Stability Analysis and Design of Composite Breakwater Based on Fluid-Solid Coupled Approach Using CFD/NDDA
Abstract
1. Introduction
2. Mathematical Formulation
2.1. Formulation of Coupled Fluid-Porous Model
2.1.1. Volume-Averaged RANS Equations
2.1.2. Nonlinear Forcheimer Equation for Porous Media
2.1.3. Air-Fluid Interface Capture by VOF Method
2.2. Formulation of Solid Model by Nodal-Based DDA
2.3. Interaction Process of Fluid-Solid Coupled Model
3. Validation Tests for Fluid and Solid Models
3.1. Boundary Conditions for Fluid Model Input
3.2. Fluid Model Validation
3.3. Solid Model Validation
4. Cfd/Ndda Simulation Results
4.1. Flow Patterns Around the Composite Breakwater with Porous Layer
4.2. Solution Behavior with Various Porous Layer Thickness and Porosity Values
4.3. Solution Behavior with Various Caisson Shape
5. Conclusions
- The porosity of the porous layer has a significant effect on the spatial distribution of turbulent kinetic energy (TKE). Higher porosity enhances the layer’s capacity to absorb and dissipate TKE, leading to a lower TKE intensity.
- The porosity and thickness of the porous layer both significantly influence maximum impacting wave height (). Higher porosity leads to a lower .
- Four caisson shapes were investigated. The simulation results show that the triangular crest added to the shapes of types (a) and (b) prevent wave overtopping, while the shape of type (c) prevent scour at the base of the structure, and shape of type (d) prevent both overtopping and sliding processes of the caisson.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almar, R.; Ranasinghe, R.; Bergsma, E.W.J.; Diaz, H.; Melet, A.; Papa, F.; Vousdoukas, M.; Athanasiou, P.; Dada, O.; Almeida, L.P.; et al. A global analysis of extreme coastal water levels with implications for potential coastal overtopping. Nat. Commun. 2021, 12, 3775. [Google Scholar] [CrossRef] [PubMed]
- Suh, K.D.; Kim, S.W.; Kim, S.; Cheon, S. Effects of climate change on stability of caisson breakwaters in different water depths. Ocean. Eng. 2013, 71, 103–112. [Google Scholar] [CrossRef]
- Kumar, R.; Balaji, R.; Mukul, P. Review of Indian research on innovative breakwaters. Indian J.-Geo-Mar. Sci. 2017, 46, 431–452. [Google Scholar]
- Takahashi, H. Stability of composite-type breakwaters reinforced by rubble embankment. Soils Found. 2021, 61, 318–334. [Google Scholar] [CrossRef]
- Sadeghi, K.; Abdeh, A.; Al-Dubai, S. An Overview of Construction and Installation of Vertical Breakwaters. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 2017, 7, 1–5. [Google Scholar]
- Oumeraci, H. Review and analysis of vertical breakwater failures—Lessons learned. Coast. Eng. 1994, 22, 3–29. [Google Scholar] [CrossRef]
- Kurihara, O.; Takahashi, H. Backfilling configuration to improve tenacity of composite-type breakwaters. Coast. Eng. J. 2023, 65, 217–233. [Google Scholar] [CrossRef]
- Magdalena, I.; Marcela, I.; Karima, N.; Jonathan, G.; Harlan, D.; Adityawan, M.B. Two layer shallow water equations for wave attenuation of a submerged porous breakwater. Appl. Math. Comput. 2023, 454, 128096. [Google Scholar] [CrossRef]
- Shiach, J.B.; Mingham, C.G.; Ingram, D.M.; Bruce, T. The applicability of the shallow water equations for modelling violent wave overtopping. Coast. Eng. 2004, 51, 1–15. [Google Scholar] [CrossRef]
- Zhang, J.S.; Zhang, Y.; Jeng, D.S.; Liu, P.L.F.; Zhang, C. Numerical simulation of wave–current interaction using a RANS solver. Ocean. Eng. 2014, 75, 157–164. [Google Scholar] [CrossRef]
- Fang, K.; Xiao, L.; Liu, Z.; Sun, J.; Dong, P.; Wu, H. Experiment and RANS modeling of solitary wave impact on a vertical wall mounted on a reef flat. Ocean. Eng. 2022, 244, 110384. [Google Scholar] [CrossRef]
