Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (184)

Search Parameters:
Keywords = perovskite nano-crystals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2349 KB  
Article
Long Period Grating Modified with Quasi-2D Perovskite/PAN Hybrid Nanofibers for Relative Humidity Measurement
by Dingyi Feng, Changjiang Zhang, Syed Irshad Haider, Jing Tian, Jiandong Wu, Fu Liu and Biqiang Jiang
Nanomaterials 2026, 16(2), 99; https://doi.org/10.3390/nano16020099 - 12 Jan 2026
Viewed by 204
Abstract
Metal halide perovskites have emerged as promising photoactive materials for highly efficient photodetectors; however, the inherent instability of perovskite materials in oxygen and moisture limits their practical applications. In this study, the highly moisture-sensitive characteristics of the quasi-2D perovskite nanocrystals were used to [...] Read more.
Metal halide perovskites have emerged as promising photoactive materials for highly efficient photodetectors; however, the inherent instability of perovskite materials in oxygen and moisture limits their practical applications. In this study, the highly moisture-sensitive characteristics of the quasi-2D perovskite nanocrystals were used to fabricate a long-period grating (LPG) humidity sensor based on the perovskite/polyacrylonitrile (PAN) hybrid nanofibers film. The pure-bromide quasi-2D perovskite nanocrystals were in situ synthesized and encapsulated in the PAN matrix on the fiber grating via an electrospinning technique. Humidity-induced variation in the complex permittivity of perovskites can alter the evanescent field of the co-propagating cladding modes, resulting in changes in both resonant amplitude and wavelength in the transmission spectrum of the LPG. These effects yielded an intensity sensitivity of ~0.21 dB/%RH and a wavelength sensitivity of ~18.2 pm/%RH, respectively, in the relative humidity range of 50–80%RH. The proposed LPG sensor demonstrated a good performance, indicating its potential application in the humidity-sensing field. Full article
(This article belongs to the Special Issue Nanomaterials for Optical Fiber Sensing)
Show Figures

Figure 1

12 pages, 4404 KB  
Article
Comprehensive Analysis of Temperature-Dependent Photoluminescence in Silica-Encapsulated CsPbBr3 and CsPbI3 Perovskite Nanocrystals
by Ming Mei, Minju Kim, Sang Hyuk Park, Ga Eul Choi, Songyi Lee, Robert A. Taylor, Wei Chen, Suck Won Hong and Kwangseuk Kyhm
Nanomaterials 2026, 16(1), 76; https://doi.org/10.3390/nano16010076 - 5 Jan 2026
Viewed by 348
Abstract
The temperature-dependent photoluminescence of CsPbBr3/SiO2 and CsPbI3/SiO2 nanocrystals was investigated to understand the thermal stability of SiO2 encapsulation. At increased temperature, intensity quenching, linewidth broadening, energy level shift, and decay dynamics were evaluated as quantified parameters. [...] Read more.
The temperature-dependent photoluminescence of CsPbBr3/SiO2 and CsPbI3/SiO2 nanocrystals was investigated to understand the thermal stability of SiO2 encapsulation. At increased temperature, intensity quenching, linewidth broadening, energy level shift, and decay dynamics were evaluated as quantified parameters. Comprehensive analysis of these parameters supports that CsPbI3/SiO2 nanocrystals show a stronger interaction with phonons compared with CsPbBr3/SiO2 nanocrystals. Despite SiO2 encapsulation, we conclude that trapping states are still present and the degree of localization can be characterized in terms of short-lived decay time and thermal activation energy. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

13 pages, 3978 KB  
Article
Terahertz Modulation of Silicon-Based Lead-Free Small-Bandgap Cs2CuSbCl6 Double Perovskite Nanocrystals
by Xintian Song, Zhongxin Zhang, Reyihanguli Tudi, Abulimiti Yasen, Mei Xiang and Bumaliya Abulimiti
Optics 2026, 7(1), 5; https://doi.org/10.3390/opt7010005 - 4 Jan 2026
Viewed by 197
Abstract
In this work, we synthesized a lead-free halide double perovskite, Cs2CuSbCl6, with high carrier mobility via a one-pot hot-injection method. When combined with a high-resistivity silicon wafer, it forms a Type-II heterojunction structure, and its modulation depth reaches 84% [...] Read more.
In this work, we synthesized a lead-free halide double perovskite, Cs2CuSbCl6, with high carrier mobility via a one-pot hot-injection method. When combined with a high-resistivity silicon wafer, it forms a Type-II heterojunction structure, and its modulation depth reaches 84% by adjusting the annealing temperature. It demonstrates promising modulation performance at 532 nm. Owing to its strong absorption in the ultraviolet region, Cs2CuSbCl6 shows potential for application in ultraviolet-controlled terahertz modulation. Full article
(This article belongs to the Special Issue Terahertz Optics: Sciences, Technologies and Applications)
Show Figures

