Tailoring Nonlinear Metamaterials for the Controlling of Spatial Quantum Entanglement
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, V.C.; Chu, C.H.; Sun, G.; Tsai, D.P. Advances in optical metasurfaces: Fabrication and applications. Opt. Express 2018, 26, 13148–13182. [Google Scholar] [CrossRef] [PubMed]
- Karnieli, A.; Roitman, D.; Liebtrau, M.; Tsesses, S.; van Nielen, N.; Kaminer, I.; Arie, A.; Polman, A. Cylindrical metalens for generation and focusing of free-electron radiation. Nano Lett. 2022, 22, 5641–5650. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Kuang, D. Visible-broadband localized vector vortex beam generator with a multi-structure-composited meta-surface. Nanomaterials 2019, 9, 166. [Google Scholar] [CrossRef] [PubMed]
- Ming, Y.; Intaravanne, Y.; Ahmed, H.; Kenney, M.; Lu, Y.Q.; Chen, X. Creating composite vortex beams with a single geometric metasurface. Adv. Mater. 2022, 34, 2109714. [Google Scholar] [CrossRef] [PubMed]
- Huidobro, P.A.; Maier, S.A.; Pendry, J.B. Tunable plasmonic metasurface for perfect absorption. EPJ Appl. Metamat. 2017, 4, 6. [Google Scholar] [CrossRef][Green Version]
- Wu, L.; Chen, Y. Three-stage quantum cryptography protocol under collective-rotation noise. Entropy 2015, 17, 2919–2931. [Google Scholar] [CrossRef]
- Brown, K.L.; Munro, W.J.; Kendon, V.M. Using quantum computers for quantum simulation. Entropy 2010, 12, 2268–2307. [Google Scholar] [CrossRef]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Advances in quantum metrology. Nat. Photonics 2011, 5, 222–229. [Google Scholar] [CrossRef]
- Shih, Y.H. Entangled photons. IEEE J. Sel. Top. Quantum Electron. 2003, 9, 1455–1467. [Google Scholar] [CrossRef]
- Ming, Y.; Wu, Z.J.; Cui, G.X.; Tan, A.H.; Xu, F.; Lu, Y.Q. Integrated source of tunable nonmaximally mode-entangled photons in a domain-engineered lithium niobate waveguide. Appl. Phys. Lett. 2014, 104, 171110. [Google Scholar] [CrossRef]
- Kwiat, P.G.; Mattle, K.; Weinfurter, H.; Zeilinger, A.; Sergienko, A.V.; Shih, Y.H. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 1995, 75, 4337–4341. [Google Scholar] [CrossRef]
- Leng, H.Y.; Yu, X.Q.; Gong, Y.X.; Xu, P.; Xie, Z.D.; Jin, H.; Zhang, C.; Zhu, S.N. On-chip steering of entangled photons in nonlinear photonic crystals. Nat. Commun. 2011, 2, 429. [Google Scholar] [CrossRef] [PubMed]
- Ming, Y.; Tan, A.H.; Wu, Z.J.; Chen, Z.X.; Xu, F.; Lu, Y.Q. Tailoring entanglement through domain engineering in a lithium niobate waveguide. Sci. Rep. 2014, 4, 4812. [Google Scholar] [CrossRef] [PubMed]
- Ming, Y.; Zhang, W.; Tang, J.; Liu, Y.; Xia, Z.L.; Liu, Y.S.; Lu, Y.Q. Photonic entanglement based on nonlinear metamaterials. Laser Photonics Rev. 2020, 14, 1900146. [Google Scholar] [CrossRef]
- Ni, J.; Huang, C.; Zhou, L.M.; Gu, M.; Song, Q.; Kivshar, Y.; Qiu, C.W. Multidimensional phase singularities in nanophotonics. Science 2021, 374, eabj0039. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Cruz, T.; Fedotova, A.; Sultanov, V.; Weissflog, M.A.; Arslan, D.; Younesi, M.; Pertsch, T.; Staude, I.; Setzpfandt, F.; Chekhova, M. Photon pairs from resonant metasurfaces. Nano Lett. 2021, 21, 4423–4429. [Google Scholar] [CrossRef]