- Iwamoto, T.; Nakase, H.; Nishiura, D.; Sakaguchi, H.; Miyamoto, J.; Tsurugasaki, K.; Kiyono, J. Application of SPH-DEM coupled method to failure simulation of a caisson type composite breakwater during a tsunami. Soil Dyn. Earthq. Eng. 2019, 127, 105806. [Google Scholar] [CrossRef]
- Sawada, Y.; Miyake, M.; Miyamoto, J.; Kawabata, T. Numerical Analysis on Stability of Caisson-Type Breakwaters under Tsunami-Induced Seepage. Transp. Infrastruct. Geotechnol. 2015, 2, 120–138. [Google Scholar] [CrossRef]
- Mata, M.I.; Boersen, S.; van Gent, M.R.A.; Antonini, A.; Jensen, B.; van der Lem, C. A validation of wave loads on crest walls on top of composite breakwaters using OpenFOAM. In Proceedings of the 37th International Conference on Coastal Engineering (ICCE 2022), Sydney, Australia, 4–9 December 2022; Cox, D., Ed.; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2023. [Google Scholar] [CrossRef]
- Mitsui, J.; Altomare, C.; Crespo, A.J.C.; Domínguez, J.M.; Martínez-Estévez, I.; Suzuki, T.; Kubota, S.; Gómez-Gesteira, M. DualSPHysics modelling to analyse the response of Tetrapods against solitary wave. Coast. Eng. 2023, 183, 104315. [Google Scholar] [CrossRef]
- Barcet, M.; Benguigui, W.; Laviéville, J.; Benoit, M.; Wachs, A.; Fede, P.; Bonometti, T. Resolved DEM-CFD coupling for wave-armour blocks interactions. Ocean. Eng. 2025, 337, 121865. [Google Scholar] [CrossRef]
- Gísladóttir, L.M.; Castellino, M.; Dermentzoglou, D.; Hendriks, M.A.; de Girolamo, P.; van Gent, M.R.; Antonini, A. Curved concrete crownwalls on vertical breakwaters under impulsive wave load: Finite Element Analysis. Coast. Eng. 2025, 201, 104791. [Google Scholar] [CrossRef]
- Ding, D.; Ouahsine, A.; Xiao, W.; Du, P. CFD/DEM coupled approach for the stability of caisson-type breakwater subjected to violent wave impact. Ocean. Eng. 2021, 223, 108651. [Google Scholar] [CrossRef]
- Hsu, T.J.; Sakakiyama, T.; Liu, P.L.F. A numerical model for wave motions and turbulence flows in front of a composite breakwater. Coast. Eng. 2002, 46, 25–50. [Google Scholar] [CrossRef]
- Sakakiyama, T.; Liu, P.L.F. Laboratory experiments for wave motions and turbulence flows in front of a breakwater. Coast. Eng. 2001, 44, 117–139. [Google Scholar] [CrossRef]
- Del Jesús, M.; Lara, J.L.; Losada, I.J. Three-dimensional interaction of waves and porous coastal structures. Part I: Numerical model formulation. Coast. Eng. 2012, 64, 57–72. [Google Scholar] [CrossRef]
- Lin, P. Numerical Modeling of Breaking Waves. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 1998. [Google Scholar]
- Bao, H. Nodal-Based Discontinuous Deformation Analysis. Ph.D. Thesis, Nanyang Technological University, Singapore, 2010. [Google Scholar]
- Kaidi, S.; Rouainia, M.; Ouahsine, A. Stability of breakwaters under hydrodynamic loading using a coupled DDA/FEM approach. Ocean. Eng. 2012, 55, 62–70. [Google Scholar] [CrossRef]
- Kajishima, T.; Taira, K. Reynolds-Averaged Navier–Stokes Equations. In Computational Fluid Dynamics: Incompressible Turbulent Flows; Springer International Publishing: Cham, Switzerland, 2017; pp. 237–268. [Google Scholar] [CrossRef]
- Zhao, P.H.; Sun, D.P.; Wu, H. Application of a VARANS based resistance-type porosity model on simulating wave interactions with perforated caisson sitting on a rubble-mound foundation. Appl. Ocean. Res. 2021, 112, 102600. [Google Scholar] [CrossRef]
- Ji, S.; Ouahsine, A.; Smaoui, H.; Sergent, P. 3D modeling of sediment movement by ship-generated wakes in confined shipping channel. Int. J. Sediment Res. 2014, 29, 49–58. [Google Scholar] [CrossRef]
- Higuera, P.; Lara, J.L.; Losada, I.J. Three-dimensional interaction of waves and porous coastal structures using OpenFOAM®: Part I: Formulation and validation. Coast. Eng. 2014, 83, 243–258. [Google Scholar] [CrossRef]
