Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (333)

Search Parameters:
Keywords = wind energy harvesting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3506 KiB  
Review
A Review of Electromagnetic Wind Energy Harvesters Based on Flow-Induced Vibrations
by Yidan Zhang, Shen Li, Weilong Wang, Pengfei Zen, Chunlong Li, Yizhou Ye and Xuefeng He
Energies 2025, 18(14), 3835; https://doi.org/10.3390/en18143835 - 18 Jul 2025
Viewed by 245
Abstract
The urgent demand of wireless sensor nodes for long-life and maintenance-free miniature electrical sources with output power ranging from microwatts to milliwatts has accelerated the development of energy harvesting technologies. For the abundant and renewable nature of wind in environments, flow-induced vibration (FIV)-based [...] Read more.
The urgent demand of wireless sensor nodes for long-life and maintenance-free miniature electrical sources with output power ranging from microwatts to milliwatts has accelerated the development of energy harvesting technologies. For the abundant and renewable nature of wind in environments, flow-induced vibration (FIV)-based wind energy harvesting has emerged as a promising approach. Electromagnetic FIV wind energy harvesters (WEHs) show great potential for realistic applications due to their excellent durability and stability. However, electromagnetic WEHs remain less studied than piezoelectric WEHs, with few dedicated review articles available. This review analyzes the working principle, device structure, and performance characteristics of electromagnetic WEHs based on vortex-induced vibration, galloping, flutter, wake galloping vibration, and Helmholtz resonator. The methods to improve the output power, broaden the operational wind speed range, broaden the operational wind direction range, and enhance the durability are then discussed, providing some suggestions for the development of high-performance electromagnetic FIV WEHs. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

20 pages, 6173 KiB  
Article
Research on an Energy-Harvesting System Based on the Energy Field of the Environment Surrounding a Photovoltaic Power Plant
by Bin Zhang, Binbin Wang, Hongxi Zhang, Abdelkader Outzourhit, Fouad Belhora, Zoubir El Felsoufi, Jia-Wei Zhang and Jun Gao
Energies 2025, 18(14), 3786; https://doi.org/10.3390/en18143786 - 17 Jul 2025
Viewed by 292
Abstract
With the large-scale global deployment of photovoltaics (PV), traditional monitoring technologies face challenges such as wiring difficulties, high energy consumption, and high maintenance costs in remote or complex terrains, which limit long-term environmental sensing. Therefore, energy-harvesting systems are crucial for the intelligent operation [...] Read more.
With the large-scale global deployment of photovoltaics (PV), traditional monitoring technologies face challenges such as wiring difficulties, high energy consumption, and high maintenance costs in remote or complex terrains, which limit long-term environmental sensing. Therefore, energy-harvesting systems are crucial for the intelligent operation of photovoltaic systems; however, their deployment depends on the accurate mapping of wind energy fields and solar irradiance fields. This study proposes a multi-scale simulation method based on computational fluid dynamics (CFD) to optimize the placement of energy-harvesting systems in photovoltaic power plants. By integrating wind and irradiance distribution analysis, the spatial characteristics of airflow and solar radiation are mapped to identify high-efficiency zones for energy harvesting. The results indicate that the top of the photovoltaic panel exhibits a higher wind speed and reflected irradiance, providing the optimal location for an energy-harvesting system. The proposed layout strategy improves overall energy capture efficiency, enhances sensor deployment effectiveness, and supports intelligent, maintenance-free monitoring systems. This research not only provides theoretical guidance for the design of energy-harvesting systems in PV stations but also offers a scalable method applicable to various geographic scenarios, contributing to the advancement of smart and self-powered energy systems. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