- Santiago-Cruz, T.; Gennaro, S.D.; Mitrofanov, O.; Addamane, S.; Reno, J.; Brener, I.; Chekhova, M.V. Resonant metasurfaces for generating complex quantum states. Science 2022, 377, 991–995. [Google Scholar] [CrossRef]
- Lapine, M.; Shadrivov, I.V.; Kivshar, Y.S. Colloquium: Nonlinear metamaterials. Rev. Mod. Phys. 2014, 86, 1093–1123. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.; Zhang, W.; Ma, C.Q.; Chen, H.X.; Xiong, Y.F.; Yuan, R.; Tang, J.; Chen, P.; Hu, W.; et al. Visible and online detection of near-infrared optical vortices via nonlinear photonic crystals. Adv. Opt. Mater. 2022, 10, 2101098. [Google Scholar] [CrossRef]
- Keren-Zur, S.; Avayu, O.; Michaeli, L.; Ellenbogen, T. Nonlinear beam shaping with plasmonic metasurfaces. ACS Photonics 2016, 3, 117–123. [Google Scholar] [CrossRef]
- Li, G.X.; Wu, L.; Li, K.F.; Chen, S.M.; Schlickriede, C.; Xu, Z.J.; Huang, S.Y.; Li, W.D.; Liu, Y.J.; Pun, E.Y.B.; et al. Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation. Nano Lett. 2017, 17, 7974–7979. [Google Scholar] [CrossRef] [PubMed]
- Schlickriede, C.; Waterman, N.; Reineke, B.; Georgi, P.; Li, G.X.; Zhang, S.; Zentgraf, T. Imaging through nonlinear metalens using second harmonic generation. Adv. Mater. 2018, 30, 1703843. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Guo, H.; Fu, L.; Kaiser, S.; Schweizer, H.; Giessen, H. Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater. 2008, 7, 31–37. [Google Scholar] [CrossRef]
- Segal, N.; Keren-Zur, S.; Hendler, N.; Ellenbogen, T. Controlling light with metamaterial-based nonlinear photonic crystals. Nat. Photonics 2015, 9, 180–184. [Google Scholar] [CrossRef]
- Loot, A.; Hizhnyakov, V. Modeling of enhanced spontaneous parametric down-conversion in plasmonic and dielectric structures with realistic waves. J. Opt. 2018, 20, 055502. [Google Scholar] [CrossRef]
- Leonhardt, U. Quantum statistics of a lossless beam splitter: SU (2) symmetry in phase space. Phys. Rev. A 1993, 48, 3265–3277. [Google Scholar] [CrossRef]
- Poddubny, A.N.; Iorsh, I.V.; Sukhorukov, A.A. Generation of photon-plasmon quantum states in nonlinear hyperbolic metamaterials. Phys. Rev. Lett. 2016, 117, 123901. [Google Scholar] [CrossRef] [PubMed]
- Antonosyan, D.A.; Solntsev, A.S.; Sukhorukov, A.A. Effect of loss on photon-pair generation in nonlinear waveguide arrays. Phys. Rev. A 2014, 90, 043845. [Google Scholar] [CrossRef]
- Ming, Y.; Zhang, W.H.; Chen, Z.X.; Wu, Z.J.; Tang, J.; Xu, F.; Zhang, L.J.; Lu, Y.Q. Squeezing a surface plasmon through quadratic nonlinear interactions. ACS Photonics 2016, 3, 2074–2082. [Google Scholar] [CrossRef]
- Qin, Y.Q.; Zhang, C.; Zhu, Y.Y.; Hu, X.P.; Zhao, G. Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures. Phys. Rev. Lett. 2008, 100, 063902. [Google Scholar] [CrossRef]
- Loudon, R. The Quantum Theory of Light, 3rd ed.; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef]
- Mair, A.; Vaziri, A.; Weihs, G.; Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 2001, 412, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Burns, W.K.; Bloembergen, N. Third-harmonic generation in absorbing media of cubic or isotropic symmetry. Phys. Rev. B 1971, 4, 3437–3450. [Google Scholar] [CrossRef]
