New Amphiphilic Imidazolium/Benzimidazolium Calix[4]arene Derivatives: Synthesis, Aggregation Behavior and Decoration of DPPC Vesicles for Suzuki Coupling in Aqueous Media
Abstract
1. Introduction
2. Materials and Methods
2.1. Characterisation Methods
2.2. Reagents
2.3. Dynamic Light Scattering and Zeta-Potential
2.4. Critical Aggregation Concentration Determination
2.5. Vesicles Preparation
2.6. Turbidity Measurements
2.7. Gas Chromatography Mass Spectrometry
2.8. Suzuki–Miyaura Coupling
3. Results and Discussion
3.1. Synthesis of Imidazolium/Benzimidazolium Calix[4]arene Derivatives
3.2. Aggregation Behavior of 5–9 in Aqueous Solutions
3.3. Complexes of 5–9 with Pd(II) Obtained In Situ in Model Suzuki–Miyaura Coupling
3.4. Embedding of 5 into DPPC Vesicles and Their Catalytic Activity in Suzuki–Miyaura Coupling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Beletskaya, I.; Alonso, F.; Tyurin, V. The Suzuki-Miyaura reaction after the Nobel prize. Coord. Chem. Rev. 2019, 385, 137–173. [Google Scholar] [CrossRef]
- Chinchilla, R.; Najera, C. The Sonogashira reaction: A booming methodology in synthetic organic chemistry. Chem. Rev. 2007, 107, 73874–73922. [Google Scholar] [CrossRef] [PubMed]
- Corbet, J.-P.; Mignani, G.R. Selected patented cross-coupling reaction technologies. Chem. Rev. 2006, 106, 2651–2710. [Google Scholar] [CrossRef] [PubMed]
- Nolan, S.P.; Scott, N.M. N-Heterocyclic Carbenes in Synthesis, 1st ed.; Wiley-VCH: Weinheim, Germany, 2006. [Google Scholar]
- Peris, E. Smart N-Heterocyclic Carbene Ligands in Catalysis. Chem. Rev. 2018, 118, 9988–10031. [Google Scholar] [CrossRef] [PubMed]
- Fortman, G.C.; Nolan, S.P. N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: A perfect union. Chem. Soc. Rev. 2011, 40, 5151–5169. [Google Scholar] [CrossRef] [PubMed]
- De, S.; Udvardy, A.; Czegeni, C.E.; Joo, F. Poly-N-heterocyclic carbene complexes with applications in aqueous media. Coord. Chem. Rev. 2019, 400, 213038. [Google Scholar] [CrossRef]
- Levin, E.; Ivry, E.; Diesendruck, C.E.; Lemcoff, N.G. Water in N-Heterocyclic Carbene-Assisted Catalysis. Chem. Rev. 2015, 115, 4607–4692. [Google Scholar] [CrossRef] [PubMed]
- Anastas, P.T.; Kirchhoff, M.M. Origins, Current Status, and Future Challenges of Green Chemistry. Acc. Chem. Res. 2002, 35, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Sorella, G.L.; Strukul, G.; Scarso, A. Recent advances in catalysis in micellar media. Green Chem. 2015, 17, 644–683. [Google Scholar] [CrossRef]
- Donner, A.; Hagedorn, K.; Mattes, L.; Drechsler, M.; Polarz, S. Hybrid Surfactants with N-Heterocyclic Carbene Heads as a Multifunctional Platform for Interfacial Catalysis. Chem. Eur. J. 2017, 23, 18129–18133. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, J.; Wang, Y.; Wang, J. Synthesis, structure and catalysis/applications of N-heterocyclic carbene based on macrocycles. J. Incl. Phenom. Macrocycl. Chem. 2018, 90, 15–37. [Google Scholar] [CrossRef]
- Raynal, M.; Ballester, P.; Vidal-Ferran, A.; van Leeuwen, P.W.N.M. Supramolecular catalysis. Part 2: Artificial enzyme mimics. Chem. Soc. Rev. 2014, 43, 1734–1787. [Google Scholar] [CrossRef] [PubMed]
- Solovieva, S.E.; Burilov, V.A.; Antipin, I.S. Thiacalix[4]arene’s Lower Rim Derivatives: Synthesis and Supramolecular Properties. Macroheterocycles 2017, 10, 134–146. [Google Scholar] [CrossRef][Green Version]
