Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (166)

Search Parameters:
Keywords = photonic entanglement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 465 KiB  
Article
Quantum W-Type Entanglement in Photonic Systems with Environmental Decoherence
by Kamal Berrada and Smail Bougouffa
Symmetry 2025, 17(7), 1147; https://doi.org/10.3390/sym17071147 - 18 Jul 2025
Viewed by 307
Abstract
Preserving quantum entanglement in multipartite systems under environmental decoherence is a critical challenge for quantum information processing. In this work, we investigate the dynamics of W-type entanglement in a system of three photons, focusing on the effects of Markovian and non-Markovian decoherence regimes. [...] Read more.
Preserving quantum entanglement in multipartite systems under environmental decoherence is a critical challenge for quantum information processing. In this work, we investigate the dynamics of W-type entanglement in a system of three photons, focusing on the effects of Markovian and non-Markovian decoherence regimes. Using the lower bound of concurrence (LBC) as a measure of entanglement, we analyze the time evolution of the LBC for photons initially prepared in a W state under the influence of dephasing noise. We explore the dependence of entanglement dynamics on system parameters such as the dephasing angle and refractive-index difference, alongside environmental spectral properties. Our results, obtained within experimentally feasible parameter ranges, reveal how the enhancement of entanglement preservation can be achieved in Markovian and non-Markovian regimes according to the system parameters. These findings provide valuable insights into the robustness of W-state entanglement in tripartite photonic systems and offer practical guidance for optimizing quantum protocols in noisy environments. Full article
Show Figures

Figure 1

10 pages, 300 KiB  
Article
Delayed Choice for Entangled Photons
by Rolando Velázquez, Linda López-Díaz, Leonardo López-Hernández, Eduardo Hernández, L. M. Arévalo-Aguilar and V. Velázquez
Photonics 2025, 12(7), 696; https://doi.org/10.3390/photonics12070696 - 10 Jul 2025
Viewed by 292
Abstract
The wave–particle duality is the quintessence of quantum mechanics. This duality gives rise to distinct behaviors depending on the experimental setup, with the system exhibiting either wave-like or particle-like properties, depending on whether the focus is on interference (wave) or trajectory (particle). In [...] Read more.
The wave–particle duality is the quintessence of quantum mechanics. This duality gives rise to distinct behaviors depending on the experimental setup, with the system exhibiting either wave-like or particle-like properties, depending on whether the focus is on interference (wave) or trajectory (particle). In the interaction with a beam splitter, photons with particle behavior can transform into a wave behavior and vice versa. In Wheeler’s delayed-choice gedanken experiment, this interaction is delayed so that the wave that initially travels through the interferometer can become a particle, avoiding the interaction. We show that this contradiction can be resolved using polarized entangled photon pairs. An analysis of Shannon’s entropy supports this proposal. Full article
(This article belongs to the Section Quantum Photonics and Technologies)
Show Figures

Figure 1

17 pages, 489 KiB  
Review
Experimental Advances in Phase Estimation with Photonic Quantum States
by Laura T. Knoll, Agustina G. Magnoni and Miguel A. Larotonda
Entropy 2025, 27(7), 712; https://doi.org/10.3390/e27070712 - 1 Jul 2025
Viewed by 707
Abstract
Photonic quantum metrology has emerged as a leading platform for quantum-enhanced precision measurements. By taking advantage of quantum resources such as entanglement, quantum metrology enables parameter estimation with sensitivities surpassing classical limits. In this review, we describe the basic tools and recent experimental [...] Read more.
Photonic quantum metrology has emerged as a leading platform for quantum-enhanced precision measurements. By taking advantage of quantum resources such as entanglement, quantum metrology enables parameter estimation with sensitivities surpassing classical limits. In this review, we describe the basic tools and recent experimental progress in the determination of an optical phase with a precision that may exceed the shot-noise limit, enabled by the use of nonclassical states of light. We review the state of the art and discuss the challenges and trends in the field. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

