High-Performance Coaxial Counter-Rotating Triboelectric Nanogenerator with Lift–Drag Hybrid Blades for Wind Energy Harvesting
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Design and Working Principle
3.2. Blade Selection and Structural Optimization
3.3. Electrical Output of the NC-Mode CCR-TENG
3.4. Electrical Output of SC-Mode CCR-TENG
3.5. Demonstration of the CCR-TENG
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akhtar, F.; Rehmani, M.H. Energy Replenishment Using Renewable and Traditional Energy Resources for Sustainable Wireless Sensor Networks: A Review. Renew. Sustain. Energy Rev. 2015, 45, 769–784. [Google Scholar] [CrossRef]
- Wang, Z.L. Entropy Theory of Distributed Energy for Internet of Things. Nano Energy 2019, 58, 669–672. [Google Scholar] [CrossRef]
- Zhao, T.; Xu, M.; Xiao, X.; Ma, Y.; Li, Z.; Wang, Z.L. Recent Progress in Blue Energy Harvesting for Powering Distributed Sensors in Ocean. Nano Energy 2021, 88, 106199. [Google Scholar] [CrossRef]
- Abdullah, A.M.; Flores, A.; Chowdhury, A.R.; Li, J.; Mao, Y.; Uddin, M.J. Synthesis and Fabrication of Self-Sustainable Triboelectric Energy Case for Powering Smart Electronic Devices. Nano Energy 2020, 73, 104774. [Google Scholar] [CrossRef]
- López, M.; Rodríguez, N.; Iglesias, G. Combined Floating Offshore Wind and Solar PV. J. Mar. Sci. Eng. 2020, 8, 576. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, Y.; Huang, L.; Ren, Z.; Jia, F. Optimization of Offshore Grid Planning Considering Onshore Network Expansions. Renew. Energy 2022, 181, 91–104. [Google Scholar] [CrossRef]
- Ding, J.; Jiang, J.; Lin, T.; Liu, G.; Yao, H.; Wen, H.; Li, S.; Mo, F.; Wan, L. Realization of a Sustainable Charging Power Source by In Situ Low-Frequency Water Wave Energy Harvesting with a Coaxial Triboelectric–Electromagnetic Hybrid Generator. Adv. Energy Sustain. Res. 2022, 3, 2200087. [Google Scholar] [CrossRef]
- Zu, L.; Liu, D.; Shao, J.; Liu, Y.; Shu, S.; Li, C.; Shi, X.; Chen, B.; Wang, Z.L. A Self-Powered Early Warning Glove with Integrated Elastic-Arched Triboelectric Nanogenerator and Flexible Printed Circuit for Real-Time Safety Protection. Adv. Mater. Technol. 2022, 7, 2100787. [Google Scholar] [CrossRef]
- Chen, C.; Guo, H.; Chen, L.; Wang, Y.-C.; Pu, X.; Yu, W.; Wang, F.; Du, Z.; Wang, Z.L. Direct Current Fabric Triboelectric Nanogenerator for Biomotion Energy Harvesting. ACS Nano 2020, 14, 4585–4594. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Yi, F.; Zi, Y.; Lin, J.; Wang, X.; Xu, Y.; Wang, Z.L. Sustainably Powering Wearable Electronics Solely by Biomechanical Energy. Nat. Commun. 2016, 7, 12744. [Google Scholar] [CrossRef]
- Yuan, W.; Zhang, C.; Zhang, B.; Wei, X.; Yang, O.; Liu, Y.; He, L.; Cui, S.; Wang, J.; Wang, Z.L. Wearable, Breathable and Waterproof Triboelectric Nanogenerators for Harvesting Human Motion and Raindrop Energy. Adv. Mater. Technol. 2022, 7, 2101139. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, B.; Tian, Y.; Meng, X.; Lin, X.; He, Y.; Xing, C.; Dai, H.; Wang, L. Vortex-Induced Vibration Triboelectric Nanogenerator for Low Speed Wind Energy Harvesting. Nano Energy 2022, 95, 107029. [Google Scholar] [CrossRef]