- Helttunen, K.; Shahgaldian, P. Self-assembly of amphiphilic calixarenes and resorcinarenes in water. New J. Chem. 2010, 34, 2704–2714. [Google Scholar] [CrossRef]
- Burilov, V.A.; Valiyakhmetova, A.M.; Mironova, D.A.; Sultanova, E.D.; Evtugyn, V.G.; Osin, Y.N.; Katsyuba, S.A.; Burganov, T.I.; Solovieva, S.E.; Antipin, I.S. Novel amphiphilic conjugates of: P-tert -butylthiacalix[4]arene with 10,12-pentacosadiynoic acid in 1,3-alternate stereoisomeric form synthesis and chromatic properties in the presence of metal ions. New J. Chem. 2018, 42, 2942–2951. [Google Scholar] [CrossRef]
- Yakimova, L.S.; Padnya, P.L.; Kunafina, A.F.; Nugmanova, A.R.; Stoikov, I.I. Sulfobetaine derivatives of thiacalix[4]arene: Synthesis and supramolecular self-assembly of submicron aggregates with AgI cations. Mendeleev Commun. 2019, 29, 86–88. [Google Scholar] [CrossRef]
- Armarego, W.L.F.; Chai, C. Purification of Laboratory Chemicals, 6th ed.; Elsevier: New York, NY, USA, 2009. [Google Scholar]
- Kumar, N.; Jain, R. Convenient syntheses of bulky group containing imidazolium ionic liquids. J. Heterocycl. Chem. 2012, 49, 370–374. [Google Scholar] [CrossRef]
- Jingping, L.; Jingbo, C.; Jingfeng, Z.; Yuanhong, Z.; Liang, L.; Hongbin, Z. A modified procedure for the synthesis of 1-arylimidazoles. Synthesis 2003, 17, 2661–2666. [Google Scholar]
- Gutsche, D.C.; Dhawan, B.; No, K.H.; Muthukrishnan, R. Calixarenes. 4. The synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol. J. Am. Chem. Soc. 1981, 103, 3782–3792. [Google Scholar] [CrossRef]
- Gutsche, D.C.; Levine, J.A. Calixarenes. 6. Synthesis of a functionalizable calix[4]arene in a conformationally rigid cone conformation. J. Am. Chem. Soc. 1982, 104, 2653–2655. [Google Scholar] [CrossRef]
- Frank, M.; Maas, G.; Schatz, J. Calix[4]arene-Supported N-Heterocyclic Carbene Ligands as Catalysts for Suzuki Cross-Coupling Reactions of Chlorotoluene. Eur. J. Org. Chem. 2004, 3, 607–613. [Google Scholar] [CrossRef]
- Eker, F.; Durmus, H.O.; Akinoglu, B.G.; Severcan, F. Application of turbidity technique on peptide-lipid and drug-lipid interactions. J. Mol. Struct. 1999, 482–483, 693–697. [Google Scholar] [CrossRef]
- Fahlbusch, T.; Frank, M.; Maas, G.; Schatz, J. N-Heterocyclic Carbene Complexes of Mercury, Silver, Iridium, Platinum, Ruthenium, and Palladium Based on the Calix[4]arene Skeleton. Organometallics 2009, 28, 6183–6193. [Google Scholar] [CrossRef]
- Fahlbusch, T.; Frank, M.; Schatz, J. The Suzuki Coupling of Aryl Chlorides in Aqueous Media Catalyzed by in situ Generated Calix[4]arene-Based N-Heterocyclic Carbene Ligands. Eur. J. Org. Chem. 2006, 10, 2378–2383. [Google Scholar]
- Larsen, M.; Jørgensen, M. Selective Halogen-Lithium Exchange Reaction of Bromine-Substituted 25,26,27,28-Tetrapropoxycalix[4]arene. J. Org. Chem. 1996, 61, 6651–6655. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.-T.; Wang, G.-Q.; Yang, L.-M.; Lou, Y.-X. The Selective Chloromethylation of 25, 27-Dihydroxy-26, 28-Dimethoxycalix{4}arene and Nucleophilic Substitution Therefrom. Synth. Commun. 1995, 25, 1109–1118. [Google Scholar] [CrossRef]
- Rehm, M.; Frank, M.; Schatz, J. Water-soluble calixarenes—Self-aggregation and complexation of noncharged aromatic guests in buffered aqueous solution. Tetrahedron Lett. 2009, 50, 93–96. [Google Scholar] [CrossRef]