17 pages, 3483 KiB  
Article
A Novel Triboelectric–Electromagnetic Hybrid Generator with a Multi-Layered Structure for Wind Energy Harvesting and Wind Vector Monitoring
by Jiaqing Niu, Ribin Hu, Ming Li, Luying Zhang, Bei Xu, Yaqi Zhang, Yi Luo, Jiang Ding and Qingshan Duan
Micromachines 2025, 16(7), 795; https://doi.org/10.3390/mi16070795 - 8 Jul 2025
Viewed by 636
Abstract
High-efficiency wind energy collection and precise wind vector monitoring are crucial for sustainable energy applications, smart agriculture, and environmental management. A novel multi-layered triboelectric–electromagnetic hybrid generator (TEHG) for broadband wind energy collection and wind vector monitoring was built. The TEHG comprises three functional [...] Read more.
High-efficiency wind energy collection and precise wind vector monitoring are crucial for sustainable energy applications, smart agriculture, and environmental management. A novel multi-layered triboelectric–electromagnetic hybrid generator (TEHG) for broadband wind energy collection and wind vector monitoring was built. The TEHG comprises three functional layers corresponding to three modules: a soft-contact rotary triboelectric nanogenerator (S-TEHG), an electromagnetic generator (EMG), and eight flow-induced vibration triboelectric nanogenerators (F-TENGs), which are arranged in a circular array to enable low-wind-speed energy harvesting and multi-directional wind vector monitoring. The TEHG achieves broadband energy harvesting and demonstrates exceptional stability, maintaining a consistent electrical output after 3 h of continuous operation. The EMG charges a 1 mF capacitor to 1.5 V 738 times faster than conventional methods by a boost converter. The TEHG operates for 17.5 s to power a thermohygrometer for 103 s, achieving an average output power of 1.87 W with a power density of 11.2 W/m3, demonstrating an exceptional power supply capability. The F-TENGs can accurately determine the wind direction, with a wind speed detection error below 4.5%. This innovative structure leverages the strengths of both EMG and TENG technologies, offering a durable, multifunctional solution for sustainable energy and intelligent environmental sensing. Full article
(This article belongs to the Special Issue Self-Tuning and Self-Powered Energy Harvesting Devices)
Show Figures

Figure 1

21 pages, 2977 KiB  
Article
Performance Analysis of Piezoelectric Energy Harvesting System Under Varying Bluff Body Masses and Diameters—Experimental Study and Validation with 0–1 Test
by Paweł Karpiński, Bartłomiej Ambrożkiewicz, Zbigniew Czyż and Grzegorz Litak
Appl. Sci. 2025, 15(13), 6972; https://doi.org/10.3390/app15136972 - 20 Jun 2025
Viewed by 435
Abstract
This study presents the experimental results of an energy harvesting system comprising a cylindrical bluff body coupled with a cantilever beam. A piezoelectric sensor was installed on the beam to generate electrical voltage during the object’s vibrations at the beam’s free end. The [...] Read more.
This study presents the experimental results of an energy harvesting system comprising a cylindrical bluff body coupled with a cantilever beam. A piezoelectric sensor was installed on the beam to generate electrical voltage during the object’s vibrations at the beam’s free end. The research aimed to evaluate the impact of the bluff body’s mass and diameter on the efficiency of the piezoelectric energy harvesting system. Vibrations of the test object were induced by airflow within a chamber of a closed-loop wind tunnel. Five different bluff body masses were analyzed for each of three cylindrical diameters across an airflow velocity range of 1 m/s to 10 m/s. These experiments allowed for the recording of a series of voltage signals over time. The signals were then subjected to Fast Fourier Transform (FFT) analysis. Subsequently, the relationship between vibration frequency and airflow velocity was examined. The peak-to-peak voltage value was also analyzed to provide an overall assessment of the energy harvesting efficiency of the system under investigation. Finally, the 0–1 test for chaos was additionally employed as a diagnostic tool to assess the complexity of system dynamics based on time series data. This test allowed for distinguishing between oscillatory behavior and cases where the system became trapped in a potential well, revealing key transitions in dynamic regimes. Full article
(This article belongs to the Special Issue Nonlinear Vibration Analysis of Smart Materials)
Show Figures