Figure 1

13 pages, 9612 KB  
Communication
Lanthanide-Doped Cs2ZrCl6 Perovskite Nanocrystals for Multimode Anti-Counterfeiting Application
by Longbin You, Qixin Wang, Yuting Liao, Xiaotian Zhu, Keyuan Ding and Xian Chen
Nanomaterials 2026, 16(1), 68; https://doi.org/10.3390/nano16010068 - 2 Jan 2026
Viewed by 433
Abstract
The escalating prevalence of counterfeiting and forgery has imposed unprecedented demands on advanced anti-counterfeiting technologies. Traditional luminescent materials, relying on single-mode or static emission, are inherently vulnerable to replication using commercially available phosphors or simple spectral blending. Multimode luminescent materials exhibiting excitation wavelength-dependent [...] Read more.
The escalating prevalence of counterfeiting and forgery has imposed unprecedented demands on advanced anti-counterfeiting technologies. Traditional luminescent materials, relying on single-mode or static emission, are inherently vulnerable to replication using commercially available phosphors or simple spectral blending. Multimode luminescent materials exhibiting excitation wavelength-dependent emission offer significantly higher encoding capacity and forgery resistance. Herein, we report the colloidal synthesis of lanthanide-doped Cs2ZrCl6 nanocrystals (Ln3+ = Tb, Eu, Pr, Sm, Dy, Ho) via a robust hot-injection route. These nanocrystals universally exhibit efficient host-to-guest energy transfer from self-trapped excitons (STEs) under 254 nm, yielding sharp characteristic Ln3+ f–f emission alongside the intrinsic broadband STE luminescence. Critically, Tb3+ enables direct 4f → 5d excitation at ~275 nm, while Eu3+ introduces a low-energy Eu3+ ← Cl LMCT band at ~305 nm, completely bypassing STE emission. Due to their multimode luminescent characteristics, we fabricate a triple-mode anti-counterfeiting label displaying different colors under different types of excitation. These findings establish a breakthrough excitation-encoded multimode platform, offering potential applications for next-generation photonic security labels, scintillation detectors, and solid-state lighting applications. Full article
Show Figures

Figure 1

15 pages, 8095 KB  
Article
Synergistic Surface Modification of Bromocarboxylic Acid-Oleylamine Dual Ligands for Highly Stable and Luminescent CsPbBr3 Perovskite Nanocrystals
by Wenjun Chen, Rui Zhang, Xiaobo Hu, Jingsheng Ma, Duna Su, Chuanli Wu, Yanqiao Xu and Xiuxun Han
Molecules 2026, 31(1), 127; https://doi.org/10.3390/molecules31010127 - 29 Dec 2025
Viewed by 217
Abstract
The poor stability of CsPbBr3 perovskite nanocrystals (PNCs) caused by weak and dynamic ligand coordination severely limits their commercial applications. Herein, a dual-ligand synergistic modification strategy based on bromocarboxylic acids (BCAs) and oleylamine (OAm) was developed to mediate the surface structures and [...] Read more.
The poor stability of CsPbBr3 perovskite nanocrystals (PNCs) caused by weak and dynamic ligand coordination severely limits their commercial applications. Herein, a dual-ligand synergistic modification strategy based on bromocarboxylic acids (BCAs) and oleylamine (OAm) was developed to mediate the surface structures and luminescent dynamics of CsPbBr3 PNCs. The results reveal that carboxylate groups of BCA ligands modulate crystal growth, while its terminal Br atom forms a strong coordination with exposed Pb2+ on the PNCs surface, which can effectively passivate lead- and bromine-related defects. The synergistic protection of OAm ligands enhances the stability of PNCs via amino-halide electrostatic interactions and steric hindrance effects. Notably, based on the relatively dense surface coating of 4-bromobutyric acid (BBA) and OAm dual-ligands, the prepared CsPbBr3 PNCs exhibit a high photoluminescence quantum yield (PLQY) of 85.2 ± 2.4% and remarkable storage stability, retaining 90.2 ± 1.7% of their initial PL intensity after being stored for 63 days under ambient conditions. Furthermore, a prototype white light-emitting diode (WLED) fabricated with these PNCs displays a wide color gamut covering 122.1% of the NTSC standard and a luminous efficacy of 64.6 lm/W. This work provides a facile and feasible ligand engineering strategy to obtain highly stable and emissive PNCs. Full article
(This article belongs to the Special Issue Nanochemistry in Asia)
Show Figures

