CrPS4 Nanoflakes as Stable Direct-Band-Gap 2D Materials for Ultrafast Pulse Laser Applications
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
4. Experimental Section
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Zhu, J.Q.; Li, P.X.; Wang, X.X.; Yu, H.; Xiao, K.; Li, C.Y.; Zhang, G.Y. All-fiber Yb-doped fiber laser passively mode-locking by monolayer MoS2 saturable absorber. Opt. Commun. 2018, 413, 236–241. [Google Scholar] [CrossRef]
- Sugioka, K.; Cheng, Y. Ultrafast lasers—Reliable tools for advanced materials processing. Light Sci. Appl. 2014, 3, e149. [Google Scholar] [CrossRef]
- Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831–838. [Google Scholar] [CrossRef]
- Gu, T.; Petrone, N.; McMillan, J.F.; van der Zande, A.; Yu, M.; Lo, G.Q.; Kwong, D.L.; Hone, J.; Wong, C.W. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photonics 2012, 6, 554–559. [Google Scholar] [CrossRef]
- Fermann, M.E.; Hartl, I. Ultrafast fibre lasers. Nat. Photonics 2013, 7, 868–874. [Google Scholar] [CrossRef]
- Du, Y.; Zhao, K.; Zhu, Z.L.; Wang, J.; Deng, W.J.; Liang, X.D. Research and application of ultrafast laser precision manufacturing technology. Laser Infrared 2020, 50, 1419–1425. [Google Scholar] [CrossRef]
- Bao, Q.L.; Zhang, H.; Wang, Y.; Ni, Z.H.; Yan, Y.L.; Shen, Z.X.; Loh, K.P.; Tang, D.Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009, 19, 3077–3083. [Google Scholar] [CrossRef]
- Dong, Y.C.; Chertopalov, S.; Maleski, K.; Anasori, B.; Hu, L.Y.; Bhattacharya, S.; Rao, A.M.; Gogotsi, Y.; Mochalin, V.N.; Podila, R. Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes. Adv. Mater. 2018, 30, 1705714. [Google Scholar] [CrossRef]
- Liu, S.X.; Huang, H.F.; Lu, J.S.; Xu, N.; Qu, J.L.; Wen, Q. Liquid-phase exfoliation of Ta2NiS5 and Its application in near-infrared mode-locked fiber lasers with evanescent field interactions and passively Q-switched bulk laser. Nanomaterials 2022, 12, 695. [Google Scholar] [CrossRef]
- Zhang, A.J.; Wang, Z.H.; Ou-Yang, H.; Lyu, W.H.; Sun, J.X.; Cheng, Y.; Fu, B. Recent progress of two-dimensional materials for ultrafast photonics. Nanomaterials 2021, 11, 1778. [Google Scholar] [CrossRef]
- Chen, L.L.; Zhang, M.; Zhou, C.; Cai, Y.; Ren, L.; Zhang, Z.G. Ultra-Low Repetition Rate SESAM-mode-locked Linear-cavity Erbium-doped Fiber Laser. In Proceedings of the 2009 Conference on Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics, Shanghai, China, 20 August–3 September 2009; pp. 587–588. [Google Scholar]
- Cabasse, A.; Ortac, B.; Martel, G.; Hideur, A.; Limpere, J. Highly normal dispersion Er-doped fiber laser mode-locked with a SESAM. In Proceedings of the 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science, San Jose, CA, USA, 4–9 May 2008; pp. 1–2. [Google Scholar]
- Li, P.F.; Chen, Y.; Yang, T.S.; Wang, Z.Y.; Lin, H.; Xu, Y.H.; Li, L.; Mu, H.R.; Shivananju, B.N.; Zhang, Y.P.; et al. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces 2017, 9, 12759–12765. [Google Scholar] [CrossRef]
- Guo, B.; Xiao, Q.L.; Wang, S.H.; Zhang, H. 2D layered materials: Synthesis, nonlinear optical properties, and device applications. Laser Photonics Rev. 2019, 13, 1800327. [Google Scholar] [CrossRef]
- Guo, X.; Wang, S.; Yan, P.G.; Wang, J.Z.; Yu, L.P.; Liu, W.J.; Zheng, Z.J.; Guo, C.Y.; Ruan, S.C. High modulation depth enabled by Mo2Ti2C3Tx MXene for Q-switched pulse generation in a mid-infrared fiber laser. Nanomaterials 2022, 12, 1343. [Google Scholar] [CrossRef]
