Approaching High-Performance TS-1 Zeolites in the Presence of Alkali Metal Ions via Combination of Adjusting pH Value and Modulating Crystal Size
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Syntheses of TS-1 Catalysts
2.3. Characterization
2.4. Catalytic Reaction
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 2009, 461, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, D.; Xu, D.; Asahina, S.; Cychosz, K.A.; Agrawal, K.V.; Al Wahedi, Y.; Bhan, A.; Al Hashimi, S.; Terasaki, O.; et al. Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science 2012, 336, 1684–1687. [Google Scholar] [CrossRef]
- Vogt, E.T.C.; Weckhuysen, B.M. Fluid catalytic cracking: Recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 2015, 44, 7342–7370. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Cheng, P.; Yan, W.; Boronat, M.; Li, X.; Su, J.H.; Wang, J.; Li, Y.; Corma, A.; Xu, R.; et al. Accelerated crystallization of zeolites via hydroxyl free radicals. Science 2016, 351, 1188–1191. [Google Scholar] [CrossRef]
- Jeon, M.Y.; Kim, D.; Kumar, P.; Lee, P.S.; Rangnekar, N.; Bai, P.; Shete, M.; Elyassi, B.; Lee, H.S.; Narasimharao, K.; et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 2017, 543, 690–694. [Google Scholar] [CrossRef]
- Snyder, B.E.R.; Vanelderen, P.; Bols, M.L.; Hallaert, S.D.; Bottger, L.H.; Ungur, L.; Pierloot, K.; Schoonheydt, R.A.; Sels, B.F.; Solomon, E.I. The active site of low-temperature methane hydroxylation in iron-containing zeolites. Nature 2016, 536, 317–321. [Google Scholar] [CrossRef]
- Sushkevich, V.L.; Palagin, D.; Ranocchiari, M.; van Bokhoven, J.A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 2017, 356, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.E. Clicking zeolites together A new mechanism to synthesize catalytic zeolites gives a previously unknown topology. Science 2023, 379, 236–237. [Google Scholar] [CrossRef]
- Li, J.; Gao, Z.R.; Lin, Q.F.; Liu, C.X.; Gao, F.X.; Lin, C.; Zhang, S.Y.; Deng, H.; Mayoral, A.; Fan, W.; et al. A 3D extra-large-pore zeolite enabled by 1D-to-3D topotactic condensation of a chain silicate. Science 2023, 379, 283–287. [Google Scholar] [CrossRef]
- Tan, X.Y.; Robijns, S.; Thuer, R.; Ke, Q.L.; De Witte, N.; Lamaire, A.; Li, Y.; Aslam, I.; Van Havere, D.; Donckels, T.; et al. Truly combining the advantages of polymeric and zeolite membranes for gas separations. Science 2022, 378, 1189–1194. [Google Scholar] [CrossRef]
- Peng, H.G.; Dong, T.; Yang, S.Y.; Chen, H.; Yang, Z.Z.; Liu, W.M.; He, C.; Wu, P.; Tian, J.S.; Peng, Y.; et al. Intra-crystalline mesoporous zeolite encapsulation-derived thermally robust metal nanocatalyst in deep oxidation of light alkanes. Nat. Commun. 2022, 13, 295. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Parmentier, T.E.; de Jong, K.P.; Zecevic, J. Tailoring and visualizing the pore architecture of hierarchical zeolites. Chem. Soc. Rev. 2015, 44, 7234–7261. [Google Scholar] [CrossRef] [PubMed]
- Weckhuysen, B.M.; Yu, J. Recent advances in zeolite chemistry and catalysis. Chem. Soc. Rev. 2015, 44, 7022–7024. [Google Scholar] [CrossRef] [PubMed]
- Korde, A.; Min, B.; Kapaca, E.; Knio, O.; Nezam, I.; Wang, Z.Y.; Leisen, J.; Yin, X.Y.; Zhang, X.Y.; Sholl, D.S.; et al. Single-walled zeolitic nanotubes. Science 2022, 375, 62–66. [Google Scholar] [CrossRef]
