counter-Rotating Triboelectric Nanogenerator with Lift–Drag Hybrid Blades for Wind Energy Harvesting
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Design and Working Principle
3.2. Blade Selection and Structural Optimization
3.3. Electrical Output of the NC-Mode CCR-TENG
3.4. Electrical Output of SC-Mode CCR-TENG
3.5. Demonstration of the CCR-TENG
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akhtar, F.; Rehmani, M.H. Energy Replenishment Using Renewable and Traditional Energy Resources for Sustainable Wireless Sensor Networks: A Review. Renew. Sustain. Energy Rev. 2015, 45, 769–784. [Google Scholar] [CrossRef]
- Wang, Z.L. Entropy Theory of Distributed Energy for Internet of Things. Nano Energy 2019, 58, 669–672. [Google Scholar] [CrossRef]
- Zhao, T.; Xu, M.; Xiao, X.; Ma, Y.; Li, Z.; Wang, Z.L. Recent Progress in Blue Energy Harvesting for Powering Distributed Sensors in Ocean. Nano Energy 2021, 88, 106199. [Google Scholar] [CrossRef]
- Abdullah, A.M.; Flores, A.; Chowdhury, A.R.; Li, J.; Mao, Y.; Uddin, M.J. Synthesis and Fabrication of Self-Sustainable Triboelectric Energy Case for Powering Smart Electronic Devices. Nano Energy 2020, 73, 104774. [Google Scholar] [CrossRef]
- López, M.; Rodríguez, N.; Iglesias, G. Combined Floating Offshore Wind and Solar PV. J. Mar. Sci. Eng. 2020, 8, 576. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, Y.; Huang, L.; Ren, Z.; Jia, F. Optimization of Offshore Grid Planning Considering Onshore Network Expansions. Renew. Energy 2022, 181, 91–104. [Google Scholar] [CrossRef]
- Ding, J.; Jiang, J.; Lin, T.; Liu, G.; Yao, H.; Wen, H.; Li, S.; Mo, F.; Wan, L. Realization of a Sustainable Charging Power Source by In Situ Low-Frequency Water Wave Energy Harvesting with a Coaxial Triboelectric–Electromagnetic Hybrid Generator. Adv. Energy Sustain. Res. 2022, 3, 2200087. [Google Scholar] [CrossRef]
- Zu, L.; Liu, D.; Shao, J.; Liu, Y.; Shu, S.; Li, C.; Shi, X.; Chen, B.; Wang, Z.L. A Self-Powered Early Warning Glove with Integrated Elastic-Arched Triboelectric Nanogenerator and Flexible Printed Circuit for Real-Time Safety Protection. Adv. Mater. Technol. 2022, 7, 2100787. [Google Scholar] [CrossRef]
- Chen, C.; Guo, H.; Chen, L.; Wang, Y.-C.; Pu, X.; Yu, W.; Wang, F.; Du, Z.; Wang, Z.L. Direct Current Fabric Triboelectric Nanogenerator for Biomotion Energy Harvesting. ACS Nano 2020, 14, 4585–4594. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Yi, F.; Zi, Y.; Lin, J.; Wang, X.; Xu, Y.; Wang, Z.L. Sustainably Powering Wearable Electronics Solely by Biomechanical Energy. Nat. Commun. 2016, 7, 12744. [Google Scholar] [CrossRef]
- Yuan, W.; Zhang, C.; Zhang, B.; Wei, X.; Yang, O.; Liu, Y.; He, L.; Cui, S.; Wang, J.; Wang, Z.L. Wearable, Breathable and Waterproof Triboelectric Nanogenerators for Harvesting Human Motion and Raindrop Energy. Adv. Mater. Technol. 2022, 7, 2101139. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, B.; Tian, Y.; Meng, X.; Lin, X.; He, Y.; Xing, C.; Dai, H.; Wang, L. Vortex-Induced Vibration Triboelectric Nanogenerator for Low Speed Wind Energy Harvesting. Nano Energy 2022, 95, 107029. [Google Scholar] [CrossRef]