Figure 1

29 pages, 28044 KiB  
Article
Optimization of Vertical Axis Wind Turbine Systems to Capture Vehicle-Induced Highway Winds
by Aydin Ulus and Stefan Ilie Moldovan
Energies 2025, 18(12), 3139; https://doi.org/10.3390/en18123139 - 14 Jun 2025
Viewed by 879
Abstract
This study introduces an innovative set of guide vanes that increase the efficiency of Vertical Axis Wind Turbines (VAWT) using winds generated by vehicles traveling on highways. The increase in efficiency is based on enhancing the airflow interaction as the vehicle moves past [...] Read more.
This study introduces an innovative set of guide vanes that increase the efficiency of Vertical Axis Wind Turbines (VAWT) using winds generated by vehicles traveling on highways. The increase in efficiency is based on enhancing the airflow interaction as the vehicle moves past the turbine. Initial Computational Fluid Dynamics (CFD) simulations with two guide vanes setups demonstrated a 56.81% increase in power output under wind generated by passenger vehicles. Further design enhancements, incorporating three guide vanes with optimized geometries, led to a 242% improvement in power generation. Additional simulations evaluated the performance under wind conditions generated by larger vehicles, such as buses. The three guide vanes configuration yielded a 102% increase in energy capture efficiency in these scenarios. The findings suggest that vehicle-induced winds—typically an untapped energy source—can be effectively harvested using tailored turbine system designs. By integrating passive flow control strategies such as guide vanes, VAWTs can operate more efficiently in highway environments. This research highlights a novel pathway for enhancing renewable energy systems and supports broader efforts toward sustainable energy development through the utilization of unconventional wind sources. This performance enhancement is primarily due to the aerodynamic redirection of airflow toward the advancing blade and away from the returning blade, reducing drag and improving torque generation. Full article
(This article belongs to the Special Issue Vertical Axis Wind Turbines: Current Technologies and Future Trends)
Show Figures

Figure 1

21 pages, 1454 KiB  
Review
CFD in Urban Wind Resource Assessments: A Review
by Ruoping Chu and Kai Wang
Energies 2025, 18(10), 2626; https://doi.org/10.3390/en18102626 - 20 May 2025
Viewed by 1038
Abstract
Urban distributed energy systems play a crucial role in the development of sustainable and low-carbon cities. Evaluating urban wind resources is essential for effective wind energy harvesting, which requires detailed information about the urban flow field. Computational fluid dynamics (CFD) has emerged as [...] Read more.
Urban distributed energy systems play a crucial role in the development of sustainable and low-carbon cities. Evaluating urban wind resources is essential for effective wind energy harvesting, which requires detailed information about the urban flow field. Computational fluid dynamics (CFD) has emerged as a viable and scalable method for assessing urban wind resources. This review paper synthesizes the characteristics of the urban wind environment and resources, outlines the general framework for CFD-aided wind resource assessment, and addresses future challenges and perspectives. It highlights the critical need to optimize wind energy harvesting in complex built environments. The paper discusses the conditions for urban wind resource assessment, particularly the extraction of boundary conditions and the performance of small wind turbines (SWTs). Additionally, it notes that while large eddy simulation (LES) is a high-fidelity model, it is still less commonly used compared to Reynolds-averaged Navier–Stokes (RANS) models. Several challenges remain, including the broader adoption of high-fidelity LES models, the integration of wake models and extreme conditions, and the application of these methods at larger scales in real urban environments. The potential of multi-scale modeling approaches to enhance the feasibility and scalability of these methods is also emphasized. The findings are intended to promote the utilization and further development of CFD methods to accelerate the creation of resilient and energy-efficient cities, as well as to foster interdisciplinary innovation in wind energy systems. Full article
(This article belongs to the Special Issue Computational and Experimental Fluid Dynamics for Wind Energy)
Show Figures

