Methylammonium Lead Bromide Perovskite Nano-Crystals Grown in a Poly[styrene-co-(2-(dimethylamino)ethyl Methacrylate)] Matrix Immobilized on Exfoliated Graphene Nano-Sheets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation
2.3. Synthesis of the Random Poly[styrene-co-(2-(dimethylamino)ethyl Methacrylate], P[St-co-DMAEMA], Co-Polymer
2.4. Preparation of CH3NH3Br/PbBr2 Solution (Perovskite Precursor)
2.5. Preparation of CH3NH3PbBr3/Co-Polymer Ensemble
2.6. Liquid-Assisted Exfoliation of Graphene Nano-Sheets
2.7. Preparation of Graphene/CH3NH3PbBr3/Co-Polymer Ensemble
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Dey, A.; Ye, J.; De, A.; Debroye, E.; Ha, S.K.; Bladt, E.; Kshirsagar, A.S.; Wang, Z.; Yin, J.; Wang, Y.; et al. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano 2021, 15, 10775–10981. [Google Scholar] [CrossRef] [PubMed]
- Biccari, F.; Gabelloni, F.; Burzi, E.; Gurioli, M.; Pescetelli, S.; Agresti, A.; Del Rio Castillo, A.E.; Ansaldo, A.; Kymakis, E.; Bonaccorso, F.; et al. Graphene-Based Electron Transport Layers in Perovskite Solar Cells: A Step-Up for an Efficient Carrier Collection. Adv. Energy. Mater. 2017, 7, 1701349. [Google Scholar] [CrossRef]
- Dai, X.; Koshy, P.; Sorrell, C.C.; Lim, J.; Yun, J.S. Focussed Review of Utilization of Graphene-Based Materials in Electron Transport Layer in Halide Perovskite Solar Cells: Materials-Based Issues. Energies 2020, 13, 6335. [Google Scholar] [CrossRef]
- Zhu, Y.; Jia, S.; Zheng, J.; Lin, Y.; Wu, Y.; Wang, J. Facile synthesis of nitrogen-doped graphene frameworks for enhanced performance of hole transport material-free perovskite solar cells. J. Mater. Chem. C 2018, 6, 3097–3103. [Google Scholar] [CrossRef]
- Acik, M.; Darling, S.B. Graphene in perovskite solar cells: Device design, characterization and implementation. J. Mater. Chem. A. 2016, 4, 6185–6235. [Google Scholar] [CrossRef]
- Stergiou, A.; Cantón-Vitoria, R.; Psarrou, M.N.; Economopoulos, S.P.; Tagmatarchis, N. Functionalized graphene and targeted applications—Highlighting the road from chemistry to applications. Prog. Mater. Sci. 2020, 114, 100683. [Google Scholar] [CrossRef]
- Xu, Y.F.; Yang, M.Z.; Chen, B.X.; Wang, X.D.; Chen, H.Y.; Kuang, D.B.; Su, C.Y. A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663. [Google Scholar] [CrossRef]
- Acik, M.; Park, I.K.; Koritala, R.E.; Lee, G.; Rosenberg, R.A. Oxygen-induced defects at the lead halide perovskite/graphene oxide interfaces. J. Mater. Chem. A. 2018, 6, 1423–1442. [Google Scholar] [CrossRef]
- Zibouche, N.; Volonakis, G.; Giustino, F. Graphene Oxide/Perovskite Interfaces For Photovoltaics. J. Phys. Chem. C 2018, 122, 16715–16726. [Google Scholar] [CrossRef]
- Wen, X.; Wu, J.; Gao, D.; Lin, C. Interfacial engineering with amino-functionalized graphene for efficient perovskite solar cells. J. Mater. Chem. A. 2016, 4, 13482–13487. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zhou, Y.; Wei, Y.; Tai, M.; Nan, H.; Gu, Y.; Han, J.; Yin, X.; Li, J.; Lin, H. Improved phase stability of γ-CsPbI3 perovskite nanocrystals using the interface effect using iodine modified graphene oxide. J. Mater. Chem. C 2020, 8, 2569–2578. [Google Scholar] [CrossRef]