- Zhao, X.; Nashalian, A.; Ock, I.W.; Popoli, S.; Xu, J.; Yin, J.; Tat, T.; Libanori, A.; Chen, G.; Zhou, Y.; et al. A Soft Magnetoelastic Generator for Wind-Energy Harvesting. Adv. Mater. 2022, 34, e2204238. [Google Scholar] [CrossRef]
- Liu, F.-R.; Zou, H.-X.; Zhang, W.-M.; Peng, Z.-K.; Meng, G. Y-Type Three-Blade Bluff Body for Wind Energy Harvesting. Appl. Phys. Lett. 2018, 112, 233903. [Google Scholar] [CrossRef]
- Yong, S.; Wang, H.; Lin, Z.; Li, X.; Zhu, B.; Yang, L.; Ding, W.; Liao, R.; Wang, J.; Wang, Z.L. Environmental Self-Adaptive Wind Energy Harvesting Technology for Self-Powered System by Triboelectric-Electromagnetic Hybridized Nanogenerator with Dual-Channel Power Management Topology. Adv. Energy Mater. 2022, 12, 2202469. [Google Scholar] [CrossRef]
- Zhu, W.; Bai, Y.; Yang, Y. Harvesting Wind Energy by Triboelectric Nanogenerators. In Handbook of Triboelectric Nanogenerators; Wang, Z.L., Yang, Y., Zhai, J., Wang, J., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–32. ISBN 978-3-031-05722-9. [Google Scholar]
- Zheng, Q.; Jin, Y.; Liu, Z.; Ouyang, H.; Li, H.; Shi, B.; Jiang, W.; Zhang, H.; Li, Z.; Wang, Z.L. Robust Multilayered Encapsulation for High-Performance Triboelectric Nanogenerator in Harsh Environment. ACS Appl. Mater. Interfaces 2016, 8, 26697–26703. [Google Scholar] [CrossRef]
- Choi, D.; Lee, Y.; Lin, Z.-H.; Cho, S.; Kim, M.; Ao, C.K.; Soh, S.; Sohn, C.; Jeong, C.K.; Lee, J.; et al. Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications. ACS Nano 2023, 17, 11087–11219. [Google Scholar] [CrossRef]
- Zhu, G.; Chen, J.; Zhang, T.; Jing, Q.; Wang, Z.L. Radial-Arrayed Rotary Electrification for High Performance Triboelectric Generator. Nat. Commun. 2014, 5, 3426. [Google Scholar] [CrossRef]
- He, W.; Liu, W.; Chen, J.; Wang, Z.; Liu, Y.; Pu, X.; Yang, H.; Tang, Q.; Yang, H.; Guo, H.; et al. Boosting Output Performance of Sliding Mode Triboelectric Nanogenerator by Charge Space-Accumulation Effect. Nat. Commun. 2020, 11, 4277. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cao, Y.; Yu, X.; Xu, Y.; Yang, Y.; Liu, S.; Cheng, T.; Wang, Z.L. Breeze-Driven Triboelectric Nanogenerator for Wind Energy Harvesting and Application in Smart Agriculture. Appl. Energy 2022, 306, 117977. [Google Scholar] [CrossRef]
- Yong, S.; Wang, J.; Yang, L.; Wang, H.; Luo, H.; Liao, R.; Wang, Z.L. Auto-Switching Self-Powered System for Efficient Broad-Band Wind Energy Harvesting Based on Dual-Rotation Shaft Triboelectric Nanogenerator. Adv. Energy Mater. 2021, 11, 2101194. [Google Scholar] [CrossRef]
- Han, J.Y.; Singh, H.H.; Won, S.; Kong, D.S.; Hu, Y.C.; Ko, Y.J.; Lee, K.-T.; Wie, J.J.; Jung, J.H. Highly Durable Direct-Current Power Generation in Polarity-Controlled and Soft-Triggered Rotational Triboelectric Nanogenerator. Appl. Energy 2022, 314, 119006. [Google Scholar] [CrossRef]
- Lin, L.; Wang, S.; Niu, S.; Liu, C.; Xie, Y.; Wang, Z.L. Noncontact Free-Rotating Disk Triboelectric Nanogenerator as a Sustainable Energy Harvester and Self-Powered Mechanical Sensor. ACS Appl. Mater. Interfaces 2014, 6, 3031–3038. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Wang, D.; Wang, J.; Li, J.; Wang, Z.; Li, B.; Mu, Z.; Niu, S.; Zhang, J.; Ba, K.; et al. A Durable Triboelectric Nanogenerator with a Coaxial Counter-Rotating Design for Efficient Harvesting of Random Mechanical Energy. Nano Energy 2023, 105, 108006. [Google Scholar] [CrossRef]
