Remote Eye-Tracking for Cognitive Telerehabilitation and Interactive School Tasks in Times of COVID-19
Abstract
:1. Introduction
2. Materials and Methods
3. Preliminary Experiments
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Global Education Monitoring Report. How Is the Coronavirus Affecting Learners with Disabilities? 30 March 2020. Available online: https://gemreportunesco.wordpress.com/2020/03/30/how-is-the-coronavirus-affecting-learners-with-disabilities/ (accessed on 10 May 2020).
- Guralnick, M.J. Early Intervention for Children with Intellectual Disabilities: An Update. J. Appl. Res. Intellect. Disabil. 2016, 30, 211–229. [Google Scholar] [CrossRef] [PubMed]
- Gangemi, A.; Caprì, T.; Fabio, R.A.; Puggioni, P.; Falzone, A.; Martino, G. Transcranial Direct Current Stimulation (tDCS) and Cognitive Empowerment for the functional recovery of diseases with chronic impairment and genetic etiopathogenesis. In Advances in Genetic Research; Nova Science Publisher: New York, NY, USA; Volume 18, pp. 179–196. ISBN 978-1-53613-264-9.
- Neul, J.; Kaufmann, W.E.; Glaze, D.G.; Christodoulou, J.; Clarke, A.J.; Bahi-Buisson, N.; Leonard, H.; Bailey, M.E.S.; Schanen, N.C.; Zappella, M.; et al. Rett syndrome: Revised diagnostic criteria and nomenclature. Ann. Neurol. 2010, 68, 944–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vessoyan, K.; Steckle, G.; Easton, B.; Nichols, M.; Siu, V.M.; McDougall, J. Using eye-tracking technology for communication in Rett syndrome: Perceptions of impact. Augment. Altern. Commun. 2018, 34, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Fabio, R.A.; Magaudda, C.; Caprì, T.; Towey, G.E.; Martino, G. Choice behavior in Rett syndrome: The consistency parameter. Life Span Disabil. 2018, 21, 47–62. [Google Scholar]
- Fabio, R.A.; Capri, T.; Nucita, A.; Iannizzotto, G.; Mohammadhasani, N. Eye-gaze digital games improve motivational and attentional abilities in rett syndrome. J. Spéc. Educ. Rehabil. 2019, 19, 105–126. [Google Scholar] [CrossRef]
- Caprì, T.; Gugliandolo, M.C.; Iannizzotto, G.; Nucita, A.; Fabio, R.A. The influence of media usage on family functioning. Curr. Psychol. 2019, 1, 1–10. [Google Scholar] [CrossRef]
- Dinleyici, M.; Çarman, K.B.; Ozturk, E.; Dagli, F.S.; Guney, S.; Serrano, J.A. Media Use by Children, and Parents’ Views on Children’s Media Usage. Interact. J. Med Res. 2016, 5, e18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caprì, T.; Santoddi, E.; Fabio, R.A. Multi-Source Interference Task paradigm to enhance automatic and controlled processes in ADHD. Res. Dev. Disabil. 2019, 97, 103542. [Google Scholar] [CrossRef]
- Cingel, D.P.; Krcmar, M. Predicting Media Use in Very Young Children: The Role of Demographics and Parent Attitudes. Commun. Stud. 2013, 64, 374–394. [Google Scholar] [CrossRef]
- McDaniel, B.T.; Radesky, J.S. Technoference: Parent Distraction With Technology and Associations With Child Behavior Problems. Child Dev. 2017, 89, 100–109. [Google Scholar] [CrossRef]
- Mohammadhasani, N.; Caprì, T.; Nucita, A.; Iannizzotto, G.; Fabio, R.A. Atypical Visual Scan Path Affects Remembering in ADHD. J. Int. Neuropsychol. Soc. 2019, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fabio, R.A.; Caprì, T. Automatic and controlled attentional capture by threatening stimuli. Heliyon 2019, 5, e01752. [Google Scholar] [CrossRef] [Green Version]
- Djukic, A.; Rose, S.A.; Jankowski, J.J.; Feldman, J.F. Rett Syndrome: Recognition of Facial Expression and Its Relation to Scanning Patterns. Pediatr. Neurol. 2014, 51, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Fabio, R.A.; Caprì, T.; Iannizzotto, G.; Nucita, A.; Mohammadhasani, N. Interactive Avatar Boosts the Performances of Children with Attention Deficit Hyperactivity Disorder in Dynamic Measures of Intelligence. Cyberpsychol. Behav. Soc. Netw. 2019, 22, 588–596. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Ring, H. A model of the mindreading system: Neuropsychological and neurobiological perspectives. In Children’s Early Understanding of Mind: Origins and Development; Lewis, C., Mitchell, P., Eds.; Lawrence Erlbaum Associates: Hillsdale, MI, USA, 1994; pp. 183–207. [Google Scholar]
- Castelli, I.; Antonietti, A.; Fabio, R.A.; Lucchini, B.; Marchetti, A. Do rett syndrome persons possess theory of mind? Some evidence from not-treated girls. Life Span Disabil. 2013, 16, 157–168. [Google Scholar]
- Caprì, T.; Fabio, R.A.; Iannizzotto, G.; Nucita, A. The TCTRS Project: A Holistic Approach for Telerehabilitation in Rett Syndrome. Electronics 2020, 9, 491. [Google Scholar] [CrossRef] [Green Version]
- Benham, S.; Gibbs, V. Exploration of the Effects of Telerehabilitation in a School-Based Setting for At-Risk Youth. Int. J. Telerehabil. 2017, 9, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Nucita, A.; Bernava, G.; Giglio, P.; Peroni, M.; Bartolo, M.; Orlando, S.; Marazzi, M.C.; Palombi, L. A Markov Chain Based Model to Predict HIV/AIDS Epidemiological Trends. Appl. Evol. Comput. 2013, 8216, 225–236. [Google Scholar] [CrossRef]
- Screen Capture Lite. Available online: https://github.com/smasherprog/screen_capture_lite (accessed on 14 May 2020).