- Li, G.X.; Chen, S.M.; Pholchai, N.; Reineke, B.; Wong, P.W.H.; Pun, E.Y.B.; Cheah, K.W.; Zentgraf, T.; Zhang, S. Continuous control of the nonlinearity phase for harmonic generations. Nat. Mater. 2015, 14, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Miatto, F.M.; di Lorenzo Pires, H.; Barnett, S.M.; van Exter, M.P. Spatial Schmidt modes generated in parametric down-conversion. Eur. Phys. J. D 2012, 66, 263. [Google Scholar] [CrossRef]
- Lu, L.L.; Xu, P.; Zhong, M.L.; Bai, Y.F.; Zhu, S.N. Orbital angular momentum entanglement via fork-poling nonlinear photonic crystals. Opt. Express 2015, 23, 1203–1212. [Google Scholar] [CrossRef]
- Kante, B.; Park, Y.S.; O’Brien, K.; Shuldman, D.; Lanzillotti-Kimura, N.D.; Wong, Z.J.; Yin, X.B.; Zhang, X. Symmetry breaking and optical negative index of closed nanorings. Nat. Commun. 2012, 3, 1180. [Google Scholar] [CrossRef]
- Tseng, M.L.; Wu, P.C.; Sun, S.; Chang, C.M.; Chen, W.T.; Chu, C.H.; Chen, P.L.; Zhou, L.; Huang, D.W.; Yen, T.J.; et al. Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique. Laser Photonics Rev. 2012, 6, 702–707. [Google Scholar] [CrossRef]
- Shen, K.C.; Huang, Y.T.; Chung, T.L.; Tseng, M.L.; Tsai, W.Y.; Sun, G.; Tsai, D.P. Giant efficiency of visible second-harmonic light by an all-dielectric multiple-quantum-well metasurface. Phys. Rev. Appl. 2019, 12, 064056. [Google Scholar] [CrossRef]
- Qian, H.; Li, S.; Chen, C.F.; Hsu, S.W.; Bopp, S.E.; Ma, Q.; Tao, A.R.; Liu, Z. Large optical nonlinearity enabled by coupled metallic quantum wells. Light Sci. Appl. 2019, 8, 13. [Google Scholar] [CrossRef]
- Ming, Y.; Zhang, W.; Tang, J.; Yang, X.; Liu, Y.S.; Lu, Y.Q. Nonlinear wavy metasurfaces with topological defects for manipulating orbital angular momentum states. ACS Photonics 2021, 8, 1896–1902. [Google Scholar] [CrossRef]
- Wang, S.M.; Mu, S.Y.; Zhu, C.; Gong, Y.X.; Xu, P.; Liu, H.; Li, T.; Zhu, S.N.; Zhang, X. Hong-Ou-Mandel interference mediated by the magnetic plasmon waves in a three-dimensional optical metamaterial. Opt. Express 2012, 20, 5213–5218. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.W.; Chen, Z.B.; Lu, C.Y.; Weinfurter, H.; Zeilinger, A.; Zukowski, M. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 2012, 84, 777–838. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ming, Y.; Liu, Y.; Chen, W.; Yan, Y.; Zhang, H. Tailoring Nonlinear Metamaterials for the Controlling of Spatial Quantum Entanglement. Nanomaterials 2022, 12, 4001. https://doi.org/10.3390/nano12224001
Ming Y, Liu Y, Chen W, Yan Y, Zhang H. Tailoring Nonlinear Metamaterials for the Controlling of Spatial Quantum Entanglement. Nanomaterials. 2022; 12(22):4001. https://doi.org/10.3390/nano12224001
Chicago/Turabian StyleMing, Yang, Yuan Liu, Wei Chen, Yusen Yan, and Huiguo Zhang. 2022. "Tailoring Nonlinear Metamaterials for the Controlling of Spatial Quantum Entanglement" Nanomaterials 12, no. 22: 4001. https://doi.org/10.3390/nano12224001
APA StyleMing, Y., Liu, Y., Chen, W., Yan, Y., & Zhang, H. (2022). Tailoring Nonlinear Metamaterials for the Controlling of Spatial Quantum Entanglement. Nanomaterials, 12(22), 4001. https://doi.org/10.3390/nano12224001