- Xue, Z.; Gao, H.; Liu, W.; Li, X. Facile Room-Temperature Synthesis of High-Chemical-Stability Nitrogen-Doped Graphene Quantum Dot/CsPbBr3 Composite. ACS Appl. Electron. Mater. 2019, 1, 2244–2252. [Google Scholar] [CrossRef]
- Zhou, Q.; Tang, S.; Yuan, G.; Zhu, W.; Huang, Y.; Li, S.; Lin, M. Tailored graphene quantum dots to passivate defects and accelerate charge extraction for all-inorganic CsPbIBr2 perovskite solar cells. J. Alloys Compd. 2022, 895, 162529. [Google Scholar] [CrossRef]
- Koo, D.; Kim, U.; Cho, Y.; Lee, J.; Seo, J.; Choi, Y.; Choi, K.J.; Baik, J.M.; Yang, C.; Park, H. Graphene-Assisted Zwitterionic Conjugated Polycyclic Molecular Interfacial Layer Enables Highly Efficient and Stable Inverted Perovskite Solar Cells. Chem. Mater. 2021, 33, 5563–5571. [Google Scholar] [CrossRef]
- Guerra, V.L.P.; Kovaricek, P.; Vales, V.; Drogowska, K.; Verhagen, T.; Vejpravova, J.; Horak, L.; Listorti, A.; Colella, S.; Kalbac, M. Selective self-assembly and light emission tuning of layered hybrid perovskites on patterned graphene. Nanoscale 2018, 10, 3198–3211. [Google Scholar] [CrossRef] [Green Version]
- Bera, K.P.; Haider, G.; Huang, Y.T.; Roy, P.K.; Paul Inbaraj, C.R.; Liao, Y.M.; Lin, H.I.; Lu, C.H.; Shen, C.; Shih, W.Y.; et al. Graphene Sandwich Stable Perovskite Quantum-Dot Light-Emissive Ultrasensitive and Ultrafast Broadband Vertical Phototransistors. ACS Nano 2019, 13, 12540–12552. [Google Scholar] [CrossRef]
- Tseng, W.S.; Jao, M.H.; Hsu, C.C.; Huang, J.S.; Wu, C.I.; Yeh, N.C. Stabilization of hybrid perovskite CH3NH3PbI3 thin films by graphene passivation. Nanoscale 2017, 9, 19227–19235. [Google Scholar] [CrossRef] [Green Version]
- O’Keeffe, P.; Catone, D.; Paladini, A.; Toschi, F.; Turchini, S.; Avaldi, L.; Martelli, F.; Agresti, A.; Pescetelli, S.; Del Rio Castillo, A.E.; et al. Graphene-Induced Improvements of Perovskite Solar Cell Stability: Effects on Hot-Carriers. Nano Lett. 2019, 19, 684–691. [Google Scholar] [CrossRef]
- Hu, J.; Ma, X.; Duan, W.; Liu, Z.; Liu, T.; Lv, H.; Huang, C.; Miao, L.; Jiang, J. First-Principles Calculations of Graphene-Coated CH3NH3PbI3 toward Stable Perovskite Solar Cells in Humid Environments. ACS Appl. Nano Mater. 2020, 3, 7704–7712. [Google Scholar] [CrossRef]
- Li, G.; Tan, Z.K.; Di, D.; Lai, M.L.; Jiang, L.; Lim, J.H.; Friend, R.H.; Greenham, N.C. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett. 2015, 15, 2640–2644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Q.; Bai, Z.; Lu, W.G.; Wang, Y.; Zou, B.; Zhong, H. In Situ Fabrication of Halide Perovskite Nanocrystal-Embedded Polymer Composite Films with Enhanced Photoluminescence for Display Backlights. Adv. Mater. 2016, 28, 9163–9168. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; He, J.; Chen, H.; Chen, J.; Zhu, R.; Ma, P.; Towers, A.; Lin, Y.; Gesquiere, A.J.; Wu, S.T.; et al. Ultrastable, Highly Luminescent Organic-Inorganic Perovskite-Polymer Composite Films. Adv. Mater. 2016, 28, 10710–10717. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.; Li, J.; Chen, M.; Geske, T.; Bade, S.G.R.; Yu, Z. Junction Propagation in Organometal Halide Perovskite-Polymer Composite Thin Films. J. Phys. Chem. Lett. 2017, 8, 2412–2419. [Google Scholar] [CrossRef]