- Zhou, L.L.; Fu, H.G.; Lv, T.; Wang, C.B.; Gao, H.; Li, D.Q.; Deng, L.M.; Xiong, W. Nonlinear optical characterization of 2D materials. Nanomaterials 2020, 10, 2263. [Google Scholar] [CrossRef]
- Jia, L.; Lei, T.M. Research progress on physical properties and chemical stability of two-dimensional black phosphorus. Mater. Rev. 2018, 32, 1100–1106. [Google Scholar] [CrossRef]
- He, J.S.; Tao, L.L.; Zhang, H.; Zhou, B.; Li, J.B. Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. Nanoscale 2019, 11, 2577–2593. [Google Scholar] [CrossRef]
- Bundulis, A.; Alnis, J.; Shuklov, I.A.; Kim, V.V.; Lizunova, A.A.; Mardini, A.A.; Grube, J.; Razumov, V.F.; Ganeev, R.A. Nonlinear absorption and refraction of picosecond and femtosecond pulses in HgTe quantum dot films. Nanomaterials 2021, 11, 3351. [Google Scholar] [CrossRef]
- Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H. Photovoltaic technology: The case for thin-film solar cells. Science 1999, 285, 692–698. [Google Scholar] [CrossRef]
- Guo, Q.J.; Ford, G.M.; Yang, W.-C.; Walker, B.C.; Stach, E.A.; Hillhouse, H.W.; Agrawal, R. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J. Am. Chem. Soc. 2010, 132, 17384–17386. [Google Scholar] [CrossRef]
- Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409. [Google Scholar] [CrossRef]
- Hochbaum, A.I.; Yang, P. Semiconductor nanowires for energy conversion. Chem. Rev. 2010, 110, 527–546. [Google Scholar] [CrossRef]
- Bhaskar, S.; Visweswar Kambhampati, N.S.; Ganesh, K.M.; Srinivasan, V.; Ramamurthy, S.S. Metal-free, graphene oxide-based tunable soliton and plasmon engineering for biosensing applications. ACS Appl. Mater. Interfaces 2021, 13, 17046–17061. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.K.; Wang, Y.; Hu, H.; Zhang, H.; Li, W.J.; Lv, B.; Zhu, Z.; Guan, C.Y.; Shi, J.H. Optical properties and dynamic extrinsic chirality of structured monolayer black phosphorus. Front. Mater. 2022, 9, 826795. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, Q.; Zhang, F.; Chen, L.L.; Jin, X.X.; Hu, Y.W.; Zheng, Z.; Zhang, H. 2D black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater. 2019, 7, 1800224. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.G.; Wang, X. Ultrafast pulse generation with black phosphorus solution saturable absorber. Laser Phys. 2017, 27, 085104. [Google Scholar] [CrossRef]
- Liu, X.; Gao, Q.; Zheng, Y.; Mao, D.; Zhao, J.L. Recent progress of pulsed fiber lasers based on transition-metal dichalcogenides and black phosphorus saturable absorbers. Nanophotonics 2020, 9, 2215–2231. [Google Scholar] [CrossRef]
- Wang, J.T.; Chen, H.; Jiang, Z.K.; Yin, J.D.; Wang, J.Z.; Zhang, M.; He, T.C.; Li, J.Z.; Yan, P.G.; Ruan, S.C. Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride. Opt. Lett. 2018, 43, 1998–2001. [Google Scholar] [CrossRef]
- Wang, J.L.; Wang, X.L.; Lei, J.J.; Ma, M.Y.; Wang, C.; Ge, Y.Q.; Wei, Z.Y. Recent advances in mode-locked fiber lasers based on two-dimensional materials. Nanophotonics 2020, 9, 2315–2340. [Google Scholar] [CrossRef]
- Zhao, Y.T.; Wang, H.Y.; Huang, H.; Xiao, Q.L.; Xu, Y.H.; Guo, Z.; Xie, H.H.; Shao, J.D.; Sun, Z.B.; Han, W.J.; et al. Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. Int. Ed. 2016, 55, 5003–5007. [Google Scholar] [CrossRef]