14 pages, 263 KiB  
Article
A Grover Search-Based Quantum Key Agreement Protocol for Secure Internet of Medical Things Communication
by Tzung-Her Chen
Future Internet 2025, 17(6), 263; https://doi.org/10.3390/fi17060263 - 17 Jun 2025
Viewed by 281
Abstract
The rapid integration of the Internet of Medical Things (IoMT) into healthcare systems raises urgent demands for secure communication mechanisms capable of protecting sensitive patient data. Quantum key agreement (QKA), a collaborative approach to key generation based on quantum principles, provides an attractive [...] Read more.
The rapid integration of the Internet of Medical Things (IoMT) into healthcare systems raises urgent demands for secure communication mechanisms capable of protecting sensitive patient data. Quantum key agreement (QKA), a collaborative approach to key generation based on quantum principles, provides an attractive alternative to traditional quantum key distribution (QKD), as it eliminates dependence on a trusted authority and ensures equal participation from all users. QKA demonstrates particular suitability for IoMT’s decentralized medical networks by eliminating trusted authority dependence while ensuring equitable participation among all participants. This addresses fundamental challenges where centralized trust models introduce vulnerabilities and asymmetric access patterns that compromise egalitarian principles essential for medical data sharing. However, practical QKA applications in IoMT remain limited, particularly for schemes that avoid complex entanglement operations and authenticated classical channels. Among the few QKA protocols employing Grover’s search algorithm (GSA), existing proposals potentially suffer from limitations in fairness and security. In this paper, the author proposes an improved GSA-based QKA protocol that ensures fairness, security, and correctness without requiring an authenticated classical communication channel. The proposed scheme guarantees that each participant’s input equally contributes to the final key, preventing manipulation by any user subgroup. The scheme combines Grover’s algorithm with the decoy photon technique to ensure secure quantum transmission. Security analysis confirms resistance to external attacks, including intercept-resend, entanglement probes, and device-level exploits, as well as insider threats such as parameter manipulation. Fairness is achieved through a symmetric protocol design rooted in quantum mechanical principles. Efficiency evaluation shows a theoretical efficiency of approximately 25%, while eliminating the need for quantum memory. These results position the proposed protocol as a practical and scalable solution for future secure quantum communication systems, particularly within distributed IoMT environments. Full article
(This article belongs to the Special Issue The Future Internet of Medical Things, 3rd Edition)
20 pages, 719 KiB  
Article
Entanglement Dynamics of Two Giant Atoms Embedded in a One-Dimensional Photonic Lattice with a Synthetic Gauge Field
by Vassilios Yannopapas
Photonics 2025, 12(6), 612; https://doi.org/10.3390/photonics12060612 - 14 Jun 2025
Viewed by 504
Abstract
We investigate the entanglement dynamics of two giant atoms coupled to a one-dimensional photonic lattice with synthetic chirality. The atoms are connected to multiple lattice sites in a braided configuration and interact with a structured photonic reservoir featuring direction-dependent hopping phases. By tuning [...] Read more.
We investigate the entanglement dynamics of two giant atoms coupled to a one-dimensional photonic lattice with synthetic chirality. The atoms are connected to multiple lattice sites in a braided configuration and interact with a structured photonic reservoir featuring direction-dependent hopping phases. By tuning the atomic detuning and the synthetic gauge phase, we identify distinct dynamical regimes characterized by decoherence-free population exchange, damped oscillations, long-lived revivals, and excitation trapping. Using a combination of time-domain simulations and resolvent-based analysis, we show how interference and band structure effects lead to the emergence of bound states, quasi-bound states, and phase-dependent entanglement dynamics. We compare the initial states with localized and delocalized atomic excitations, demonstrating that pre-existing entanglement can enhance the robustness against decoherence or accelerate its loss, depending on the system parameters. These results highlight the utility of synthetic photonic lattices and nonlocal emitter configurations in tailoring quantum coherence, entanglement, and information flows in structured environments. Full article
(This article belongs to the Special Issue Advanced Research in Quantum Optics)
Show Figures