- Itseez. Open Source Computer Vision Library. Available online: https://github.com/itseez/opencv (accessed on 31 May 2020).
- Iannizzotto, G.; Lo Bello, L.; Nucita, A.; Grasso, G.M. A Vision and Speech Enabled, Customizable, Virtual Assistant for Smart Environments. In Proceedings of the 2018 11th International Conference on Human System Interaction (HSI), Gdańsk, Poland, 4–6 July 2018; pp. 50–56. [Google Scholar]
- King, D.E. Dlib-ml: A machine learning toolkit. J. Mach. Learn. Res. 2009, 10, 1755–1758. [Google Scholar]
- Kar, A.; Corcoran, P. Performance Evaluation Strategies for Eye Gaze Estimation Systems with Quantitative Metrics and Visualizations. Sensors 2018, 18, 3151. [Google Scholar] [CrossRef] [Green Version]
- Kar, A.; Corcoran, P. A Review and Analysis of Eye-Gaze Estimation Systems, Algorithms and Performance Evaluation Methods in Consumer Platforms. IEEE Access 2017, 5, 16495–16519. [Google Scholar] [CrossRef]
- Iannizzotto, G.; La Rosa, F. Competitive Combination of Multiple Eye Detection and Tracking Techniques. IEEE Trans. Ind. Electron. 2010, 58, 3151–3159. [Google Scholar] [CrossRef]
- Crisafulli, G.; Iannizzotto, G.; La Rosa, F. Two competitive solutions to the problem of remote eye-tracking. In Proceedings of the 2009 2nd Conference on Human System Interactions, Catania, Italy, 21–23 May 2009; pp. 356–362. [Google Scholar]
- Marino, S.; Sessa, E.; Di Lorenzo, G.; Lanzafame, P.; Scullica, G.; Bramanti, A.; La Rosa, F.; Iannizzotto, G.; Bramanti, P.; Di Bella, P. Quantitative Analysis of Pursuit Ocular Movements in Parkinson’s Disease by Using a Video-Based Eye Tracking System. Eur. Neurol. 2007, 58, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sugano, Y.; Fritz, M.; Bulling, A. MPIIGaze: Real-World Dataset and Deep Appearance-Based Gaze Estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 41, 162–175. [Google Scholar] [CrossRef] [Green Version]
- Lemley, J.; Kar, A.; Drimbarean, A.; Corcoran, P. Convolutional Neural Network Implementation for Eye-Gaze Estimation on Low-Quality Consumer Imaging Systems. IEEE Trans. Consum. Electron. 2019, 65, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Iannizzotto, G.; La Rosa, F. A Modular Framework for Vision-Based Human Computer Interaction. In Image Processing; IGI Global: Hershey, PA, USA, 2013; pp. 1188–1209. [Google Scholar]
- Iannizzotto, G.; La Rosa, F.; Costanzo, C.; Lanzafame, P. A Multimodal Perceptual User Interface for Collaborative Environments. In Proceedings of the 13th International Conference on Image Analysis and Processing, ICIAP 2005, Cagliari, Italy, 6–8 September 2005; Volume 3617, pp. 115–122. [Google Scholar]
- Cardile, F.; Iannizzotto, G.; La Rosa, F. A vision-based system for elderly patients monitoring. In Proceedings of the 3rd International Conference on Human System Interaction, Rzeszów, Poland, 13–15 May 2010; pp. 195–202. [Google Scholar]
- Leonardi, L.; Ashjaei, M.; Fotouhi, H.; Bello, L.L. A Proposal Towards Software-Defined Management of Heterogeneous Virtualized Industrial Networks. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 22–25 July 2019; Volume 1, pp. 1741–1746. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iannizzotto, G.; Nucita, A.; Fabio, R.A.; Caprì, T.; Lo Bello, L. Remote Eye-Tracking for Cognitive Telerehabilitation and Interactive School Tasks in Times of COVID-19. Information 2020, 11, 296. https://doi.org/10.3390/info11060296
Iannizzotto G, Nucita A, Fabio RA, Caprì T, Lo Bello L. Remote Eye-Tracking for Cognitive Telerehabilitation and Interactive School Tasks in Times of COVID-19. Information. 2020; 11(6):296. https://doi.org/10.3390/info11060296
Chicago/Turabian StyleIannizzotto, Giancarlo, Andrea Nucita, Rosa Angela Fabio, Tindara Caprì, and Lucia Lo Bello. 2020. "Remote Eye-Tracking for Cognitive Telerehabilitation and Interactive School Tasks in Times of COVID-19" Information 11, no. 6: 296. https://doi.org/10.3390/info11060296
APA StyleIannizzotto, G., Nucita, A., Fabio, R. A., Caprì, T., & Lo Bello, L. (2020). Remote Eye-Tracking for Cognitive Telerehabilitation and Interactive School Tasks in Times of COVID-19. Information, 11(6), 296. https://doi.org/10.3390/info11060296