A New Generalized Definition of Fractional Derivative with Non-Singular Kernel
Abstract
:1. Introduction
2. The New Fractional Derivative
- When , , we obtain the Caputo–Fabrizio fractional derivative [18] given by
- When , , we get the Atangana–Baleanu fractional derivative [19] given by
- When , we obtain the weighted Atangana–Baleanu fractional derivative that recently defined in [20], and it is given by
- (i)
- holds for all scalars and functions . This implies that the new generalized fractional derivative is a linear operator.
- (ii)
- , for all constant function .
- (iii)
- .
3. Laplace Transform of the New Derivative
4. Fractional Integral Associated to the New Derivative
5. Application
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Mouaouine, A.; Boukhouima, A.; Hattaf, K.; Yousfi, N. A fractional order SIR epidemic model with nonlinear incidence rate. Adv. Differ. Equ. 2018, 160. [Google Scholar] [CrossRef]
- Sene, N. SIR epidemic model with Mittag-Leffler fractional derivative. Chaos Solitons Fractals 2020, 137, 109833. [Google Scholar] [CrossRef]
- Bachraoui, M.; Hattaf, K.; Yousfi, N. Dynamics of a fractional order HBV infection model with capsids and CTL immune response. Commun. Math. Biol. Neurosci. 2019, 2016, 6. [Google Scholar]
- Boukhouima, A.; Hattaf, K.; Yousfi, N. Modeling the Memory and Adaptive Immunity in Viral Infection. In Trends in Biomathematics: Mathematical Modeling for Health, Harvesting, and Population Dynamics; Springer: Cham, Switzerland, 2019; pp. 271–297. [Google Scholar]
- Boukhouima, A.; Hattaf, K.; Yousfi, N. Dynamics of a fractional order HIV infection model with specific functional response and cure rate. Int. J. Differ. Equ. 2017, 2017, 8372140. [Google Scholar] [CrossRef] [Green Version]
- Ghanbari, B.; Djilali, S. Mathematical and numerical analysis of a three-species predator-prey model with herd behavior and time fractional-order derivative. Math. Methods Appl. Sci. 2020, 43, 1736–1752. [Google Scholar] [CrossRef]
- Ghanbari, R.; Kumar, D. Numerical solution of predator-prey model with Beddington-DeAngelis functional response and fractional derivatives with Mittag-Leffler kernel. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 063103. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kumar, R.; Cattani, C.; Samet, B. Chaotic behaviour of fractional predator-prey dynamical system. Chaos Solitons Fractals 2020, 135, 109811. [Google Scholar] [CrossRef]
- Acay, B.; Bas, E.; Abdeljawad, T. Fractional economic models based on market equilibrium in the frame of different type kernels. Chaos Solitons Fractals 2020, 130, 109438. [Google Scholar] [CrossRef]
- Cole, K.S. Electric conductance of biological systems. Cold Spring Harb. Symp. Quant. Biol. 1933, 1, 107–116. [Google Scholar] [CrossRef]
- Le Mehaute, A.; Crepy, G. Introduction to transfer and motion in fractal media: The geometry of kinetics. Solid State Ionics 1983, 9, 17–30. [Google Scholar] [CrossRef]
- Goufo, E.F.D.; Kumar, S.; Mugisha, S.B. Similarities in a fifth-order evolution equation with and with no singular kernel. Chaos Solitons Fractals 2020, 130, 109467. [Google Scholar] [CrossRef]
- Ghanbari, B.; Kumar, S.; Kumar, R. A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative. Chaos Solitons Fractals 2020, 133, 109619. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Singh, J.; Nisar, K.S.; Kumar, D. An efficient numerical scheme for fractional model of HIV-1 infection of CD4+ T-cells with the effect of antiviral drug therapy. Alex. Eng. J. 2020. [Google Scholar] [CrossRef]
- Alshabanat, A.; Jleli, M.; Kumar, S.; Samet, B. Generalization of Caputo-Fabrizio Fractional Derivative and Applications to Electrical Circuits. Front. Phys. 2020. [Google Scholar] [CrossRef]
- Khan, Y.; Wu, Q.; Faraz, N.; Yildirim, A.; Madani, M. A new fractional analytical approach via a modified Riemann–Liouville derivative. Appl. Math. Lett. 2012, 25, 1340–1346. [Google Scholar] [CrossRef] [Green Version]
- Alderremy, A.A.; Saad, K.M.; Agarwal, P.; Aly, S.; Jain, S. Certain new models of the multi space-fractional Gardner equation. Phys. A Stat. Mech. Appl. 2020, 545, 123806. [Google Scholar] [CrossRef]
- Caputo, A.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Al-Refai, M. On weighted Atangana–Baleanu fractional operators. Adv. Differ. Equ. 2020, 2020, 3. [Google Scholar] [CrossRef] [Green Version]
- Ross, R. The Prevention of Malaria, 2nd ed.; Murray: London, UK, 1911. [Google Scholar]
- Ross, R. Some a priori pathometric equations. Br. Med. J. 1915, 1, 546–547. [Google Scholar] [CrossRef] [Green Version]
- Kermack, W.O.; McKendrick, A.G. A Contribution to the Mathematical Theory of Epidemics. Proc. R. Soc. Lond. 1927, 115, 700–721. [Google Scholar]
- Hattaf, K.; Yousfi, N. Mathematical model of the influenza A (H1N1) infection. Adv. Stud. Biol. 2009, 1, 383–390. [Google Scholar]
- Hattaf, K.; Lashari, A.A.; Louartassi, Y.; Yousfi, N. A delayed SIR epidemic model with general incidence rate. Electron. J. Qual. Theory Differ. Equ. 2013, 3, 1–9. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hattaf, K. A New Generalized Definition of Fractional Derivative with Non-Singular Kernel. Computation 2020, 8, 49. https://doi.org/10.3390/computation8020049
Hattaf K. A New Generalized Definition of Fractional Derivative with Non-Singular Kernel. Computation. 2020; 8(2):49. https://doi.org/10.3390/computation8020049
Chicago/Turabian StyleHattaf, Khalid. 2020. "A New Generalized Definition of Fractional Derivative with Non-Singular Kernel" Computation 8, no. 2: 49. https://doi.org/10.3390/computation8020049
APA StyleHattaf, K. (2020). A New Generalized Definition of Fractional Derivative with Non-Singular Kernel. Computation, 8(2), 49. https://doi.org/10.3390/computation8020049