Figure 1

13 pages, 2094 KiB  
Article
Quantum Mpemba Effect from Non-Normal Dynamics
by Stefano Longhi
Entropy 2025, 27(6), 581; https://doi.org/10.3390/e27060581 - 29 May 2025
Viewed by 594
Abstract
The quantum Mpemba effect refers to the counterintuitive phenomenon in which a system initially farther from equilibrium relaxes faster than one prepared closer to it. Several mechanisms have been identified in open quantum systems to explain this behavior, including the strong Mpemba effect, [...] Read more.
The quantum Mpemba effect refers to the counterintuitive phenomenon in which a system initially farther from equilibrium relaxes faster than one prepared closer to it. Several mechanisms have been identified in open quantum systems to explain this behavior, including the strong Mpemba effect, non-Markovian memory, and initial system–reservoir entanglement. Here, we unveil a distinct mechanism rooted in the non-normal nature of the Liouvillian superoperator in Markovian dynamics. When the Liouvillian’s eigenmodes are non-orthogonal, transient interference between decaying modes can induce anomalous early-time behavior—such as delayed thermalization or transient freezing—even though asymptotic decay rates remain unchanged. This differs fundamentally from strong Mpemba effects, which hinge on suppressed overlap with slow-decaying modes. We demonstrate this mechanism using a waveguide quantum electrodynamics model, where quantum emitters interact with the photonic modes of a one-dimensional waveguide. The directional and radiative nature of these couplings naturally introduces non-normality into the system’s dynamics. As a result, certain initial states—despite being closer to equilibrium—can exhibit slower relaxation at short times. This work reveals a previously unexplored and universal source of Mpemba-like behavior in memoryless quantum systems, expanding the theoretical framework for anomalous relaxation and opening new avenues for control in engineered quantum platforms. Full article
(This article belongs to the Section Non-equilibrium Phenomena)
Show Figures

Figure 1

17 pages, 3307 KiB  
Article
Direct Generation and Non-Hermitian Regulation of Energy-Time-Polarization-Hyper-Entangled Quadphotons
by Rui Zhuang, Siqiang Zhang, Guobin Liu, Zhou Feng, Qingyu Chen, Sinong Liu and Yanpeng Zhang
Sensors 2025, 25(11), 3425; https://doi.org/10.3390/s25113425 - 29 May 2025
Viewed by 370
Abstract
Entangled multiphoton is an ideal resource for quantum information technology. Here, narrow-bandwidth hyper-entangled quadphoton is theoretically demonstrated by quantizing degenerate Zeeman sub states through spontaneous eight-wave mixing (EWM) in a hot 85Rb. Polarization-based energy-time entanglement (output) under multiple polarized dressings is presented [...] Read more.
Entangled multiphoton is an ideal resource for quantum information technology. Here, narrow-bandwidth hyper-entangled quadphoton is theoretically demonstrated by quantizing degenerate Zeeman sub states through spontaneous eight-wave mixing (EWM) in a hot 85Rb. Polarization-based energy-time entanglement (output) under multiple polarized dressings is presented in detail with uncorrelated photons and Raman scattering suppressed. High-dimensional entanglement is contrived by passive non-Hermitian characteristic, and EWM-based quadphoton is genuine quadphoton with quadripartite entanglement. High quadphoton production rate is achieved from co-action of four strong input fields, and electromagnetically induced transparency (EIT) slow light effect. Atomic passive non-Hermitian characteristic provides the system with acute coherent tunability around exceptional points (EPs). The results unveil multiple coherent channels (~8) inducing oscillations with multiple periods (~19) in quantum correlations, and high-dimensional (~8) four-body entangled quantum network (capacity ~65536). Coexistent hyper and high-dimensional entanglements facilitate high quantum information capacity. The system can be converted among three working states under regulating passive non-Hermitian characteristic via triple polarized dressing. The research provides a promising approach for applying hyper-entangled multiphoton to tunable quantum networks with high information capacity, whose multi-partite entanglement and multiple-degree-of-freedom properties help optimize the accuracy of quantum sensors. Full article
(This article belongs to the Special Issue Quantum-Enabled Optical Communications and Networks)
Show Figures