- Wood, J.D.; Wells, S.A.; Jariwala, D.; Chen, K.-S.; Cho, E.; Sangwan, V.K.; Liu, X.L.; Lauhon, L.J.; Marks, T.J.; Hersam, M.C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 2014, 14, 6964–6970. [Google Scholar] [CrossRef]
- Ziletti, A.; Carvalho, A.; Campbell, D.K.; Coker, D.F.; Castro Neto, A.H. Oxygen defects in phosphorene. Phys. Rev. Lett. 2015, 114, 046801. [Google Scholar] [CrossRef]
- Zhao, Y.K.; Sun, Z.J.; Zhang, B.W.; Yan, Q.F. Unveiling the degradation chemistry of fibrous red phosphorus under ambient conditions. ACS Appl. Mater. Interfaces 2022, 14, 9925–9932. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.J.R.; Abdelwahab, I.; Chu, L.Q.; Poh, S.M.; Liu, Y.P.; Lu, J.; Chen, W.; Loh, K.P. Quasi-monolayer black phosphorus with high mobility and air stability. Adv. Mater. 2018, 30, 1704619. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Zemlyanov, D.Y.; Milligan, C.A.; Du, Y.C.; Yang, L.M.; Wu, Y.Q.; Ye, P.D. Surface chemistry of black phosphorus under a controlled oxidative environment. Nanotechnology 2016, 27, 434002. [Google Scholar] [CrossRef] [PubMed]
- Song, H.Z.; Wu, H.; Ren, T.Q.; Yan, S.C.; Chen, T.H.; Shi, Y. Developments in stability and passivation strategies for black phosphorus. Nano Res. 2021, 14, 4386–4397. [Google Scholar] [CrossRef]
- Pei, J.J.; Gai, X.; Yang, J.; Wang, X.B.; Yu, Z.F.; Choi, D.-Y.; Luther-Davies, B.; Lu, Y.R. Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 2016, 7, 10450. [Google Scholar] [CrossRef]
- Neal, S.N.; O’Neal, K.R.; Haglund, A.V.; Mandrus, D.G.; Bechtel, H.A.; Carr, G.L.; Haule, K.; Vanderbilt, D.; Kim, H.-S.; Musfeldt, J.L. Exploring few and single layer CrPS4 with near-field infrared spectroscopy. 2D Mater. 2021, 8, 035020. [Google Scholar] [CrossRef]
- Synnatschke, K.; Shao, S.Q.; van Dinter, J.; Hofstetter, Y.J.; Kelly, D.J.; Grieger, S.; Haigh, S.J.; Vaynzof, Y.; Bensch, W.; Backes, C. Liquid exfoliation of Ni2P2S6: Structural characterization, size-dependent properties, and degradation. Chem. Mater. 2019, 31, 9127–9139. [Google Scholar] [CrossRef]
- Sibley, S.P.; Francisa, A.H.; Lifshitzb, E.; Clkmen, R. Magnetic resonance studies of intercalated, twodimensional transition metal chalcogenophosphate. Colloids Surf. A Physicochem. Eng. Asp. 1994, 82, 205–215. [Google Scholar] [CrossRef]
- Budniak, A.K.; Killilea, N.A.; Zelewski, S.J.; Sytnyk, M.; Kauffmann, Y.; Amouyal, Y.; Kudrawiec, R.; Heiss, W.; Lifshitz, E. Exfoliated CrPS4 with promising photoconductivity. Small 2020, 16, 1905924. [Google Scholar] [CrossRef]
- Calder, S.; Haglund, A.V.; Liu, Y.; Pajerowski, D.M.; Cao, H.B.; Williams, T.J.; Garlea, V.O.; Mandrus, D. Magnetic structure and exchange interactions in the layered semiconductor CrPS4. Phys. Rev. B 2020, 102, 024408. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Jin, G.; Jo, M.-H.; Lee, C.G.; Ryu, S.M. Crossover between photochemical and photothermal oxidations of atomically thin magnetic semiconductor CrPS4. Nano Lett. 2019, 19, 4043–4051. [Google Scholar] [CrossRef]
- Peng, Y.X.; Ding, S.L.; Cheng, M.; Hu, Q.F.; Yang, J.; Wang, F.G.; Xue, M.Z.; Liu, Z.; Lin, Z.C.; Avdeev, M.; et al. Magnetic structure and metamagnetic transitions in the van der Waals antiferromagnet CrPS4. Adv. Mater. 2020, 32, 2001200. [Google Scholar] [CrossRef]
- Lee, J.; Ko, T.Y.; Kim, J.H.; Bark, H.; Kang, B.; Jung, S.-G.; Park, T.; Lee, Z.; Ryu, S.; Lee, C. Structural and optical properties of single- and few-layer magnetic semiconductor CrPS4. ACS Nano 2017, 11, 10935–10944. [Google Scholar] [CrossRef]