Figure 1

35 pages, 4575 KiB  
Review
Advances in Metal-Organic Frameworks (MOFs) for Rechargeable Batteries and Fuel Cells
by Christos Argirusis, Niyaz Alizadeh, Maria-Εleni Katsanou, Nikolaos Argirusis and Georgia Sourkouni
Batteries 2025, 11(5), 192; https://doi.org/10.3390/batteries11050192 - 14 May 2025
Cited by 1 | Viewed by 1067
Abstract
The growing demand for energy, coupled with the unsustainable nature of fossil fuels due to global warming and the greenhouse effect, have led to the advancement of renewable energy production concepts. Innovations such as photovoltaics, wind energy, and infrared energy harvesters are emerging [...] Read more.
The growing demand for energy, coupled with the unsustainable nature of fossil fuels due to global warming and the greenhouse effect, have led to the advancement of renewable energy production concepts. Innovations such as photovoltaics, wind energy, and infrared energy harvesters are emerging as viable solutions. The challenge lies in the stochastic nature of renewable energy sources, which necessitates the implementation of electrical energy storage solutions, whether through batteries, supercapacitors, or hydrogen production. In this regard, innovative materials are essential to address the questions associated with these technologies. Metal-organic frameworks (MOFs) are crucial for achieving clean and efficient energy conversion in fuel cells and storage in batteries and supercapacitors. Metal-organic frameworks (MOFs) can be used as electrocatalytic materials, membranes for electrolytes, and energy storage materials. They exhibit exceptional design versatility, large surface, and can be functionalized with ligands with several charges and metallic centers. This article offers an in-depth examination of materials and devices utilizing metal-organic frameworks (MOFs) for electrochemical processes concerning the generation, transformation, and storage of electrical energy. This review specifically focuses on rechargeable batteries and fuel cells that incorporate MOFs. Finally, an outlook on the potential applications of MOFs in electrochemical industries is presented. Full article
(This article belongs to the Special Issue Novel Materials for Rechargeable Batteries)
Show Figures

Figure 1

16 pages, 4317 KiB  
Article
Characteristics of Wind Profiles for Airborne Wind Energy Systems
by Hao He, Xiaojing Niu, Xiaoyu Li, Yanfeng Cai, Leming Li, Xinwei Ye and Junhao Wang
Energies 2025, 18(9), 2373; https://doi.org/10.3390/en18092373 - 6 May 2025
Viewed by 480
Abstract
An airborne wind energy system (AWES) harvests wind at a higher altitude above conventional wind turbines using tethered flying devices. For the design and development of an AWES, we need to know the representative wind speed profile, and its temporal variation is also [...] Read more.
An airborne wind energy system (AWES) harvests wind at a higher altitude above conventional wind turbines using tethered flying devices. For the design and development of an AWES, we need to know the representative wind speed profile, and its temporal variation is also quite important for the optimization of operation control. This study investigates wind speed profiles up to 3000 m, utilizing ERA5 data spanning from 2000 to 2022 and measured data from a laser wind radar. The long-term averaged wind profile is statistically analyzed, as well as wind profiles with different cumulative probabilities, which are generally consistent with the logarithmic law. Statistical results show that the frequency of negative shear is more than 85% in instantaneous wind profiles, with a greater likelihood at altitudes between 500 m and 1500 m. Fluctuations in wind speed and direction based on 10 min averaged wind speed data have also been provided, which are described by a normal distribution. The wind speed fluctuations primarily concentrate within 2 m/s, with a standard deviation of approximately 0.45 m/s. The wind direction fluctuations are severe at the ground layer and show a rapid decay trend with increasing altitude and averaged wind speed. These results can support the design and control optimization of the AWES. Full article
Show Figures