Figure 1

21 pages, 2362 KiB  
Article
Non-Markovian Dynamics of Giant Atoms Embedded in an One-Dimensional Photonic Lattice with Synthetic Chirality
by Vassilios Yannopapas
Photonics 2025, 12(6), 527; https://doi.org/10.3390/photonics12060527 - 22 May 2025
Cited by 1 | Viewed by 428
Abstract
In this paper we investigate the non-Markovian dynamics of a giant atom coupled to a one-dimensional photonic lattice with synthetic gauge fields. By engineering a complex-valued hopping amplitude, we break reciprocity and explore how chiral propagation and phase-induced interference affect spontaneous emission, bound-state [...] Read more.
In this paper we investigate the non-Markovian dynamics of a giant atom coupled to a one-dimensional photonic lattice with synthetic gauge fields. By engineering a complex-valued hopping amplitude, we break reciprocity and explore how chiral propagation and phase-induced interference affect spontaneous emission, bound-state formation, and atom–field entanglement. The giant atom interacts with the lattice at multiple, spatially separated sites, leading to rich interference effects and decoherence-free subspaces. We derive an exact expression for the self-energy and perform real-time Schrödinger simulations in the single-excitation subspace, for the atomic population, von Neumann entropy, field localization, and asymmetry in emission. Our results show that the hopping phase ϕ governs not only the directionality of emitted photons but also the degree of atom–bath entanglement and photon localization. Remarkably, we observe robust bound states inside the photonic band and directional asymmetry, due to interference from spatially separated coupling points. These findings provide a basis for engineering non-reciprocal, robust, and entangled light–matter interactions in structured photonic systems. Full article
(This article belongs to the Special Issue Advanced Research in Quantum Optics)
Show Figures

Figure 1

14 pages, 254 KiB  
Article
Multiparty Quantum Private Comparison Using Rotation Operations
by Min Hou and Yue Wu
Axioms 2025, 14(4), 274; https://doi.org/10.3390/axioms14040274 - 3 Apr 2025
Cited by 1 | Viewed by 334
Abstract
This paper presents a multiparty quantum private comparison (MQPC) protocol that facilitates multiple users to compare the equality of their private inputs while preserving the confidentiality of each input through the principles of quantum mechanics. In our approach, users initially convert their secret [...] Read more.
This paper presents a multiparty quantum private comparison (MQPC) protocol that facilitates multiple users to compare the equality of their private inputs while preserving the confidentiality of each input through the principles of quantum mechanics. In our approach, users initially convert their secret integers into binary representations, which are then encoded into single photons that act as carriers of the information. These encoded single-photon states undergo encryption via rotational operations, effectively obscuring the original inputs before transmission to a semi-honest third party (TP). The TP decrypts the quantum states and conducts Z-basis measurements to derive the comparison results. To enhance security, the protocol incorporates decoy photons, enabling participants to detect potential eavesdropping on the quantum channel. Importantly, even if the TP or other participants attempt to glean insights into each other’s inputs, the encryption via rotational operations ensures that private information remains inaccessible. This protocol demonstrates significant advancements in practicality compared to existing MQPC frameworks that rely on complex quantum technologies, such as entanglement swapping and multi-particle entanglement. By leveraging the simplicity of single photons, rotation operations, and Z-basis measurements, our protocol is more accessible for implementation. Full article
(This article belongs to the Section Mathematical Physics)
16 pages, 328 KiB  
Review
Dynamical Casimir Effect: 55 Years Later
by Viktor V. Dodonov
Physics 2025, 7(2), 10; https://doi.org/10.3390/physics7020010 - 29 Mar 2025
Viewed by 5564
Abstract
The paper represents a brief review of the publications in 2020 to 2024 related to the phenomena combined under the name of dynamical Casimir effect. Full article
22 pages, 351 KiB  
Article
On the Holographic Spectral Effects of Time-Interval Subdivisions
by Sky Nelson-Isaacs
Quantum Rep. 2025, 7(1), 14; https://doi.org/10.3390/quantum7010014 - 19 Mar 2025
Viewed by 1126
Abstract
Drawing on formal parallels between scalar diffraction theory and quantum mechanics, it is demonstrated that quantum wavefunction propagation requires a holographic model of time. Measurable time manifests between interactions as a duration which is encoded in the frequency domain. It is thus a [...] Read more.
Drawing on formal parallels between scalar diffraction theory and quantum mechanics, it is demonstrated that quantum wavefunction propagation requires a holographic model of time. Measurable time manifests between interactions as a duration which is encoded in the frequency domain. It is thus a unified entity, and attempts to subdivide these intervals introduce oscillatory artifacts or spectral broadening, altering the system’s physical characteristics. Analogous to spatial holograms, where information is distributed across interference patterns, temporal intervals encode information as a discrete whole. This framework challenges the concept of continuous time evolution, suggesting instead that discrete trajectories define a frequency spectrum which holographically constructs the associated time interval, giving rise to the experimentally observed energy spread of particles in applications such as time-bin entanglement, ultra-fast light pulses, and the temporal double slit. A generalized model of quantum wavefunction propagation based on recursive Fourier transforms is discussed, and novel applications are proposed, including starlight analysis and quantum cryptography. Full article
(This article belongs to the Special Issue 100 Years of Quantum Mechanics)
Show Figures