- Son, J.; Son, S.; Park, P.; Kim, M.; Tao, Z.; Oh, J.; Lee, T.; Lee, S.; Kim, J.; Zhang, K.X.; et al. Air-stable and layer-dependent ferromagnetism in atomically thin van der Waals CrPS4. ACS Nano 2021, 15, 16904–16912. [Google Scholar] [CrossRef] [PubMed]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Deng, J.; Guo, J.; Hosono, H.; Ying, T.; Chen, X. Two-dimensional bipolar ferromagnetic semiconductors from layered antiferromagnets. Phys. Rev. Mater. 2021, 5, 034005. [Google Scholar] [CrossRef]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. HighScore Suite; Cambridge University Press: Cambridge, UK, 2014; Volume 29, pp. S13–S18. [Google Scholar]
- Diehl, R.; Carpentier, C.-D. The crystal structure of chromium thiophosphate, CrPS4. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 1977, B33, 1399–1404. [Google Scholar] [CrossRef]
- Andrianov, A.; Kim, A.; Muraviov, S.; Sysoliatin, A. Wavelength-tunable few-cycle optical pulses directly from an all-fiber Er-doped laser setup. Opt. Lett. 2009, 34, 3193–3195. [Google Scholar] [CrossRef]
- Chi, C.; Lee, J.; Koo, J.; Han Lee, J. All-normal-dispersion dissipative-soliton fiber laser at 1.06 µm using a bulk-structured Bi2Te3 topological insulator-deposited side-polished fiber. Laser Phys. 2014, 24, 105106. [Google Scholar] [CrossRef]
- Zhao, L.M.; Tang, D.Y.; Zhang, H.; Wu, X.; Bao, Q.L.; Loh, K.P. Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene. Opt. Lett. 2010, 35, 3622–3624. [Google Scholar] [CrossRef]
- Liu, S.X.; Lu, J.S.; Huang, H.F.; Xu, N.; Qu, J.L.; Wen, Q. Ultrafast photonics applications based on evanescent field interactions with 2D molybdenum carbide (Mo2C). J. Mater. Chem. C 2021, 9, 6187–6192. [Google Scholar] [CrossRef]
- Mao, D.; Zhang, S.L.; Wang, Y.D.; Gan, X.T.; Zhang, W.D.; Mei, T.; Wang, Y.G.; Wang, Y.S.; Zeng, H.B.; Zhao, J.L. WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 microm. Opt. Express 2015, 23, 27509–27519. [Google Scholar] [CrossRef] [PubMed]
- Chao, L.Z.; Meng, L.; Nan, G.Z.; Fang, J.X.; Ping, L.A.; Jun, Z.H.; Feng, Y.X.; Cheng, X.W.; Han, Z. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. Opt. Express 2015, 23, 20030–20039. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter 1994, 6, 8245–8257. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Cover. Condens. Matter Mater. Phys. 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Bader, R.F.W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Huang, S.S.; Wang, Y.G.; Guang, Y.P.; Zhang, G.L.; Zhao, J.Q.; Li, H.Q.; Lin, R.Y.; Cao, G.Z.; Duan, J.A. Observation of multipulse bunches in a graphene oxide passively mode-locked ytterbium-doped fiber laser with all-normal dispersion. Appl. Phys. B 2014, 116, 939–946. [Google Scholar] [CrossRef]
- Al-Masoodi, A.H.H.; Yasin, M.; Ahmed, M.H.M.; Latiff, A.A.; Arof, H.; Harun, S.W. Mode-locked ytterbium-doped fiber laser using mechanically exfoliated black phosphorus as saturable absorber. Optik 2017, 147, 52–58. [Google Scholar] [CrossRef]
- Song, H.; Wang, Q.; Zhang, Y.; Li, L. Mode-locked ytterbium-doped all-fiber lasers based on few-layer black phosphorus saturable absorbers. Opt. Commun. 2017, 394, 157–160. [Google Scholar] [CrossRef]