Figure 1

34 pages, 11293 KiB  
Review
Recent Advances in the Application of MOFs in Supercapacitors
by Christos Argirusis, Maria-Eleni Katsanou, Niyaz Alizadeh, Nikolaos Argirusis and Georgia Sourkouni
Batteries 2025, 11(5), 181; https://doi.org/10.3390/batteries11050181 - 2 May 2025
Cited by 1 | Viewed by 1833
Abstract
As the need for energy is constantly increasing and in the long term fossil fuels are not an option because of global overheating due to the greenhouse effect, alternative energy production concepts such as photovoltaics, wind energy, IR energy harvesters etc., have been [...] Read more.
As the need for energy is constantly increasing and in the long term fossil fuels are not an option because of global overheating due to the greenhouse effect, alternative energy production concepts such as photovoltaics, wind energy, IR energy harvesters etc., have been developed. The problem is that renewable energy sources are stochastic, and therefore there is a need for electrical energy storage either in rechargeable batteries or in high-performance supercapacitors. In this respect, novel materials are needed to meet the challenges that are related to these technologies. Metal–organic frameworks (MOFs) represent highly promising materials for energy storage applications in supercapacitors (SCs) and thus in recent years have become essential for clean and efficient energy conversion and storage. Metal–organic frameworks (MOFs) present numerous benefits as electrocatalysts, electrolyte membranes, and fuel storage materials; they exhibit exceptional design versatility, extensive surface-to-volume ratios, and permit functionalization with multivalent ligands and metal centers. Here we present an overview of MOF-based materials for electrical energy storage using high-performance supercapacitors. This review deals with recent advances in MOF-based materials for supercapacitors. Finally, an outlook on the future use and restrictions of MOFs in electrochemical applications, with focus on supercapacitors, is given. Full article
(This article belongs to the Special Issue High-Performance Supercapacitors: Advancements & Challenges)
Show Figures

Figure 1

22 pages, 3296 KiB  
Article
Performance of an L-Shaped Duct OWC-WEC Integrated into Vertical and Sloped Breakwaters by Using a Free-Surface RANS-Based Numerical Model
by Eric Didier and Paulo R. F. Teixeira
Fluids 2025, 10(5), 114; https://doi.org/10.3390/fluids10050114 - 30 Apr 2025
Cited by 1 | Viewed by 521
Abstract
Waves generated by the wind in oceans and seas have a significant available quantity of clean and renewable energy. However, harvesting their energy is still a challenge. The integration of an oscillating water column (OWC) wave energy converter into a breakwater leads to [...] Read more.
Waves generated by the wind in oceans and seas have a significant available quantity of clean and renewable energy. However, harvesting their energy is still a challenge. The integration of an oscillating water column (OWC) wave energy converter into a breakwater leads to more viability, since it allows working as both harbor and coastal protection and harvesting wave energy. The main objective of this study is to investigate different configurations of L-shaped duct OWC devices inserted into vertical and sloped (2:3) impermeable breakwaters for different lengths of the lip by using a numerical model based on the Reynolds-Averaged Navier-Stokes equations. The ANSYS FLUENT® software (2016) is used in 2D numerical simulations by adopting the volume of fluid method to consider the two-phase free surface flow (water and air). It was observed that both the length of the lip and the length of the L-shaped duct OWC significantly influence the resonance and the efficiency of the OWC device. In addition, the performance of the OWC device varies significantly with its geometric configuration, which needs to be adapted for the local sea state. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics Applied to Transport Phenomena)
Show Figures

Figure 1

15 pages, 1623 KiB  
Article
Examining the Main Properties of a “Meso-Scale” Torsional Flutter Harvester in Gusty Winds
by Luca Caracoglia
Wind 2025, 5(2), 10; https://doi.org/10.3390/wind5020010 - 27 Apr 2025
Viewed by 357
Abstract
This study examines output energy and efficiency of a torsional flutter harvester in gusty winds. The proposed apparatus exploits the torsional flutter of a rigid flapping foil, able to rotate about a pivot axis located in the proximity of the windward side. The [...] Read more.
This study examines output energy and efficiency of a torsional flutter harvester in gusty winds. The proposed apparatus exploits the torsional flutter of a rigid flapping foil, able to rotate about a pivot axis located in the proximity of the windward side. The apparatus operates at the “meso-scale”; i.e., the apparatus’ projected area is equal to a few square meters. It has unique properties in comparison with most harvesting devices and small wind turbines. The reference geometric chord length of the flapping foil is about one meter. Energy conversion is achieved by an adaptable linkage connected to a permanent magnet that produces eddy currents in a multi-loop winding coil. Operational conditions and the post-critical flutter regime are investigated by numerical simulations. Several configurations are examined to determine the output power and to study the effects of stationary turbulent flows on the energy-conversion efficiency. This paper is a continuation of recent studies. The goal is to examine the operational conditions of the apparatus for a potentially wide range of applications and moderate mean wind speeds. Full article
Show Figures