Figure 1

20 pages, 447 KiB  
Article
Enhancing Quantum Key Distribution Security Through Hybrid Protocol Integration
by Suhare Solaiman
Symmetry 2025, 17(3), 458; https://doi.org/10.3390/sym17030458 - 18 Mar 2025
Viewed by 1079
Abstract
With the increasing complexity of cyber threats and the emergence of quantum computing, enhancing secure communication is essential. This study explores an effective hybrid quantum key distribution (QKD) protocol that integrates photonic and atomic systems to leverage their respective strengths. The concept of [...] Read more.
With the increasing complexity of cyber threats and the emergence of quantum computing, enhancing secure communication is essential. This study explores an effective hybrid quantum key distribution (QKD) protocol that integrates photonic and atomic systems to leverage their respective strengths. The concept of symmetry plays a crucial role in this context, as it underpins the principles of entanglement and the balance between key generation and error correction. The photonic system is used for the initial key generation, while the atomic system facilitates entanglement swapping, error correction, and privacy amplification. The comprehensive theoretical framework encompasses key components, detailed security proofs, performance metrics, and an analysis of system vulnerabilities, illustrating the resilience of the hybrid protocol against potential threats. Extensive experimental studies demonstrate that the hybrid QKD protocol seamlessly integrates photonic and atomic systems, enabling secure key distribution with minimal errors and loss rates over long distances. This combination of the two systems reveals exceptional resilience against eavesdropping, significantly improving both security and robustness compared with traditional QKD protocols. Consequently, this makes it a compelling solution for secure communication in the increasingly digital world. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

13 pages, 2964 KiB  
Article
Nonlinear-Optical Processing of OAM Light States in a Few-Mode Fiber
by Cheng Guo, Afshin Shamsshooli, Francesca Parmigiani, Xiaoying Li and Michael Vasilyev
Photonics 2025, 12(3), 233; https://doi.org/10.3390/photonics12030233 - 4 Mar 2025
Viewed by 809
Abstract
Utilizing the phase-matching conditions of inter-modal four-wave mixing in an elliptical-core few-mode fiber supporting three non-degenerate modes, we experimentally demonstrate schemes for generating orbital-angular-momentum (OAM)-entangled photon pairs with high mode purity and for achieving highly mode-selective frequency conversion of beams in OAM-compatible (LP [...] Read more.
Utilizing the phase-matching conditions of inter-modal four-wave mixing in an elliptical-core few-mode fiber supporting three non-degenerate modes, we experimentally demonstrate schemes for generating orbital-angular-momentum (OAM)-entangled photon pairs with high mode purity and for achieving highly mode-selective frequency conversion of beams in OAM-compatible (LP11a, LP11b) mode basis. These techniques expand the toolbox for using OAM modes in both classical and quantum communications and information processing. Full article
(This article belongs to the Special Issue Progress in OAM Beams: Recent Innovations and Future Perspectives)
Show Figures