- Zhao, X.; Nashalian, A.; Ock, I.W.; Popoli, S.; Xu, J.; Yin, J.; Tat, T.; Libanori, A.; Chen, G.; Zhou, Y.; et al. A Soft Magnetoelastic Generator for Wind-Energy Harvesting. Adv. Mater. 2022, 34, e2204238. [Google Scholar] [CrossRef]
- Liu, F.-R.; Zou, H.-X.; Zhang, W.-M.; Peng, Z.-K.; Meng, G. Y-Type Three-Blade Bluff Body for Wind Energy Harvesting. Appl. Phys. Lett. 2018, 112, 233903. [Google Scholar] [CrossRef]
- Yong, S.; Wang, H.; Lin, Z.; Li, X.; Zhu, B.; Yang, L.; Ding, W.; Liao, R.; Wang, J.; Wang, Z.L. Environmental Self-Adaptive Wind Energy Harvesting Technology for Self-Powered System by Triboelectric-Electromagnetic Hybridized Nanogenerator with Dual-Channel Power Management Topology. Adv. Energy Mater. 2022, 12, 2202469. [Google Scholar] [CrossRef]
- Zhu, W.; Bai, Y.; Yang, Y. Harvesting Wind Energy by Triboelectric Nanogenerators. In Handbook of Triboelectric Nanogenerators; Wang, Z.L., Yang, Y., Zhai, J., Wang, J., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–32. ISBN 978-3-031-05722-9. [Google Scholar]
- Zheng, Q.; Jin, Y.; Liu, Z.; Ouyang, H.; Li, H.; Shi, B.; Jiang, W.; Zhang, H.; Li, Z.; Wang, Z.L. Robust Multilayered Encapsulation for High-Performance Triboelectric Nanogenerator in Harsh Environment. ACS Appl. Mater. Interfaces 2016, 8, 26697–26703. [Google Scholar] [CrossRef]
- Choi, D.; Lee, Y.; Lin, Z.-H.; Cho, S.; Kim, M.; Ao, C.K.; Soh, S.; Sohn, C.; Jeong, C.K.; Lee, J.; et al. Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications. ACS Nano 2023, 17, 11087–11219. [Google Scholar] [CrossRef]
- Zhu, G.; Chen, J.; Zhang, T.; Jing, Q.; Wang, Z.L. Radial-Arrayed Rotary Electrification for High Performance Triboelectric Generator. Nat. Commun. 2014, 5, 3426. [Google Scholar] [CrossRef]
- He, W.; Liu, W.; Chen, J.; Wang, Z.; Liu, Y.; Pu, X.; Yang, H.; Tang, Q.; Yang, H.; Guo, H.; et al. Boosting Output Performance of Sliding Mode Triboelectric Nanogenerator by Charge Space-Accumulation Effect. Nat. Commun. 2020, 11, 4277. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cao, Y.; Yu, X.; Xu, Y.; Yang, Y.; Liu, S.; Cheng, T.; Wang, Z.L. Breeze-Driven Triboelectric Nanogenerator for Wind Energy Harvesting and Application in Smart Agriculture. Appl. Energy 2022, 306, 117977. [Google Scholar] [CrossRef]
- Yong, S.; Wang, J.; Yang, L.; Wang, H.; Luo, H.; Liao, R.; Wang, Z.L. Auto-Switching Self-Powered System for Efficient Broad-Band Wind Energy Harvesting Based on Dual-Rotation Shaft Triboelectric Nanogenerator. Adv. Energy Mater. 2021, 11, 2101194. [Google Scholar] [CrossRef]
- Han, J.Y.; Singh, H.H.; Won, S.; Kong, D.S.; Hu, Y.C.; Ko, Y.J.; Lee, K.-T.; Wie, J.J.; Jung, J.H. Highly Durable Direct-Current Power Generation in Polarity-Controlled and Soft-Triggered Rotational Triboelectric Nanogenerator. Appl. Energy 2022, 314, 119006. [Google Scholar] [CrossRef]
- Lin, L.; Wang, S.; Niu, S.; Liu, C.; Xie, Y.; Wang, Z.L. Noncontact Free-Rotating Disk Triboelectric Nanogenerator as a Sustainable Energy Harvester and Self-Powered Mechanical Sensor. ACS Appl. Mater. Interfaces 2014, 6, 3031–3038. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Wang, D.; Wang, J.; Li, J.; Wang, Z.; Li, B.; Mu, Z.; Niu, S.; Zhang, J.; Ba, K.; et al. A Durable Triboelectric Nanogenerator with a Coaxial Counter-Rotating Design for Efficient Harvesting of Random Mechanical Energy. Nano Energy 2023, 105, 108006. [Google Scholar] [CrossRef]