Figure 1

54 pages, 21776 KiB  
Review
Mechanical, Thermal, and Environmental Energy Harvesting Solutions in Fully Electric and Hybrid Vehicles: Innovative Approaches and Commercial Systems
by Giuseppe Rausa, Maurizio Calabrese, Ramiro Velazquez, Carolina Del-Valle-Soto, Roberto De Fazio and Paolo Visconti
Energies 2025, 18(8), 1970; https://doi.org/10.3390/en18081970 - 11 Apr 2025
Viewed by 1563
Abstract
Energy harvesting in the automotive sector is a rapidly growing field aimed at improving vehicle efficiency and sustainability by recovering wasted energy. Various technologies have been developed to convert mechanical, thermal, and environmental energy into electrical power, reducing dependency on traditional energy sources. [...] Read more.
Energy harvesting in the automotive sector is a rapidly growing field aimed at improving vehicle efficiency and sustainability by recovering wasted energy. Various technologies have been developed to convert mechanical, thermal, and environmental energy into electrical power, reducing dependency on traditional energy sources. This manuscript provides a comprehensive review of energy harvesting applications/methodologies, aiming to trace the research lines and future developments. This work identifies the main categories of harvesting solutions, namely mechanical, thermal, and hybrid/environmental solar–wind systems; each section includes a detailed review of the technical and scientific state of the art and a comparative analysis with detailed tables, allowing the state of the art to be mapped for identification of the strengths of each solution, as well as the challenges and future developments needed to enhance the technological level. These improvements focus on energy conversion efficiency, material innovation, vehicle integration, energy savings, and environmental sustainability. The mechanical harvesting section focuses on energy recovery from vehicle vibrations, with emphasis on regenerative suspensions and piezoelectric-based solutions. Specifically, solutions applied to suspensions with electric generators can achieve power outputs of around 1 kW, while piezoelectric-based suspension systems can generate up to tens of watts. The thermal harvesting section, instead, explores methods for converting waste heat from an internal combustion engine (ICE) into electrical power, including thermoelectric generators (TEGs) and organic Rankine cycle systems (ORC). Notably, ICEs with TEGs can recover above 1 kW of power, while ICE-based ORC systems can generate tens of watts. On the other hand, TEGs integrated into braking systems can harvest a few watts of power. Then, hybrid solutions are discussed, focusing on integrated mechanical and thermal energy recovery systems, as well as solar and wind energy harvesting. Hybrid solutions can achieve power outputs above 1 kW, with the main contribution from TEGs (≈1 kW), compared to piezoelectric systems (hundreds of W). Lastly, a section on commercial solutions highlights how current scientific research meets the automotive sector’s needs, providing significant insights for future development. For these reasons, the research results aim to be guidelines for a better understanding of where future studies should focus to improve the technological level and efficiency of energy harvesting solutions in the automotive sector. Full article
(This article belongs to the Special Issue Advances in Energy Harvesting Systems)
Show Figures

Figure 1

33 pages, 5236 KiB  
Review
A Review and Characterization of Energy-Harvesting Resources in Buildings with a Case Study of a Commercial Building in a Cold Climate—Toronto, Canada
by Jeremy Lytle, Zenon Radewych, Kristiina Valter Mai and Alan S. Fung
Energies 2025, 18(8), 1913; https://doi.org/10.3390/en18081913 - 9 Apr 2025
Viewed by 522
Abstract
The present work provides a framework for the comprehensive assessment of energy-harvesting resources in buildings, encompassing environmental, anthropogenic, and recyclable sources. A review of resources and state-of-the-art energy-harvesting technologies is presented, including an outlook on the future theoretical limitations of their performance. The [...] Read more.
The present work provides a framework for the comprehensive assessment of energy-harvesting resources in buildings, encompassing environmental, anthropogenic, and recyclable sources. A review of resources and state-of-the-art energy-harvesting technologies is presented, including an outlook on the future theoretical limitations of their performance. The assessment framework is applied to a case-study commercial building located in Toronto, Ontario, Canada. The available resources are categorized into three orders of magnitude with respect to achievable power generation, with solar and wind in the first tier, elevator potential and fitness centres in the second tier, and sources including vibrations, occupant traffic, and thermoelectric conversion in the third. Situated in a mid-rise context, the total annual resource magnitude is found to be eight times greater than the building demand. However, only an overall 10% of the available resource is converted with the harvesting applications and efficiencies considered, resulting in a net energy deficit. It is shown that with maximum theoretical efficiencies, the conversion rate can reach 30% resulting in 151% surplus electrical generation for the building in question. Full article
Show Figures