- Darcy, H. Les Fontaines Publiques de la Ville de Dijon: Exposition et Application des Principes à Suivre et des Formules à Employer Dans les Questions de Distribution d’eau: Ouvrage Terminé par un Appendice Relatif Aux Fournitures d’eau de Plusieurs Villes, au Filtrage des Eaux et à la Fabrication des Tuyaux de Fonte, de Plomb, de tôle et de Bitume; V. Dalmont: Paris, France, 1856; Volume 2, p. 647. [Google Scholar]
- Forchheimer, P. Wasserbewegung durch Boden. Z. Des Vereins Dtsch. Ingenieure 1901, 45, 1782–1788. [Google Scholar]
- Polubarinova-Kochina, P.Y. Theory of Ground Water Movement; Princeton University Press: Princeton, NJ, USA, 1962. [Google Scholar]
- van Gent, M.R.A. Wave Interaction with Permeable Coastal Structures. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1995. [Google Scholar]
- Guler, H.G.; Baykal, C.; Arikawa, T.; Yalciner, A.C. Numerical assessment of tsunami attack on a rubble mound breakwater using OpenFOAM®. Appl. Ocean. Res. 2018, 72, 76–91. [Google Scholar] [CrossRef]
- Shi, G.H. Discontinuous deformation analysis: A new numerical model for the statics and dynamics of deformable block structures. Eng. Comput. 1992, 9, 157–168. [Google Scholar] [CrossRef]
- Ding, D.; Ouahsine, A.; Xiao, W.; Du, P. Numerical study of ballast-flight caused by dropping snow/ice blocks in high-speed railways using Discontinuous Deformation Analysis (DDA). Transp. Geotech. 2020, 22, 100314. [Google Scholar] [CrossRef]
- Vu, V.N.; Lee, C.; Jung, T.H. Extended Boussinesq equations for waves in porous media. Coast. Eng. 2018, 139, 85–97. [Google Scholar] [CrossRef]
- Lee, J.J.; Skjelbreia, J.E.; Raichlen, F. Measurement of velocities in solitary waves. J. Waterw. Port Coastal Ocean. Div. 1982, 108, 200–218. [Google Scholar] [CrossRef]
- Higuera, P.; Lara, J.L.; Losada, I.J. Realistic wave generation and active wave absorption for Navier–Stokes models: Application to OpenFOAM®. Coast. Eng. 2013, 71, 102–118. [Google Scholar] [CrossRef]
- Ji, S.C.; Ouahsine, A.; Smaoui, H.; Sergent, P.; Jing, G.Q. Impacts of ship movement on the sediment transport in shipping channel. J. Hydrodyn. 2014, 26, 706–714. [Google Scholar] [CrossRef]
- Ouahsine, A.; Smaoui, H.; Meftah, K.; Sergent, P.; Sabatier, F. Numerical study of coastal sandbar migration, by hydro-morphodynamical coupling. Environ. Fluid Mech. 2012, 13, 169–187. [Google Scholar] [CrossRef]
- Vasquez, J.; Steffler, P.; Millar, R. Modeling Bed Changes in Meandering Rivers Using Triangular Finite Elements. J. Hydraul. Eng. (ASCE) 2008, 134, 1348–1352. [Google Scholar] [CrossRef]
Mesh | Coarse | Medium | Fine |
Number of cells | 38,088 | 76,440 | 153,317 |
RMSE (m) | 0.15929 | 0.11586 | 0.10604 |
Time step (s) | = 0.1 | = 0.01 | = 0.001 |
RMSE (m) | 0.11586 | 0.10539 | 0.09087 |
Friction angle | 0° | 30° |
RMSE (m) | 0.03626 | 0.03496 |
Porosity | (Thickness = 1 m) | (Thickness = 1.5 m) | (Thickness = 2 m) |
---|---|---|---|
0.35 | 5.87 m | 5.841 m | 5.523 m |
0.417 | 5.629 m | 5.587 m | 5.387 m |
0.49 | 5.45 m | 5.424 m | 5.276 m |
0.6 | 5.003 m | 4.941 m | 4.474 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Ouahsine, A. Stability Analysis and Design of Composite Breakwater Based on Fluid-Solid Coupled Approach Using CFD/NDDA. J. Mar. Sci. Eng. 2025, 13, 1817. https://doi.org/10.3390/jmse13091817
Wang X, Ouahsine A. Stability Analysis and Design of Composite Breakwater Based on Fluid-Solid Coupled Approach Using CFD/NDDA. Journal of Marine Science and Engineering. 2025; 13(9):1817. https://doi.org/10.3390/jmse13091817
Chicago/Turabian StyleWang, Xinyu, and Abdellatif Ouahsine. 2025. "Stability Analysis and Design of Composite Breakwater Based on Fluid-Solid Coupled Approach Using CFD/NDDA" Journal of Marine Science and Engineering 13, no. 9: 1817. https://doi.org/10.3390/jmse13091817
APA StyleWang, X., & Ouahsine, A. (2025). Stability Analysis and Design of Composite Breakwater Based on Fluid-Solid Coupled Approach Using CFD/NDDA. Journal of Marine Science and Engineering, 13(9), 1817. https://doi.org/10.3390/jmse13091817