Graphical abstract

35 pages, 4880 KB  
Review
Perovskite Nanocrystals, Quantum Dots, and Two-Dimensional Structures: Synthesis, Optoelectronics, Quantum Technologies, and Biomedical Imaging
by Kamran Ullah, Anwar Ul Haq, Sergii Golovynskyi, Tarak Hidouri, Junle Qu and Iuliia Golovynska
Nanomaterials 2026, 16(1), 30; https://doi.org/10.3390/nano16010030 - 25 Dec 2025
Viewed by 700
Abstract
Perovskite crystals, nanocrystals, quantum dots (QDs), and two-dimensional (2D) materials are at the forefront of optoelectronics and quantum optics, offering groundbreaking potential for a wide range of applications, including photovoltaics, light-emitting devices, and quantum information technologies. Perovskite materials, with their remarkable, tunable bandgaps, [...] Read more.
Perovskite crystals, nanocrystals, quantum dots (QDs), and two-dimensional (2D) materials are at the forefront of optoelectronics and quantum optics, offering groundbreaking potential for a wide range of applications, including photovoltaics, light-emitting devices, and quantum information technologies. Perovskite materials, with their remarkable, tunable bandgaps, high absorption coefficients, and efficient charge transport, have revolutionized the field of light-emitting diodes, photodetectors, and solar cells. QDs, owing to their size-dependent quantum confinement and high photoluminescence quantum yields, are crucial for applications in display technologies, imaging, and quantum computing. The synthesis of QDs from perovskite-based materials yields a significant enhancement in the performance of optoelectronics devices. Furthermore, 2D perovskites have recently exhibited extraordinary carrier mobility, strong light–matter interactions, and mechanical flexibility, making them highly attractive for next-generation optoelectronic applications. Additionally, this review discusses the synergistic potential of hybrid material architectures, where perovskite crystals, QDs, and 2D materials are combined to enhance optoelectronic performance and their role in quantum optics. By analyzing the effects of material structure, surface modifications, and fabrication techniques, this review provides a valuable resource for harnessing the transformative potential of these advanced materials in modern optoelectronic applications. Full article
(This article belongs to the Special Issue Luminescence Properties and Bio-Applications of Nanomaterials)
Show Figures

Figure 1

12 pages, 3153 KB  
Article
Selective Excitation of Lanthanide Co-Dopants in Colloidal Lead-Free Halide Perovskite Nanocrystals as a Multilevel Anti-Counterfeiting Approach
by Olexiy Balitskii, Wilson Kagabo and Pavle V. Radovanovic
Nanomaterials 2025, 15(24), 1838; https://doi.org/10.3390/nano15241838 - 5 Dec 2025
Viewed by 514
Abstract
Doping lead-free halide perovskite nanocrystals with trivalent lanthanide ions has emerged as a promising strategy for engineering their optical properties in various photonic applications. Here, we report the design and synthesis of a series of lead-free double halide perovskite (Cs2Na(In/Y/Gd)Cl6 [...] Read more.
Doping lead-free halide perovskite nanocrystals with trivalent lanthanide ions has emerged as a promising strategy for engineering their optical properties in various photonic applications. Here, we report the design and synthesis of a series of lead-free double halide perovskite (Cs2Na(In/Y/Gd)Cl6) nanocrystals co-doped with a pair of different lanthanides (e.g., Tb3+, Dy3+, and Eu3+) as emission centers, and ns2 ions (Sb3+ or Bi3+) as sensitizers. The tunability of the delayed photoluminescence spectral density was achieved through the selective excitation of lanthanide dopants either via ligand-to-metal charge transfer (e.g., Eu3+) or via ns2 ion s-p transitions (e.g., Dy3+ or Tb3+). The intensities of the narrow lanthanide f-f emission bands can, therefore, be tuned by modulating the excitation wavelength and/or dopant ratio, allowing for the accurate engineering of the emission color coordinates and spectral density. We also demonstrated time-resolved tuning of the photoluminescence spectral density for the investigated nanocrystal host lattices co-doped with transition-metal (Mn2+) and lanthanide ions, owing to a large difference between the decay dynamics for Mn2+ d-d and lanthanide f-f transitions. The rational co-doping of double halide perovskite nanocrystals reported in this work provides a new strategy for generating pre-designed multilevel luminescent signatures for protection against counterfeiting. Full article
(This article belongs to the Special Issue Metal Halide Perovskite Nanocrystals and Thin Films)
Show Figures