- Jiang, X.T.; Liu, S.X.; Liang, W.Y.; Luo, S.j.; He, Z.L.; Ge, Y.Q.; Wang, H.D.; Cao, R.; Zhang, F.; Wen, Q.; et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photonics Rev. 2018, 12. [Google Scholar] [CrossRef]
- Samikannu, S.; Sivaraj, S. Dissipative soliton generation in an all-normal dispersion ytterbium-doped fiber laser using few-layer molybdenum diselenide as a saturable absorber. Optical Eng. 2016, 55. [Google Scholar] [CrossRef]
- Du, J.; Wang, Q.K.; Jiang, G.B.; Xu, C.W.; Zhao, C.J.; Xiang, Y.J.; Chen, Y.; Wen, S.C.; Zhang, H. Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci. Rep. 2014, 4, 6346. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lu, S.B.; Zheng, J.; Du, J.; Wen, S.C.; Tang, D.Y.; Loh, K.P. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Optics Express 2014, 22, 7249–7260. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Lee, J.; Lee, Y.T.; Choi, W.-K.; Lee, J.H.; Song, Y.-W. Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction. Ann. Phys. 2015, 527, 770–776. [Google Scholar] [CrossRef]
- Jhon, Y.I.; Koo, J.; Anasori, B.; Seo, M.; Lee, J.H.; Gogotsi, Y.; Jhon, Y.M. Metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv. Mater. 2017, 29. [Google Scholar] [CrossRef]
- Aiub, E.J.; Steinberg, D.; Thoroh de Souza, E.A.; Saito, L.A.M. 200-fs mode-locked Erbium-doped fiber laser by using mechanically exfoliated MoS2 saturable absorber onto D-shaped optical fiber. Optics Express 2017, 25, 10546–10552. [Google Scholar] [CrossRef]
- Khazaeinezhad, R.; Kassani, S.H.; Jeong, H.; Nazari, T.; Yeom, D.-I.; Oh, K. Mode-locked all-fiber lasers at both anomalous and normal dispersion regimes based on spin-coated MoS2 nano-Sheets on a side-polished fiber. IEEE Photonics J. 2015, 7, 1–9. [Google Scholar] [CrossRef]
- Long, H.; Liu, S.X.; Wen, Q.; Yuan, H.Y.; Tang, C.Y.; Qu, J.L.; Ma, S.N.; Qarony, W.; Zeng, L.H.; Tsang, Y.H. In2Se3 nanosheets with broadband saturable absorption used for near-infrared femtosecond laser mode locking. Nanotechnology 2019, 30, 465704. [Google Scholar] [CrossRef] [PubMed]
Gain Fiber | Experimental Conditions (mW)/Days | Pulse Width | Output Power (mW) | Pulse Energy (nJ) | Peak Power (W) | Center WaveLength (nm) | Slope Efficiency (%) |
---|---|---|---|---|---|---|---|
Yb | 300/1 | 298 ps | 10.63 | 1.174 | 3.94 | 1036.1 | 4.9 |
300/40 | 400 ps | 8 | 0.876 | 2.144 | 1036.1 | 3.6 | |
Er | 270/1 | 500 fs | 6.1 | 0.893 | 1786 | 1531.6 | 2.2 |
270/40 | 594 fs | 7.02 | 0.961 | 1617.8 | 1531.4 | 2.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhang, Y.; Leng, X.; Jing, Q.; Wen, Q. CrPS4 Nanoflakes as Stable Direct-Band-Gap 2D Materials for Ultrafast Pulse Laser Applications. Nanomaterials 2023, 13, 1128. https://doi.org/10.3390/nano13061128
Zhang W, Zhang Y, Leng X, Jing Q, Wen Q. CrPS4 Nanoflakes as Stable Direct-Band-Gap 2D Materials for Ultrafast Pulse Laser Applications. Nanomaterials. 2023; 13(6):1128. https://doi.org/10.3390/nano13061128
Chicago/Turabian StyleZhang, Wenyao, Yu Zhang, Xudong Leng, Qun Jing, and Qiao Wen. 2023. "CrPS4 Nanoflakes as Stable Direct-Band-Gap 2D Materials for Ultrafast Pulse Laser Applications" Nanomaterials 13, no. 6: 1128. https://doi.org/10.3390/nano13061128
APA StyleZhang, W., Zhang, Y., Leng, X., Jing, Q., & Wen, Q. (2023). CrPS4 Nanoflakes as Stable Direct-Band-Gap 2D Materials for Ultrafast Pulse Laser Applications. Nanomaterials, 13(6), 1128. https://doi.org/10.3390/nano13061128