Figure 1

17 pages, 4274 KiB  
Article
Quantifying the Benefits of Hybrid Energy Harvesting from Natural Sources
by Antonietta Simone, Pasquale Marino, Roberto Greco and Alessandro Lo Schiavo
Electronics 2025, 14(7), 1400; https://doi.org/10.3390/electronics14071400 - 30 Mar 2025
Viewed by 487
Abstract
The increasing demand for self-powered sensors and wireless sensor networks, particularly for environmental and structural health monitoring applications, is driving the need for energy harvesting from natural sources. To fill a gap in the scientific literature, this study quantitatively investigates the advantages of [...] Read more.
The increasing demand for self-powered sensors and wireless sensor networks, particularly for environmental and structural health monitoring applications, is driving the need for energy harvesting from natural sources. To fill a gap in the scientific literature, this study quantitatively investigates the advantages of hybrid energy harvesters, which utilize multiple energy sources, compared to single-source harvesters. The analysis leverages a real-world dataset collected from a meteorological station in Cervinara, Southern Italy. The measured data are processed to estimate the energy that can be recovered from solar, wind, and rain sources using energy harvesters designed to supply low-power electronic devices. The available energy serves as the basis for optimizing the sizing of a hybrid energy harvester that effectively integrates the aforementioned energy sources. The system sizing, carried out under the constraint of ensuring a continuous and uninterrupted power supply to the load, quantifies the benefits of using a hybrid harvester over a single-source harvester. The results show that one of the main advantages of the hybrid solution is the reduction in the size of the storage device, enabling the replacement of rechargeable batteries with supercapacitors, which offer both environmental and reliability benefits. Full article
Show Figures

Figure 1

14 pages, 19109 KiB  
Article
Experiment of a Cut-Out Piezoelectric Beam Energy Harvester Under Wind-Induced Vibration
by Xuhong Fan, Chongming Zhao and Wenan Jiang
Micromachines 2025, 16(4), 378; https://doi.org/10.3390/mi16040378 - 27 Mar 2025
Viewed by 2370
Abstract
To address the low electromechanical conversion efficiency associated with traditional single-degree-of-freedom (SDOF) piezoelectric energy harvesters, this study proposes a two-degree-of-freedom (2-DOF) cut-out piezoelectric beam for wind-induced vibration energy harvesting. Experimental comparisons conducted on four bluff bodies indicated that the triangular column exhibits superior [...] Read more.
To address the low electromechanical conversion efficiency associated with traditional single-degree-of-freedom (SDOF) piezoelectric energy harvesters, this study proposes a two-degree-of-freedom (2-DOF) cut-out piezoelectric beam for wind-induced vibration energy harvesting. Experimental comparisons conducted on four bluff bodies indicated that the triangular column exhibits superior aerodynamic stability, achieving an output voltage of 11.6 V at a wind speed of 7.0 m/s. Furthermore, the cut-out piezoelectric beam demonstrated a 1.9-fold increase in output voltage compared to its non-cut-out counterpart. These results underscore the potential of the 2-DOF cut-out piezoelectric beam design as an autonomous power solution for IoT nodes operating in complex environments. Full article
(This article belongs to the Special Issue Self-Tuning and Self-Powered Energy Harvesting Devices)
Show Figures

Figure 1

Back to TopTop