Graphical abstract

17 pages, 1007 KB  
Review
Gemini Surfactants: Advances in Applications and Prospects for the Future
by Iwona Kowalczyk, Adrianna Szulc and Bogumił Brycki
Molecules 2025, 30(23), 4599; https://doi.org/10.3390/molecules30234599 - 29 Nov 2025
Cited by 2 | Viewed by 895
Abstract
Cationic gemini surfactants, which constitute a unique class of amphiphilic molecules composed of two hydrophilic ammonium groups and two hydrocarbon tails connected by a spacer, have emerged as highly versatile functional agents with superior interfacial activity and self-assembly behavior compared to conventional monomeric [...] Read more.
Cationic gemini surfactants, which constitute a unique class of amphiphilic molecules composed of two hydrophilic ammonium groups and two hydrocarbon tails connected by a spacer, have emerged as highly versatile functional agents with superior interfacial activity and self-assembly behavior compared to conventional monomeric analogs. Their structural tunability enables precise control over physicochemical properties, making them attractive for applications across diverse scientific and industrial domains. In biomedical sciences, gemini surfactants act as potent antimicrobial and anti-biofilm agents, as well as efficient carriers for drug and gene delivery. In nanotechnology and optoelectronics, they facilitate the synthesis and stabilization of nanoparticles, quantum dots, and perovskite nanocrystals, leading to improved colloidal stability, enhanced photophysical performance, and extended material lifetimes. Within the petroleum industry, gemini surfactants have proven effective in enhanced oil recovery (EOR) by reducing interfacial tension and in crude oil transportation as drag-reducing agents (DRAs), significantly lowering viscosity, turbulence, and pipeline energy losses. This review summarizes recent advances in the chemistry, mechanisms of action, and applications of gemini surfactants, highlighting their multifunctionality and emphasizing their potential in the development of next-generation sustainable technologies. Full article
Show Figures

Figure 1

11 pages, 1307 KB  
Article
Ligand-Assisted Purification of Mixed-Halide Perovskite Nanocrystals with Near-Unity PLQY for High-Color-Purity Display Applications
by Stephy Jose, Joo Yeon Kim, Hyunsu Cho, Chan-Mo Kang and Sukyung Choi
Materials 2025, 18(21), 4975; https://doi.org/10.3390/ma18214975 - 31 Oct 2025
Cited by 1 | Viewed by 595
Abstract
Cesium halide perovskite nanocrystals (PNCs) have emerged as promising materials for application in high-color-purity displays due to their exceptional optoelectronic properties, which include narrow emission linewidths, tunable bandgaps, and high photoluminescence quantum yields (PLQYs). However, preserving these characteristics during purification remains a major [...] Read more.
Cesium halide perovskite nanocrystals (PNCs) have emerged as promising materials for application in high-color-purity displays due to their exceptional optoelectronic properties, which include narrow emission linewidths, tunable bandgaps, and high photoluminescence quantum yields (PLQYs). However, preserving these characteristics during purification remains a major challenge as surface ligand detachment during the washing process can lead to increased defect states, reduced quantum efficiency, and spectral broadening. The choice of anti-solvent plays a crucial role in maintaining the structural and optical integrity of PNCs, as it directly influences ligand retention and material stability. In this study, we propose an optimized purification strategy for mixed-halide perovskite nanocrystals that incorporates post-synthetic ligand supplementation, in which controlled amounts of oleic acid (OA) and oleylamine (OAm) are sequentially introduced into the crude solution prior to anti-solvent treatment. This approach reinforces surface passivation, suppresses trap state formation, and minimizes halide loss. Consequently, a near-unity PLQY with narrow full-width-at-half-maximum emissions is achieved for both green- and red-emissive nanocrystals, markedly enhancing color purity and providing a promising route toward next-generation wide-color-gamut display technologies. Full article
Show Figures