- Wang, R.; Xiong, Y. An Integral Panel Method for the Hydrodynamic Analysis of Hybrid Contra-Rotating Shaft Pod Propulsors. J. Ocean Eng. Sci. 2018, 3, 175–185. [Google Scholar] [CrossRef]
- Nouri, N.M.; Mohammadi, S.; Zarezadeh, M. Optimization of a Marine Contra-Rotating Propellers Set. Ocean Eng. 2018, 167, 397–404. [Google Scholar] [CrossRef]
- Panjwani, B.; Quinsard, C.; Przemysław, D.G.; Furseth, J. Virtual Modelling and Testing of the Single and Contra-Rotating Co-Axial Propeller. Drones 2020, 4, 42. [Google Scholar] [CrossRef]
- Shchur, I.; Klymko, V.; Xie, S.; Schmidt, D. Design Features and Numerical Investigation of Counter-Rotating VAWT with Co-Axial Rotors Displaced from Each Other along the Axis of Rotation. Energies 2023, 16, 4493. [Google Scholar] [CrossRef]
- Chen, W.-H.; Chen, C.-Y.; Huang, C.-Y.; Hwang, C.-J. Power Output Analysis and Optimization of Two Straight-Bladed Vertical-Axis Wind Turbines. Appl. Energy 2017, 185, 223–232. [Google Scholar] [CrossRef]
- Zou, H.; Zhang, Y.; Guo, L.; Wang, P.; He, X.; Dai, G.; Zheng, H.; Chen, C.; Wang, A.C.; Xu, C.; et al. Quantifying the Triboelectric Series. Nat. Commun. 2019, 10, 1427. [Google Scholar] [CrossRef]
- Han, J.; Feng, Y.; Chen, P.; Liang, X.; Pang, H.; Jiang, T.; Wang, Z.L. Wind-Driven Soft-Contact Rotary Triboelectric Nanogenerator Based on Rabbit Fur with High Performance and Durability for Smart Farming. Adv. Funct. Mater. 2022, 32, 2108580. [Google Scholar] [CrossRef]
- Long, L.; Liu, W.; Wang, Z.; He, W.; Li, G.; Tang, Q.; Guo, H.; Pu, X.; Liu, Y.; Hu, C. High Performance Floating Self-Excited Sliding Triboelectric Nanogenerator for Micro Mechanical Energy Harvesting. Nat. Commun. 2021, 12, 4689. [Google Scholar] [CrossRef]
- Wang, Z.L. On Maxwell’s Displacement Current for Energy and Sensors: The Origin of Nanogenerators. Mater. Today 2017, 20, 74–82. [Google Scholar] [CrossRef]
- Li, X.; Gao, Q.; Cao, Y.; Yang, Y.; Liu, S.; Wang, Z.L.; Cheng, T. Optimization Strategy of Wind Energy Harvesting via Triboelectric-Electromagnetic Flexible Cooperation. Appl. Energy 2022, 307, 118311. [Google Scholar] [CrossRef]
- Zhu, M.; Yu, Y.; Zhu, J.; Zhang, J.; Gao, Q.; Li, H.; Zhang, Y.; Wang, Z.L.; Cheng, T. Bionic Blade Lift-Drag Combination Triboelectric-Electromagnetic Hybrid Generator with Enhanced Aerodynamic Performance for Wind Energy Harvesting. Adv. Energy Mater. 2023, 13, 2303119. [Google Scholar] [CrossRef]
- Dang, H.; Wang, Y.; Zhang, S.; Gao, Q.; Li, X.; Wan, L.; Wang, Z.L.; Cheng, T. Triboelectric-Electromagnetic Hybrid Generator with the Inertia-Driven Conversion Mechanism for Wind Energy Harvesting and Scale Warning. Mater. Today Energy 2022, 29, 101136. [Google Scholar] [CrossRef]
- Gui, Y.; Wang, Y.; He, S.; Yang, J. Self-Powered Smart Agriculture Real-Time Sensing Device Based on Hybrid Wind Energy Harvesting Triboelectric-Electromagnetic Nanogenerator. Energy Convers. Manag. 2022, 269, 116098. [Google Scholar] [CrossRef]