- Regnouf-de-Vains, J.-B.; Berthalon, S.; Lamartine, R. Electrospray mass spectrometric evidence of calixarene p-quinone methide formation. J. Mass Spectrom. 1998, 33, 968–970. [Google Scholar] [CrossRef]
- Gutsche, C.D. Calixarenes; Royal Society of Chemistry: Cambridge, UK, 1989. [Google Scholar]
- Rodik, R.V.; Anthony, A.-S.; Kalchenko, V.I.; Mely, Y.; Klymchenko, A.S. Cationic amphiphilic calixarenes to compact DNA into small nanoparticles for gene delivery. New J. Chem. 2015, 39, 1654–1664. [Google Scholar] [CrossRef]
- Burilov, V.A.; Mironova, D.A.; Ibragimova, R.R.; Evtugyn, V.G.; Osin, Y.N.; Solovieva, S.E.; Antipin, I.S. Imidazolium p-tert-Butylthiacalix[4]arene Amphiphiles—Aggregation in Water Solutions and Binding with Adenosine 5-Triphosphate Dipotassium Salt. BioNanoScience 2018, 8, 337–343. [Google Scholar] [CrossRef]
- Aguiar, J.; Carpena, P.; Molina-Bolıvar, J.A.; Carnero Ruiz, C. On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J. Colloid Interface Sci. 2003, 258, 116–122. [Google Scholar] [CrossRef]
- Rozengart, E.; Basova, N. Ammonium Compounds with Localized and Delocalized Charge as Reversible Inhibitors of Cholinesterases of Different Origin. J. Evol. Biochem. Physiol. 2001, 37, 604–610. [Google Scholar] [CrossRef]
- Marion, N.; Nolan, S.P. Well-Defined N-Heterocyclic Carbenes−Palladium(II) Precatalysts for Cross-Coupling Reactions. Acc. Chem. Res. 2008, 41, 1440–1449. [Google Scholar] [CrossRef] [PubMed]
- Akkoç, S.; Gök, Y.; Özer lhan, l.; Kayser, V. In situ Generation of Efficient Palladium N-heterocyclic Carbene Catalysts Using Benzimidazolium Salts for the Suzuki-Miyaura Cross-coupling Reaction. Curr. Org. Synth. 2016, 13, 761–766. [Google Scholar] [CrossRef]
- Froese, R.D.J.; Lombardi, C.; Pompeo, M.; Rucker, R.P.; Organ, M.G. Designing Pd–N-Heterocyclic Carbene Complexes for High Reactivity and Selectivity for Cross-Coupling Applications. Acc. Chem. Res. 2017, 50, 2244–2253. [Google Scholar] [CrossRef] [PubMed]
- Szilvási, T.; Veszprémi, T. Internal Catalytic Effect of Bulky NHC Ligands in Suzuki–Miyaura Cross-Coupling Reaction. ACS Catal. 2013, 3, 1984–1991. [Google Scholar] [CrossRef]
- Burilov, V.; Gafiatullin, B.; Mironova, D.; Sultanova, E.; Evtugyn, V.; Osin, Y.; Islamov, D.; Usachev, K.; Solovieva, S.; Antipin, I. Amphiphilic Pd (II)-NHC complexes on 1,3-alternate p-tertbutylthiacalix[4]arene platform: Synthesis and catalytic activities in coupling and hydrogenation reactions. Eur. J. Org. Chem. 2020. [Google Scholar] [CrossRef]
- Kostyukovich, A.Y.; Tsedilin, A.M.; Sushchenko, E.D.; Eremin, D.B.; Kashin, A.S.; Topchiy, M.A.; Asachenko, A.F.; Nechaev, M.S.; Ananikov, V.P. In situ transformations of Pd/NHC complexes with N-heterocyclic carbene ligands of different nature into colloidal Pd nanoparticles. Inorg. Chem. Front. 2018, 6, 482–492. [Google Scholar] [CrossRef]
- Lasic, D.D.; Barenholz, Y. Handbook of Nonmedical Applications of Liposomes, 1st ed.; CRC Press Inc.: Boca Raton, FL, USA, 1996. [Google Scholar]