- Wang, R.; Xiong, Y. An Integral Panel Method for the Hydrodynamic Analysis of Hybrid Contra-Rotating Shaft Pod Propulsors. J. Ocean Eng. Sci. 2018, 3, 175–185. [Google Scholar] [CrossRef]
- Nouri, N.M.; Mohammadi, S.; Zarezadeh, M. Optimization of a Marine Contra-Rotating Propellers Set. Ocean Eng. 2018, 167, 397–404. [Google Scholar] [CrossRef]
- Panjwani, B.; Quinsard, C.; Przemysław, D.G.; Furseth, J. Virtual Modelling and Testing of the Single and Contra-Rotating Co-Axial Propeller. Drones 2020, 4, 42. [Google Scholar] [CrossRef]
- Shchur, I.; Klymko, V.; Xie, S.; Schmidt, D. Design Features and Numerical Investigation of Counter-Rotating VAWT with Co-Axial Rotors Displaced from Each Other along the Axis of Rotation. Energies 2023, 16, 4493. [Google Scholar] [CrossRef]
- Chen, W.-H.; Chen, C.-Y.; Huang, C.-Y.; Hwang, C.-J. Power Output Analysis and Optimization of Two Straight-Bladed Vertical-Axis Wind Turbines. Appl. Energy 2017, 185, 223–232. [Google Scholar] [CrossRef]
- Zou, H.; Zhang, Y.; Guo, L.; Wang, P.; He, X.; Dai, G.; Zheng, H.; Chen, C.; Wang, A.C.; Xu, C.; et al. Quantifying the Triboelectric Series. Nat. Commun. 2019, 10, 1427. [Google Scholar] [CrossRef]
- Han, J.; Feng, Y.; Chen, P.; Liang, X.; Pang, H.; Jiang, T.; Wang, Z.L. Wind-Driven Soft-Contact Rotary Triboelectric Nanogenerator Based on Rabbit Fur with High Performance and Durability for Smart Farming. Adv. Funct. Mater. 2022, 32, 2108580. [Google Scholar] [CrossRef]
- Long, L.; Liu, W.; Wang, Z.; He, W.; Li, G.; Tang, Q.; Guo, H.; Pu, X.; Liu, Y.; Hu, C. High Performance Floating Self-Excited Sliding Triboelectric Nanogenerator for Micro Mechanical Energy Harvesting. Nat. Commun. 2021, 12, 4689. [Google Scholar] [CrossRef]
- Wang, Z.L. On Maxwell’s Displacement Current for Energy and Sensors: The Origin of Nanogenerators. Mater. Today 2017, 20, 74–82. [Google Scholar] [CrossRef]
- Li, X.; Gao, Q.; Cao, Y.; Yang, Y.; Liu, S.; Wang, Z.L.; Cheng, T. Optimization Strategy of Wind Energy Harvesting via Triboelectric-Electromagnetic Flexible Cooperation. Appl. Energy 2022, 307, 118311. [Google Scholar] [CrossRef]
- Zhu, M.; Yu, Y.; Zhu, J.; Zhang, J.; Gao, Q.; Li, H.; Zhang, Y.; Wang, Z.L.; Cheng, T. Bionic Blade Lift-Drag Combination Triboelectric-Electromagnetic Hybrid Generator with Enhanced Aerodynamic Performance for Wind Energy Harvesting. Adv. Energy Mater. 2023, 13, 2303119. [Google Scholar] [CrossRef]
- Dang, H.; Wang, Y.; Zhang, S.; Gao, Q.; Li, X.; Wan, L.; Wang, Z.L.; Cheng, T. Triboelectric-Electromagnetic Hybrid Generator with the Inertia-Driven Conversion Mechanism for Wind Energy Harvesting and Scale Warning. Mater. Today Energy 2022, 29, 101136. [Google Scholar] [CrossRef]
- Gui, Y.; Wang, Y.; He, S.; Yang, J. Self-Powered Smart Agriculture Real-Time Sensing Device Based on Hybrid Wind Energy Harvesting Triboelectric-Electromagnetic Nanogenerator. Energy Convers. Manag. 2022, 269, 116098. [Google Scholar] [CrossRef]