- Zou, H.-X.; Zhao, L.-C.; Wang, Q.; Gao, Q.-H.; Yan, G.; Wei, K.-X.; Zhang, W.-M. A Self-Regulation Strategy for Triboelectric Nanogenerator and Self-Powered Wind-Speed Sensor. Nano Energy 2022, 95, 106990. [Google Scholar] [CrossRef]
- Liu, D.; Li, C.; Chen, P.; Zhao, X.; Tang, W.; Wang, Z.L. Sustainable Long-Term and Wide-Area Environment Monitoring Network Based on Distributed Self-Powered Wireless Sensing Nodes. Adv. Energy Mater. 2023, 13, 2202691. [Google Scholar] [CrossRef]
- Mohamed, M.H. Performance Investigation of H-Rotor Darrieus Turbine with New Airfoil Shapes. Energy 2012, 47, 522–530. [Google Scholar] [CrossRef]
- Alom, N.; Saha, U.K. Influence of Blade Profiles on Savonius Rotor Performance: Numerical Simulation and Experimental Validation. Energy Convers. Manag. 2019, 186, 267–277. [Google Scholar] [CrossRef]
- Zhang, H.; Li, B.; Li, B.; Yang, C. Influence of Propeller Parameters on the Aerodynamic Performance of Shrouded Coaxial Dual Rotors in Hover. Aerospace 2023, 10, 859. [Google Scholar] [CrossRef]
- Hassanzadeh, R.; Mohammadnejad, M. Effects of Inward and Outward Overlap Ratios on the Two-Blade Savonius Type of Vertical Axis Wind Turbine Performance. Int. J. Green Energy 2019, 16, 1485–1496. [Google Scholar] [CrossRef]
- Roy, S.; Saha, U.K. Computational Study to Assess the Influence of Overlap Ratio on Static Torque Characteristics of a Vertical Axis Wind Turbine. Procedia Eng. 2013, 51, 694–702. [Google Scholar] [CrossRef]
- Huo, Z.-Y.; Kim, Y.-J.; Suh, I.-Y.; Lee, D.-M.; Lee, J.H.; Du, Y.; Wang, S.; Yoon, H.-J.; Kim, S.-W. Triboelectrification Induced Self-Powered Microbial Disinfection Using Nanowire-Enhanced Localized Electric Field. Nat. Commun. 2021, 12, 3693. [Google Scholar] [CrossRef]
- Kwak, S.S.; Kim, S.M.; Ryu, H.; Kim, J.; Khan, U.; Yoon, H.-J.; Jeong, Y.H.; Kim, S.-W. Butylated Melamine Formaldehyde as a Durable and Highly Positive Friction Layer for Stable, High Output Triboelectric Nanogenerators. Energy Environ. Sci. 2019, 12, 3156–3163. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, F.; Zhao, J.; Li, F.; Chu, Y.; Du, H.; Sun, M.; Xi, Z.; Du, T.; Xu, M. High-Performance Coaxial Counter-Rotating Triboelectric Nanogenerator with Lift–Drag Hybrid Blades for Wind Energy Harvesting. Nanomaterials 2024, 14, 598. https://doi.org/10.3390/nano14070598
Yan F, Zhao J, Li F, Chu Y, Du H, Sun M, Xi Z, Du T, Xu M. High-Performance Coaxial Counter-Rotating Triboelectric Nanogenerator with Lift–Drag Hybrid Blades for Wind Energy Harvesting. Nanomaterials. 2024; 14(7):598. https://doi.org/10.3390/nano14070598
Chicago/Turabian StyleYan, Fei, Junhao Zhao, Fangming Li, Yiyao Chu, Hengxu Du, Minzheng Sun, Ziyue Xi, Taili Du, and Minyi Xu. 2024. "High-Performance Coaxial Counter-Rotating Triboelectric Nanogenerator with Lift–Drag Hybrid Blades for Wind Energy Harvesting" Nanomaterials 14, no. 7: 598. https://doi.org/10.3390/nano14070598
APA StyleYan, F., Zhao, J., Li, F., Chu, Y., Du, H., Sun, M., Xi, Z., Du, T., & Xu, M. (2024). High-Performance Coaxial Counter-Rotating Triboelectric Nanogenerator with Lift–Drag Hybrid Blades for Wind Energy Harvesting. Nanomaterials, 14(7), 598. https://doi.org/10.3390/nano14070598