- Ngai, J.H.L.; Ho, J.K.W.; Chan, R.K.H.; Cheung, S.H.; Leung, L.M.; So, S.K. Growth, characterization, and thin film transistor application of CH3NH3PbI3 perovskite on polymeric gate dielectric layers. RSC Adv. 2017, 7, 49353–49360. [Google Scholar] [CrossRef] [Green Version]
- Hintermayr, V.A.; Lampe, C.; Low, M.; Roemer, J.; Vanderlinden, W.; Gramlich, M.; Bohm, A.X.; Sattler, C.; Nickel, B.; Lohmuller, T.; et al. Polymer Nanoreactors Shield Perovskite Nanocrystals from Degradation. Nano Lett. 2019, 19, 4928–4933. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.C.; Lee, A.-Y.; Kim, D.B.; Jung, E.D.; Kim, D.W.; Song, M.H. Enhancing the Performance and Stability of Perovskite Nanocrystal Light-Emitting Diodes with a Polymer Matrix. Adv. Mater. Technol. 2017, 2, 1700003. [Google Scholar] [CrossRef]
- Xin, Y.; Zhao, H.; Zhang, J. Highly Stable and Luminescent Perovskite-Polymer Composites from a Convenient and Universal Strategy. ACS Appl. Mater. Interfaces 2018, 10, 4971–4980. [Google Scholar] [CrossRef]
- Zhao, B.; Bai, S.; Kim, V.; Lamboll, R.; Shivanna, R.; Auras, F.; Richter, J.M.; Yang, L.; Dai, L.; Alsari, M.; et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photonics 2018, 12, 783–789. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Liao, Q.; Xu, Z.; Li, H.; Zheng, L.; Fu, H. Embedding Perovskite Nanocrystals into a Polymer Matrix for Tunable Luminescence Probes in Cell Imaging. Adv. Funct. Mater. 2017, 27, 1604382. [Google Scholar] [CrossRef]
- Li, Y.; Lv, Y.; Guo, Z.; Dong, L.; Zheng, J.; Chai, C.; Chen, N.; Lu, Y.; Chen, C. One-Step Preparation of Long-Term Stable and Flexible CsPbBr3 Perovskite Quantum Dots/Ethylene Vinyl Acetate Copolymer Composite Films for White Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2018, 10, 15888–15894. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Chen, Z.; Li, Z.; Yan, L.; Zhang, D.; Liu, L.; Xu, Q.H.; Ma, Y.; Huang, F.; Yip, H.L.; et al. Polymer-Assisted In Situ Growth of All-Inorganic Perovskite Nanocrystal Film for Efficient and Stable Pure-Red Light-Emitting Devices. ACS Appl. Mater. Interfaces 2018, 10, 42564–42572. [Google Scholar] [CrossRef]
- Zhao, B.; Gao, X.; Pan, K.; Deng, J. Chiral Helical Polymer/Perovskite Hybrid Nanofibers with Intense Circularly Polarized Luminescence. ACS Nano 2021, 15, 7463–7471. [Google Scholar] [CrossRef]
- Zhou, N.; Bekenstein, Y.; Eisler, C.N.; Zhang, D.; Schwartzberg, A.M.; Yang, P.; Alivisatos, A.P.; Lewis, J.A. Perovskite nanowire-block copolymer composites with digitally programmable polarization anisotropy. Sci. Adv. 2019, 5, eaav8141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raja, S.N.; Bekenstein, Y.; Koc, M.A.; Fischer, S.; Zhang, D.; Lin, L.; Ritchie, R.O.; Yang, P.; Alivisatos, A.P. Encapsulation of Perovskite Nanocrystals into Macroscale Polymer Matrices: Enhanced Stability and Polarization. ACS Appl. Mater. Interfaces 2016, 8, 35523–35533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Siron, M.; Gao, M.; Lu, D.; Bekenstein, Y.; Zhang, D.; Dou, L.; Alivisatos, A.P.; Yang, P. Lead halide perovskite nanowires stabilized by block copolymers for Langmuir-Blodgett assembly. Nano Res. 2020, 13, 1453–1458. [Google Scholar] [CrossRef]