- Van der Graaff, W.N.P.; Li, G.; Mezari, B.; Pidko, E.A.; Hensen, E.J.M. Synthesis of Sn-Beta with Exclusive and High Framework Sn Content. ChemCatChem 2015, 7, 1152–1160. [Google Scholar] [CrossRef]
- Van de Vyver, S.; Odermatt, C.; Romero, K.; Prasomsri, T.; Román-Leshkov, Y. Solid Lewis Acids Catalyze the Carbon–Carbon Coupling between Carbohydrates and Formaldehyde. ACS Catal. 2015, 5, 972–977. [Google Scholar] [CrossRef]
- Guo, Q.; Fan, F.; Pidko, E.A.; van der Graaff, W.N.; Feng, Z.; Li, C.; Hensen, E.J. Highly active and recyclable Sn-MWW zeolite catalyst for sugar conversion to methyl lactate and lactic acid. ChemSusChem 2013, 6, 1352–1356. [Google Scholar] [CrossRef]
- Hammond, C.; Conrad, S.; Hermans, I. Simple and scalable preparation of highly active Lewis acidic Sn-beta. Angew. Chem. Int. Ed. 2012, 51, 11736–11739. [Google Scholar] [CrossRef]
- Gunther, W.R.; Wang, Y.; Ji, Y.; Michaelis, V.K.; Hunt, S.T.; Griffin, R.G.; Roman-Leshkov, Y. Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift. Nat. Commun. 2012, 3, 1109. [Google Scholar] [CrossRef]
- Fan, W.; Duan, R.-G.; Yokoi, T.; Wu, P.; Kubota, Y.; Tatsumi, T. Synthesis, Crystallization Mechanism, and Catalytic Properties of Titanium-Rich TS-1 Free of Extraframework Titanium Species. J. Am. Chem. Soc. 2008, 9, 10150–10164. [Google Scholar] [CrossRef]
- Reichinger, M.; Schmidt, W.; Berg, M.W.E.V.D.; Aerts, A.; Martens, J.A.; Kirschhock, C.E.A.; Gies, H.; Grünert, W. Alkene epoxidation with mesoporous materials assembled from TS-1 seeds—Is there a hierarchical pore system? J. Catal. 2010, 269, 367–375. [Google Scholar] [CrossRef]
- Chen, L.H.; Li, X.Y.; Tian, G.; Li, Y.; Rooke, J.C.; Zhu, G.-S.; Qiu, S.L.; Yang, X.Y.; Su, B.L. Highly Stable and Reusable Multimodal Zeolite TS-1 Based Catalysts with Hierarchically Interconnected Three-Level Micro-Meso-Macroporous Structure. Angew. Chem. Int. Ed. 2011, 50, 11156–11161. [Google Scholar] [CrossRef]
- Na, K.; Jo, C.; Kim, J.; Ahn, W.-S.; Ryoo, R. MFI Titanosilicate Nanosheets with Single-Unit-Cell Thickness as an Oxidation Catalyst Using Peroxides. ACS Catal. 2011, 1, 901–907. [Google Scholar] [CrossRef]
- Deng, X.Z.; Huang, G.; Liu, T.-W.; Huang, C.; Chen, B.-H.; Luo, C.-W.; Ruckenstein, E.; Chao, Z.-S. Synthesis of High-Performanced Titanium Silicalite-1 Zeolite at Very Low Usage of Tetrapropyl Ammonium Hydroxide. Ind. Eng. Chem. Res. 2013, 52, 3762–3772. [Google Scholar]
- Liu, M.; Wei, H.J.; Li, B.J.; Song, L.Y.; Zhao, S.Z.; Niu, C.C.; Jia, C.F.; Wang, X.Y.; Wen, Y.Q. Green and efficient preparation of hollow titanium silicalite-1 by using recycled mother liquid. Chem. Eng. J. 2018, 331, 194–202. [Google Scholar] [CrossRef]
- Xu, H.; Wu, P. Recent Progresses in Titanosilicates. Chin. J. Chem. 2017, 35, 836–844. [Google Scholar] [CrossRef]
- Li, M.Y.; Zhai, Y.; Zhang, X.B.; Wang, F.M.; Lv, G.J.; Rosine, A.; Li, M.Y.; Zhang, Q.; Liu, Y.K. (NH4)(2)SO4-assisted synthesis of thin-walled Ti-rich hollow titanium silicalite-1 zeolite for 1-hexene epoxidation. Microporous Mesoporous Mater. 2022, 331, 111655. [Google Scholar] [CrossRef]