Graphical abstract

10 pages, 869 KB  
Communication
Linear Electro-Optic Modulation in Electrophoretically Deposited Perovskite Nanocrystal Films
by Pengyu Ou, Jingjing Cao, Chengxi Lyu and Yuan Gao
Electronics 2025, 14(18), 3678; https://doi.org/10.3390/electronics14183678 - 17 Sep 2025
Viewed by 647
Abstract
We report the observation of a linear electro-optic (EO) response in CsPbX3 (X = Cl, Br, I) perovskite nanocrystal (NC) films fabricated via electrophoretic deposition (EPD). Under an alternating electric field, the EPD films exhibit clear linear EO modulation of transmitted light [...] Read more.
We report the observation of a linear electro-optic (EO) response in CsPbX3 (X = Cl, Br, I) perovskite nanocrystal (NC) films fabricated via electrophoretic deposition (EPD). Under an alternating electric field, the EPD films exhibit clear linear EO modulation of transmitted light intensity, indicating the formation of an anisotropic medium through field-induced NC alignment. In contrast, spin-coated NC films show no measurable linear EO response, underscoring the critical role of structural anisotropy introduced by EPD. All EPD samples exhibit a decreasing EO response with increasing modulation frequency, consistent with the involvement of slow ion migration dynamics. The halide composition influences EO behavior, with Br/Cl mixed-composition films maintaining the highest EO response at elevated frequencies, and Br-based NCs showing stronger EO signals than their Cl counterparts, while Bi-doped CsPbBr3 films exhibit quenched photoluminescence yet retain a measurable but weaker EO response, underscoring the trade-off between defect-induced nonradiative recombination and EO activity. These results highlight the potential of EPD-assembled perovskite NCs for reconfigurable EO applications by tailoring composition and microstructure. Full article
(This article belongs to the Special Issue Optoelectronics, Energy and Integration)
Show Figures

Figure 1

24 pages, 5175 KB  
Review
Photoluminescence Enhancement in Perovskite Nanocrystals via Compositional, Ligand, and Surface Engineering
by Chae-Mi Lee, Eun-Hoo Jeong, Ho-Seong Kim, Seo-Yeon Choi and Min-Ho Park
Materials 2025, 18(17), 4195; https://doi.org/10.3390/ma18174195 - 7 Sep 2025
Cited by 2 | Viewed by 1763
Abstract
Perovskite nanocrystals (PeNCs) have attracted considerable interest as promising materials for next-generation optoelectronic devices owing to their high photoluminescence quantum yield, narrow emission linewidths, simple composition tunability, and solution processability. However, the practical applicability of these NCs is limited by their compositional, thermal, [...] Read more.
Perovskite nanocrystals (PeNCs) have attracted considerable interest as promising materials for next-generation optoelectronic devices owing to their high photoluminescence quantum yield, narrow emission linewidths, simple composition tunability, and solution processability. However, the practical applicability of these NCs is limited by their compositional, thermal, and environmental instabilities, which compromise their long-term operational performance and reliability. Compositional instability arises from ion migration and phase segregation, leading to spectral shifts and unstable emission. Thermal degradation is driven by volatile organic cations and weak surface bonding, while environmental factors such as moisture, oxygen, and ultraviolet irradiation promote defect formation and material degradation. This review describes the recent advances in improving the photoluminescent stability of PeNCs through compositional engineering (A-/B-site substitution), ligand engineering (X-/L-type modulation), and surface passivation strategies. These approaches effectively suppress degradation pathways while maintaining or improving the optical properties of PeNCs. By performing a comparative analysis of these strategies, this review provides guidelines for the rational design of stable and efficient PeNCs for light-emitting applications. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