- Kafetzi, M.; Pispas, S.; Mousdis, G. Hybrid Perovskite/Polymer Materials: Preparation and Physicochemical Properties. J. Compos. Sci. 2021, 5, 304. [Google Scholar] [CrossRef]
- Pan, A.; Jurow, M.J.; Qiu, F.; Yang, J.; Ren, B.; Urban, J.J.; He, L.; Liu, Y. Nanorod Suprastructures from a Ternary Graphene Oxide-Polymer-CsPbX3 Perovskite Nanocrystal Composite That Display High Environmental Stability. Nano Lett. 2017, 17, 6759–6765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa-Pardo, I.; Pocovi-Martinez, S.; Arenal, R.; Galian, R.E.; Perez-Prieto, J. Ultrathin lead bromide perovskite platelets spotted with europium(ii) bromide dots. Nanoscale 2019, 11, 18065–18070. [Google Scholar] [CrossRef]
- Cevallos-Toledo, R.B.; Rosa-Pardo, I.; Arenal, R.; Oestreicher, V.; Fickert, M.; Abellan, G.; Galian, R.E.; Perez-Prieto, J. Ruddlesden-Popper Hybrid Lead Bromide Perovskite Nanosheets of Phase Pure n=2: Stabilized Colloids Stored in the Solid State. Angew. Chem. Int. Ed. 2021, 60, 27312–27317. [Google Scholar] [CrossRef]
- Stergiou, A.; Gobeze, H.B.; Petsalakis, I.D.; Zhao, S.; Shinohara, H.; D’Souza, F.; Tagmatarchis, N. Oligothiophene/graphene supramolecular ensembles managing light induced processes: Preparation, characterization, and femtosecond transient absorption studies leading to charge-separation. Nanoscale 2015, 7, 15840–15851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stergiou, A.; Sideri, I.K.; Kafetzi, M.; Ioannou, A.; Arenal, R.; Mousdis, G.; Pispas, S.; Tagmatarchis, N. Methylammonium Lead Bromide Perovskite Nano-Crystals Grown in a Poly[styrene-co-(2-(dimethylamino)ethyl Methacrylate)] Matrix Immobilized on Exfoliated Graphene Nano-Sheets. Nanomaterials 2022, 12, 1275. https://doi.org/10.3390/nano12081275
Stergiou A, Sideri IK, Kafetzi M, Ioannou A, Arenal R, Mousdis G, Pispas S, Tagmatarchis N. Methylammonium Lead Bromide Perovskite Nano-Crystals Grown in a Poly[styrene-co-(2-(dimethylamino)ethyl Methacrylate)] Matrix Immobilized on Exfoliated Graphene Nano-Sheets. Nanomaterials. 2022; 12(8):1275. https://doi.org/10.3390/nano12081275
Chicago/Turabian StyleStergiou, Anastasios, Ioanna K. Sideri, Martha Kafetzi, Anna Ioannou, Raul Arenal, Georgios Mousdis, Stergios Pispas, and Nikos Tagmatarchis. 2022. "Methylammonium Lead Bromide Perovskite Nano-Crystals Grown in a Poly[styrene-co-(2-(dimethylamino)ethyl Methacrylate)] Matrix Immobilized on Exfoliated Graphene Nano-Sheets" Nanomaterials 12, no. 8: 1275. https://doi.org/10.3390/nano12081275
APA StyleStergiou, A., Sideri, I. K., Kafetzi, M., Ioannou, A., Arenal, R., Mousdis, G., Pispas, S., & Tagmatarchis, N. (2022). Methylammonium Lead Bromide Perovskite Nano-Crystals Grown in a Poly[styrene-co-(2-(dimethylamino)ethyl Methacrylate)] Matrix Immobilized on Exfoliated Graphene Nano-Sheets. Nanomaterials, 12(8), 1275. https://doi.org/10.3390/nano12081275