- Pan, D.; Kong, L.T.; Zhang, H.B.; Zhang, Y.H.; Tang, Y. TS-1 Synthesis via Subcrystal Aggregation: Construction of Highly Active Hydrogen-Bonded Titanium Species for Alkene Epoxidation. ACS Appl. Mater. Interfaces 2023, 15, 28125–28134. [Google Scholar] [CrossRef]
- Li, C.G.; Lu, Y.; Wu, H.; Wu, P.; He, M. A hierarchically core/shell-structured titanosilicate with multiple mesopore systems for highly efficient epoxidation of alkenes. Chem. Commun. 2015, 51, 14905–14908. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhang, T.; Meng, C.; Guo, X.; Song, C. Enhanced Catalytic Performance of Titanium Silicalite-1 in Tuning the Crystal Size in the Range 1200–200 nm in a Tetrapropylammonium Bromide System. ChemCatChem 2015, 7, 2660–2668. [Google Scholar] [CrossRef]
- Zhou, J.H.; Cui, Z.; Ye, X.; Cui, Z.; Shi, J.F. Hierarchical mesoporous TS-1 zeolite: A highly active and extraordinarily stable catalyst for the selective oxidation of 2,3,6-trimethylphenol. Chem. Commun. 2010, 46, 4994–4996. [Google Scholar] [CrossRef]
- Clerici, M.G.; Bellussi, G.; Romano, U. Synthesis of Propylene Oxide from Propylene and Hydrogen Peroxide Catalyzed by Titanium Silicalite. J. Catal. 1991, 129, 159–167. [Google Scholar] [CrossRef]
- Thangaraj, A.; Ratnasamy, P. Catalytic properties of crystalline titanium silicalites III Ammoximation of cyclohexanone. J. Catal. 1991, 131, 394–400. [Google Scholar] [CrossRef]
- Lin, M.; Xia, C.; Zhu, B.; Li, H.; Shu, X. Green and efficient epoxidation of propylene with hydrogen peroxide (HPPO process) catalyzed by hollow TS-1 zeolite: A 1.0 kt/a pilot-scale study. Chem. Eng. J. 2016, 295, 370–375. [Google Scholar] [CrossRef]
- Du, S.; Chen, X.; Sun, Q.; Wang, N.; Jia, M.; Valtchev, V.; Yu, J. A non-chemically selective top-down approach towards the preparation of hierarchical TS-1 zeolites with improved oxidative desulfurization catalytic performance. Chem. Commun. 2016, 52, 3580–3583. [Google Scholar] [CrossRef]
- Luan, H.M.; Xu, C.; Wu, Q.M.; Xiao, F.S. Recent advances in the synthesis of TS-1 zeolite. Front. Chem. 2022, 10, 1080554. [Google Scholar] [CrossRef] [PubMed]
- Khouw, C.B.; Davis, M.E. Catalytic Activity of Titanium Silicates Synthesized in the Presence of Alkali-Metal and Alkaline-Earth Ions. J. Catal. 1995, 151, 77–86. [Google Scholar] [CrossRef]
- Fu, K.; Li, G.; Xu, F.; Dai, T.; Su, W.; Wang, H.; Li, T.; Wang, Y.; Wang, J. Nano-Cavities within Nano-Zeolites: The Influencing Factors of the Fabricating Process on Their Catalytic Activities. Nanomaterials 2023, 13, 1923. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Song, W.C.; Dai, C.Y.; He, Y.P.; Wang, M.L.; Wang, X.S.; Guo, X.W. Modification of small-crystal titanium silicalite-1 with organic bases: Recrystallization and catalytic properties in the hydroxylation of phenol. Appl. Catal. A Gen. 2013, 453, 272–279. [Google Scholar] [CrossRef]
- Wang, X.S.; Guo, X.W.; Li, G. Synthesis of titanium silicalite (TS-1) from the TPABr system and its catalytic properties for epoxidation of propylene. Catal. Today 2002, 74, 65–75. [Google Scholar] [CrossRef]
- Zhao, Q.; Bao, X.H.; Han, X.W.; Liu, X.M.; Tan, D.L.; Lin, L.W.; Guo, X.W.; Li, G.; Wang, X.S. Studies on the crystallization process of titanium silicalite-1 (TS-1) synthesized using tetrapropylammonium bromide as a template. Mater. Chem. Phys. 2000, 66, 41–50. [Google Scholar] [CrossRef]