18 pages, 4583 KB  
Article
Bright Blue Light Emission of ZnCl2-Doped CsPbCl1Br2 Perovskite Nanocrystals with High Photoluminescence Quantum Yield
by Bo Feng, Youbin Fang, Jin Wang, Xi Yuan, Jihui Lang, Jian Cao, Jie Hua and Xiaotian Yang
Micromachines 2025, 16(8), 920; https://doi.org/10.3390/mi16080920 - 9 Aug 2025
Viewed by 1038
Abstract
The future development of perovskite light-emitting diodes (LEDs) is significantly limited by the poor stability and low brightness of the pure-blue emission in the wavelength range of 460–470 nm. In this study, the Cl/Br element ratio in CsPbClxBr3−x perovskite nanocrystals [...] Read more.
The future development of perovskite light-emitting diodes (LEDs) is significantly limited by the poor stability and low brightness of the pure-blue emission in the wavelength range of 460–470 nm. In this study, the Cl/Br element ratio in CsPbClxBr3−x perovskite nanocrystals (NCs) was modulated to precisely control their blue emission in the 428–512 nm spectral region. Then, the undoped CsPbCl1Br2 and the ZnCl2-doped CsPbCl1Br2 perovskite NCs were synthesized via the hot-injection method and investigated using variable-temperature photoluminescence (PL) spectroscopy. The PL emission peak of the ZnCl2-doped CsPbCl1Br2 perovskite NCs exhibits a blue shift from 475 nm to 460 nm with increasing ZnCl2 doping concentration. Additionally, the ZnCl2-doped CsPbCl1Br2 perovskite NCs show a high photoluminescence quantum yield (PLQY). The variable-temperature PL spectroscopy results show that the ZnCl2-doped CsPbCl1Br2 perovskite NCs have a larger exciton binding energy than the CsPbCl1Br2 perovskite NCs, which is indicative of a potentially higher PL intensity. To assess the stability of the perovskite NCs, high-temperature experiments and ultraviolet-irradiation experiments were conducted. The results indicate that zinc doping is beneficial for improving the stability of the perovskite NCs. The ZnCl2-doped CsPbCl1Br2 perovskite NCs were post-treated using didodecylammonium bromide, and after the post-treatment, the PLQY increased to 83%. This is a high PLQY value for perovskite NC-LEDs in the blue spectral range, and it satisfies the requirements of practical display applications. This work thus provides a simple preparation method for pure blue light-emitting materials. Full article
(This article belongs to the Special Issue Advanced Optoelectronic Materials/Devices and Their Applications)
Show Figures

Figure 1

16 pages, 1820 KB  
Article
Ultrafast Study of Interfacial Charge Transfer Mechanism in Assembled Systems of CsPbBr3 and Titanium Dioxide: Size Effect of CsPbBr3
by Ying Lv, Menghan Duan, Jie An, Yunpeng Wang and Luchao Du
Nanomaterials 2025, 15(14), 1065; https://doi.org/10.3390/nano15141065 - 9 Jul 2025
Cited by 1 | Viewed by 1194
Abstract
Lead halide perovskite quantum dots, also known as perovskite nanocrystals, are considered one of the most promising photovoltaic materials for solar cells due to their outstanding optoelectronic properties and simple preparation techniques. The key factors restricting the photoelectric conversion efficiency of solar cell [...] Read more.
Lead halide perovskite quantum dots, also known as perovskite nanocrystals, are considered one of the most promising photovoltaic materials for solar cells due to their outstanding optoelectronic properties and simple preparation techniques. The key factors restricting the photoelectric conversion efficiency of solar cell systems are the separation and transmission performances of charge carriers. Here, femtosecond time-resolved ultrafast spectroscopy was used to measure the interfacial charge transfer dynamics of different sizes of CsPbBr3 assembled with TiO2. The effect of perovskite size on the charge transfer is discussed. According to our experimental data analysis, the time constants of the interfacial electron transfer and charge recombination of the assembled systems of CsPbBr3 and titanium dioxide become larger when the size of the CsPbBr3 nanocrystals increases. We discuss the physical mechanism by which the size of perovskites affects the rate of charge transfer in detail. We expect that our experimental results provide experimental support for the application of novel quantum dots for solar cell materials. Full article
(This article belongs to the Special Issue Metal Halide Perovskite Nanocrystals and Thin Films)
Show Figures