- Gruber, B.; König, B. Self-Assembled Vesicles with Functionalized Membranes. Chem. Eur. J. 2012, 19, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Duss, M.; Vallooran, J.J.; Salvati Manni, L.; Kieliger, N.; Handschin, S.; Mezzenga, R.; Jessen, H.J.; Landau, E.M. Lipidic Mesophase-embedded Palladium Nanoparticles: Synthesis and Tunable Catalysts in Suzuki-Miyaura Cross Coupling Reactions. Langmuir 2019, 35, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Muraoka, Y.; Fukushima, K.; Shimozawa, R. Interaction of surfactants with vesicle membrane of dipalmitoylphosphatidylcholine: Fluorescence depolarization study. Chem. Phys. Lipids 1988, 46, 107–115. [Google Scholar] [CrossRef]
- Batna, A.; Spiteller, G. Oxidation of furan fatty acids by soybean lipoxygenase-1 in the presence of linoleic acid. Chem. Phys. Lipids 1994, 70, 179–185. [Google Scholar] [CrossRef]
- Samarkina, D.A.; Gabdrakhmanov, D.R.; Lukashenko, S.S.; Khamatgalimov, A.R.; Kovalenko, V.; Zakharova, L.Y. Cationic amphiphiles bearing imidazole fragment: From aggregation properties to potential in biotechnologies. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 990–997. [Google Scholar] [CrossRef]






| Calixarene * | CAC, µM | d, nm | PDI | ζ. mV |
|---|---|---|---|---|
| 5 | 65 | 340 ± 13 | 0.426 ± 0.081 | +57 ± 2 |
| 6 | 45 | 351 ± 51 | 0.477 ± 0.042 | +45 ± 1 |
| 7 | 40 | 420 ± 5 | 0.473 ± 0.055 | +52 ± 1 |
| 8 | 53 | 390 ± 2 | 0.513 ± 0.030 | +44 ± 1 |
| 9 | 120 | 410 ± 18 | 0.416 ± 0.070 | +54 ± 0.5 |
| Catalyst * | TON | TOF 10−2 s−1 |
|---|---|---|
| Pd(OAc)2 | 22 | 1.8 |
| 5+Pd(OAc)2 | 89 | 7.4 |
| 6+Pd(OAc)2 | 67 | 5.6 |
| 7+Pd(OAc)2 | 56 | 4.6 |
| 8+Pd(OAc)2 | 62 | 5.2 |
| 9+Pd(OAc)2 | 53 | 4.4 |
| System | Calixarene/DPPC Molar Ratio | d, nm | PDI | ζ. mV | ||
|---|---|---|---|---|---|---|
| before Extrusion | after Extrusion | before Extrusion | after Extrusion | |||
| DPPC | 0 | 600 ± 63 | 106 ± 2 | 0.780 ± 0.140 | 0.078 ± 0.006 | - |
| DPPC+ 5 | 0.04 | 130 ± 5 | 64 ± 5 | 0.703 ± 0.049 | 0.269 ± 0.074 | +22 ± 1 |
| DPPC+ 5 | 0.07 | 60 ± 1 | 51 ± 2 | 0.331 ± 0.015 | 0.239 ± 0.015 | +36 ± 3 |
| DPPC+ 5 | 0.1 | 79 ± 1 | 63 ± 1 | 0.365 ± 0.011 | 0.285 ± 0.025 | +35 ± 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burilov, V.; Garipova, R.; Sultanova, E.; Mironova, D.; Grigoryev, I.; Solovieva, S.; Antipin, I. New Amphiphilic Imidazolium/Benzimidazolium Calix[4]arene Derivatives: Synthesis, Aggregation Behavior and Decoration of DPPC Vesicles for Suzuki Coupling in Aqueous Media. Nanomaterials 2020, 10, 1143. https://doi.org/10.3390/nano10061143
Burilov V, Garipova R, Sultanova E, Mironova D, Grigoryev I, Solovieva S, Antipin I. New Amphiphilic Imidazolium/Benzimidazolium Calix[4]arene Derivatives: Synthesis, Aggregation Behavior and Decoration of DPPC Vesicles for Suzuki Coupling in Aqueous Media. Nanomaterials. 2020; 10(6):1143. https://doi.org/10.3390/nano10061143
Chicago/Turabian StyleBurilov, Vladimir, Ramilya Garipova, Elsa Sultanova, Diana Mironova, Ilya Grigoryev, Svetlana Solovieva, and Igor Antipin. 2020. "New Amphiphilic Imidazolium/Benzimidazolium Calix[4]arene Derivatives: Synthesis, Aggregation Behavior and Decoration of DPPC Vesicles for Suzuki Coupling in Aqueous Media" Nanomaterials 10, no. 6: 1143. https://doi.org/10.3390/nano10061143
APA StyleBurilov, V., Garipova, R., Sultanova, E., Mironova, D., Grigoryev, I., Solovieva, S., & Antipin, I. (2020). New Amphiphilic Imidazolium/Benzimidazolium Calix[4]arene Derivatives: Synthesis, Aggregation Behavior and Decoration of DPPC Vesicles for Suzuki Coupling in Aqueous Media. Nanomaterials, 10(6), 1143. https://doi.org/10.3390/nano10061143