- Wang, X.S.; Guo, X.W. Synthesis, characterization and catalytic properties of low cost titanium silicalite. Catal. Today 1999, 51, 177–186. [Google Scholar] [CrossRef]
- Li, G.; Guo, X.W.; Wang, X.S.; Zhao, Q.; Bao, X.H.; Han, X.W.; Lin, L.W. Synthesis of titanium silicalites in different template systems and their catalytic performance. Appl. Catal. A Gen. 1999, 185, 11–18. [Google Scholar]
- Millini, R.; Massara, E.P.; Bellussi, P.G.G. Framework composition of titanium silicalite. J. Catal. 1992, 137, 497–503. [Google Scholar] [CrossRef]
- Wang, J.G.; Wang, Y.B.; Tatsumi, T.; Zhao, Y.L. Anionic polymer as a quasi-neutral medium for low-cost synthesis of titanosilicate molecular sieves in the presence of high-concentration alkali metal ions. J. Catal. 2016, 338, 321–328. [Google Scholar] [CrossRef]
- Wang, J.G.; Zhao, Y.L.; Yokoi, T.; Kondo, J.N.; Tatsumi, T. High-Performance Titanosilicate Catalyst Obtained through Combination of Liquid-Phase and Solid-Phase Transformation Mechanisms. ChemCatChem 2014, 6, 2719–2726. [Google Scholar] [CrossRef]
- Ricchiardi, G.; Damin, A.; Bordiga, S.; Lamberti, C.; Spano, G.; Rivetti, F.; Zecchina, A. Vibrational Structure of Titanium Silicate Catalysts. A Spectroscopic and Theoretical Study. J. Am. Chem. Soc. 2001, 123, 11409–11419. [Google Scholar] [CrossRef]
Sample | pH Value 1 | pH Value 2 | Si/Ti (mol/mol) | Na (wt.%) | SBET 3 /m2 g−1 | VMicro. 4 /cm3 g−1 |
---|---|---|---|---|---|---|
TS-1-a | 8.9 | 8.4 | 25 | 0.412 | 204.5 | 0.07 |
TS-1-b | 9.3 | 7.6 | 31 | 0.392 | 388.4 | 0.17 |
TS-1-c | 9.4 | 7.0 | 35 | 0.560 | 393.9 | 0.17 |
TS-1-d | 10.2 | 7.8 | 45 | 0.567 | 385.3 | 0.16 |
Sample | Si/Ti (mol/mol) | Na (wt.%) | Conversion (%) | SEpoxide 1 (%) | SH2O2 2 (%) |
---|---|---|---|---|---|
TS-1-a | 25 | 0.412 | 7.8 | 99.0 | 63 |
TS-1-b | 31 | 0.392 | 9.3 | 98.7 | 58 |
TS-1-c | 35 | 0.560 | 4.4 | 99.0 | 47 |
TS-1-d | 45 | 0.567 | 3.0 | 99.0 | 53 |
TS-1-small 3 | 35 | 0.278 | 23.0 | 95.0 | 74 |
TS-1-co 4 | 45 | - | 24.4 | 90.8 | 80 |
TS-1-Na0.02 5 | 71 | 0.180 | 1.2 | 77.0 | 99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Fu, K.; Xu, F.; Li, T.; Wang, Y.; Wang, J. Approaching High-Performance TS-1 Zeolites in the Presence of Alkali Metal Ions via Combination of Adjusting pH Value and Modulating Crystal Size. Nanomaterials 2023, 13, 2296. https://doi.org/10.3390/nano13162296
Li G, Fu K, Xu F, Li T, Wang Y, Wang J. Approaching High-Performance TS-1 Zeolites in the Presence of Alkali Metal Ions via Combination of Adjusting pH Value and Modulating Crystal Size. Nanomaterials. 2023; 13(16):2296. https://doi.org/10.3390/nano13162296
Chicago/Turabian StyleLi, Geng, Kairui Fu, Fulin Xu, Tianduo Li, Yunan Wang, and Jingui Wang. 2023. "Approaching High-Performance TS-1 Zeolites in the Presence of Alkali Metal Ions via Combination of Adjusting pH Value and Modulating Crystal Size" Nanomaterials 13, no. 16: 2296. https://doi.org/10.3390/nano13162296
APA StyleLi, G., Fu, K., Xu, F., Li, T., Wang, Y., & Wang, J. (2023). Approaching High-Performance TS-1 Zeolites in the Presence of Alkali Metal Ions via Combination of Adjusting pH Value and Modulating Crystal Size. Nanomaterials, 13(16), 2296. https://doi.org/10.3390/nano13162296