Figure 1

16 pages, 2160 KB  
Article
Enhancing Stability and Emissions in Metal Halide Perovskite Nanocrystals Through Mn2⁺ Doping
by Thi Thu Trinh Phan, Thi Thuy Kieu Nguyen, Trung Kien Mac and Minh Tuan Trinh
Nanomaterials 2025, 15(11), 847; https://doi.org/10.3390/nano15110847 - 1 Jun 2025
Cited by 4 | Viewed by 2203
Abstract
Metal halide perovskite (MHP) nanocrystals (NCs) offer great potential for high-efficiency optoelectronic devices; however, they suffer from structural softness and chemical instability. Doping MHP NCs can overcome this issue. In this work, we synthesize Mn-doped methylammonium lead bromide (MAPbBr3) NCs using [...] Read more.
Metal halide perovskite (MHP) nanocrystals (NCs) offer great potential for high-efficiency optoelectronic devices; however, they suffer from structural softness and chemical instability. Doping MHP NCs can overcome this issue. In this work, we synthesize Mn-doped methylammonium lead bromide (MAPbBr3) NCs using the ligand-assisted reprecipitation method and investigate their structural and optical stability. X-ray diffraction confirms Mn2⁺ substitution at Pb2⁺ sites and lattice contraction. Photoluminescence (PL) measurements show a blue shift, significant PL quantum yield enhancement, reaching 72% at 17% Mn2⁺ doping, and a 34% increase compared to undoped samples, attributed to effective defect passivation and reduced non-radiative recombination, supported by time-resolved PL data. Mn2⁺ doping also improves long-term stability under ambient conditions. Low-temperature PL reveals the crystal-phase transitions of perovskite NCs and Mn-doped NCs to be somewhat different than those of pure MAPbBr3. Mn2⁺ incorporation into perovskite promotes self-assembly into superlattices with larger crystal sizes, better structural order, and stronger inter-NC coupling. These results demonstrate that Mn2⁺ doping enhances both optical performance and structural robustness, advancing the potential of MAPbBr3 NCs for stable optoelectronic applications. Full article
(This article belongs to the Special Issue Recent Advances in Halide Perovskite Nanomaterials)
Show Figures

Graphical abstract

13 pages, 1143 KB  
Article
Activation of Perovskite Nanocrystals for Volumetric Displays Using Near-Infrared Photon Upconversion by Triplet Fusion
by Yu Hu, Guiwen Luo, Pengfei Niu, Ling Zhang, Tianjun Yu, Jinping Chen, Yi Li and Yi Zeng
Molecules 2025, 30(11), 2273; https://doi.org/10.3390/molecules30112273 - 22 May 2025
Cited by 1 | Viewed by 1219
Abstract
Coupling organic light-harvesting materials with lead halide perovskite quantum dots (LHP QDs) is an attractive approach that could provide great potential in optoelectronic applications owing to the diversity of organic materials available and the intriguing optical and electronic properties of LHP QDs. Here, [...] Read more.
Coupling organic light-harvesting materials with lead halide perovskite quantum dots (LHP QDs) is an attractive approach that could provide great potential in optoelectronic applications owing to the diversity of organic materials available and the intriguing optical and electronic properties of LHP QDs. Here, we demonstrate energy collection by CsPbI3 QDs from a near-infrared (NIR) light-harvesting upconversion system. The upconversion system consists of Pd-tetrakis-5,10,15,20-(p-methoxycarbonylphenyl)-tetraanthraporphyrin (PdTAP) as the sensitizer to harvest NIR photons and rubrene as the annihilator to generate upconverted photons via triplet fusion. Steady-state and time-resolved photoluminescence spectra reveal that CsPbI3 QDs are energized via radiative energy transfer from the singlet excited rubrene with photophysics fidelity of respective components. In addition, a volumetric display demo incorporating CsPbI3 QDs as light emitters employing triplet fusion upconversion was developed, showing bright luminescent images from CsPbI3 QDs. These results present the feasibility of integrating organic light-harvesting systems and perovskite QDs, enabling diverse light harvesting and activation of perovskite materials for optoelectronic applications. Full article
(This article belongs to the Special Issue Photochemistry in Asia)
Show Figures

Graphical abstract

Back to TopTop