- Zou, H.-X.; Zhao, L.-C.; Wang, Q.; Gao, Q.-H.; Yan, G.; Wei, K.-X.; Zhang, W.-M. A Self-Regulation Strategy for Triboelectric Nanogenerator and Self-Powered Wind-Speed Sensor. Nano Energy 2022, 95, 106990. [Google Scholar] [CrossRef]
- Liu, D.; Li, C.; Chen, P.; Zhao, X.; Tang, W.; Wang, Z.L. Sustainable Long-Term and Wide-Area Environment Monitoring Network Based on Distributed Self-Powered Wireless Sensing Nodes. Adv. Energy Mater. 2023, 13, 2202691. [Google Scholar] [CrossRef]
- Mohamed, M.H. Performance Investigation of H-Rotor Darrieus Turbine with New Airfoil Shapes. Energy 2012, 47, 522–530. [Google Scholar] [CrossRef]
- Alom, N.; Saha, U.K. Influence of Blade Profiles on Savonius Rotor Performance: Numerical Simulation and Experimental Validation. Energy Convers. Manag. 2019, 186, 267–277. [Google Scholar] [CrossRef]
- Zhang, H.; Li, B.; Li, B.; Yang, C. Influence of Propeller Parameters on the Aerodynamic Performance of Shrouded Coaxial Dual Rotors in Hover. Aerospace 2023, 10, 859. [Google Scholar] [CrossRef]
- Hassanzadeh, R.; Mohammadnejad, M. Effects of Inward and Outward Overlap Ratios on the Two-Blade Savonius Type of Vertical Axis Wind Turbine Performance. Int. J. Green Energy 2019, 16, 1485–1496. [Google Scholar] [CrossRef]
- Roy, S.; Saha, U.K. Computational Study to Assess the Influence of Overlap Ratio on Static Torque Characteristics of a Vertical Axis Wind Turbine. Procedia Eng. 2013, 51, 694–702. [Google Scholar] [CrossRef]
- Huo, Z.-Y.; Kim, Y.-J.; Suh, I.-Y.; Lee, D.-M.; Lee, J.H.; Du, Y.; Wang, S.; Yoon, H.-J.; Kim, S.-W. Triboelectrification Induced Self-Powered Microbial Disinfection Using Nanowire-Enhanced Localized Electric Field. Nat. Commun. 2021, 12, 3693. [Google Scholar] [CrossRef]
- Kwak, S.S.; Kim, S.M.; Ryu, H.; Kim, J.; Khan, U.; Yoon, H.-J.; Jeong, Y.H.; Kim, S.-W. Butylated Melamine Formaldehyde as a Durable and Highly Positive Friction Layer for Stable, High Output Triboelectric Nanogenerators. Energy Environ. Sci. 2019, 12, 3156–3163. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, F.; Zhao, J.; Li, F.; Chu, Y.; Du, H.; Sun, M.; Xi, Z.; Du, T.; Xu, M. High-Performance Coaxial Counter-Rotating Triboelectric Nanogenerator with Lift–Drag Hybrid Blades for Wind Energy Harvesting. Nanomaterials 2024, 14, 598. https://doi.org/10.3390/nano14070598
Yan F, Zhao J, Li F, Chu Y, Du H, Sun M, Xi Z, Du T, Xu M. High-Performance Coaxial Counter-Rotating Triboelectric Nanogenerator with Lift–Drag Hybrid Blades for Wind Energy Harvesting. Nanomaterials. 2024; 14(7):598. https://doi.org/10.3390/nano14070598
Chicago/Turabian StyleYan, Fei, Junhao Zhao, Fangming Li, Yiyao Chu, Hengxu Du, Minzheng Sun, Ziyue Xi, Taili Du, and Minyi Xu. 2024. "High-Performance Coaxial Counter-Rotating Triboelectric Nanogenerator with Lift–Drag Hybrid Blades for Wind Energy Harvesting" Nanomaterials 14, no. 7: 598. https://doi.org/10.3390/nano14070598
APA StyleYan, F., Zhao, J., Li, F., Chu, Y., Du, H., Sun, M., Xi, Z., Du, T., & Xu, M. (2024). High-Performance Coaxial Counter-Rotating Triboelectric Nanogenerator with Lift–Drag Hybrid Blades for Wind Energy Harvesting. Nanomaterials, 14(7), 598. https://doi.org/10.3390/nano14070598