Figure 1

18 pages, 1341 KiB  
Article
Performance Analysis for High-Dimensional Bell-State Quantum Illumination
by Jeffrey H. Shapiro
Physics 2025, 7(1), 7; https://doi.org/10.3390/physics7010007 - 3 Mar 2025
Viewed by 1237
Abstract
Quantum illumination (QI) is an entanglement-based protocol for improving LiDAR/radar detection of unresolved targets beyond what a classical LiDAR/radar of the same average transmitted energy can do. Originally proposed by Seth Lloyd as a discrete-variable quantum LiDAR, it was soon shown that his [...] Read more.
Quantum illumination (QI) is an entanglement-based protocol for improving LiDAR/radar detection of unresolved targets beyond what a classical LiDAR/radar of the same average transmitted energy can do. Originally proposed by Seth Lloyd as a discrete-variable quantum LiDAR, it was soon shown that his proposal offered no quantum advantage over its best classical competitor. Continuous-variable, specifically Gaussian-state, QI has been shown to offer a true quantum advantage, both in theory and in table-top experiments. Moreover, despite its considerable drawbacks, the microwave version of Gaussian-state QI continues to attract research attention. A recent QI study by Armanpreet Pannu, Amr Helmy, and Hesham El Gamal (PHE), however, has: (i) combined the entangled state from Lloyd’s QI with the channel models from Gaussian-state QI; (ii) proposed a new positive operator-valued measurement for that composite setup; and (iii) claimed that, unlike Gaussian-state QI, PHE QI achieves the Nair–Gu lower bound on QI target-detection error probability at all noise brightnesses. PHE’s analysis was asymptotic, i.e., it presumed infinite-dimensional entanglement. The current paper works out the finite-dimensional performance of PHE QI. It shows that there is a threshold value for the entangled-state dimensionality below which there is no quantum advantage, and above which the Nair–Gu bound is approached asymptotically. Moreover, with both systems operating with error-probability exponents 1 dB lower than the Nair–Gu bound, PHE QI requires enormously higher entangled-state dimensionality than does Gaussian-state QI to achieve useful error probabilities in both high-brightness (100 photons/mode) and moderate-brightness (1 photon/mode) noise. Furthermore, neither system has an appreciable quantum advantage in low-brightness (much less than 1 photon/mode) noise. Full article
(This article belongs to the Section Atomic Physics)
Show Figures

Figure 1

24 pages, 1913 KiB  
Article
Waveguide Quantum Electrodynamics: Tryptophans Entangled with Water as Data Qubits in a Microtubule
by Akihiro Nishiyama, Shigenori Tanaka and Jack Adam Tuszynski
Dynamics 2025, 5(1), 7; https://doi.org/10.3390/dynamics5010007 - 1 Mar 2025
Viewed by 1603
Abstract
In this paper, we introduce waveguide Quantum Electrodynamics (wQED) for the description of tryptophans in microtubules representing data qubits for information storage and, possibly, information processing. We propose a Hamiltonian in wQED and derive Heisenberg equations for qubits and photons. Using the Heisenberg [...] Read more.
In this paper, we introduce waveguide Quantum Electrodynamics (wQED) for the description of tryptophans in microtubules representing data qubits for information storage and, possibly, information processing. We propose a Hamiltonian in wQED and derive Heisenberg equations for qubits and photons. Using the Heisenberg equations, we derive time-evolution equations for the probability of qubits and the distribution of photons both at zero and finite temperature. We then demonstrate the resultant sub-radiance with small decay rates, which is required to achieve robust data qubits for information storage by coupling tryptophan residues containing data qubits with water molecules as Josephson quantum filters (JQFs). We also describe an oscillation processes of qubits in a tubulin dimer through the propagation of excitations with changing decay rates of JQFs. Data qubits are found to retain initial values by adopting sub-radiant states involving entanglement with water degrees of freedom. Full article
Show Figures

Figure 1

Back to TopTop