Comparative Analysis of Scour in Riprap-Protected Monopiles and Hybrid Foundations
Abstract
1. Introduction
1.1. Background
1.2. Scour Protections: Design
- The design equation does not consider the thickness (ts) and pile diameter (Dp) variables.
- The limits established for stability showed that some overlapping situations arose; thus, the failure condition could occur for values above the limit of 1.00.
- Like in the static protections, the equation was obtained using only monopile foundations and a short variety of water depths and layer thicknesses.
- The failure criterion used by [7] was the same as in [12]. So, for the reference sub-area of 4, the maximum dynamic behaviour limit of S3D = 1.0 has the physical meaning of the scour protection decreasing in thickness by a distance equal to Dn50. For scour protections with thicknesses over nDn50 (n > 1), S3D = 1.0 may not be truly representative of failure.
- To quantify the S3D values, the scour protection was divided into fixed sub-areas with an equal area to the monopile cross-section, thus neglecting the damage occurring in the intersection of the sub-areas, the effect of damage in adjacent sub-areas, and not considering the cumulative impact.
1.3. Deformation and Mobility
- MOBtop (relative mobility): measures the hydraulic loading at the top of the scour protection relative to the resistance of the armour layer material. In practical terms, this is the stab parameter presented by [12];
- KCtot (Total Keulegan–Carpenter number): measures and evaluates the contribution of the wave-orbital and steady-current velocities relative to the structure. It measures the wave stroke asymmetry and the bed shear stress amplification difference around the pile—Equation (10).
- Class 1: negligible deformation, small settlements, spot deformation, or slight local sinking (1.5 ≲ KCtot ≲ 4 and 0.20 ≲ MOBtop ≲ 0.50).
- Class 2: upstream deformation with negligible downstream deformation, associated with downflow pattern (1.75 ≲ KCtot ≲ 5 and 0.20 ≲ MOBtop ≲ 0.85).
- Class 3: evenly distributed upstream and downstream deformation. Increasing influence of lee–wake vortices (2 ≲ KCtot ≲ 5.5 and 0.35 ≲ MOBtop ≲ 0.85).
- Class 4: mainly downstream deformation. Higher prevalence of lee–wake vortices (3.5 ≲ KCtot ≲ 8 and 0.40 ≲ MOBtop ≲ 1.10).
- Class 5: deep upstream deformation combined with a single deep downstream deformation point. Can be difficult to distinguish from Class 4 but is highly related to the presence of a meaningful steady current (2.5 ≲ KCtot ≲ 9.5 and 0.35 ≲ MOBtop ≲ 0.95).
- Class 6: deformation mainly upstream with a single relatively shallow downstream deformation point. Associated with low current velocities or even only-wave conditions. Horseshoe vortices prevail over lee–wake vortices (3.5 ≲ KCtot ≲ 5 and 0.6 ≲ MOBtop ≲ 0.8);
1.4. Hybrid Structures
2. Experimental Setup
2.1. Wave–Current Flume
2.2. Model Layout
2.3. Hydrodynamic Conditions and Scour Measurement Technique
3. Experimental Results and Analysis
3.1. Scour Damage (S3D)
- From 0 to 1000 waves: = [0.05–0.09] (static), = [0.07–0.39] (dynamic), = [0.19–0.42] (failure).
- From 1000 to 3000 waves: = [0.00–0.03] (static), = [0.00–0.12] (dynamic), = [0.00–0.50] (failure).
- From 3000 to 5000 waves: = [−0.02–0.01] (static), = [−0.01–0.07] (dynamic), = [−0.04–0.17] (failure).
- : failure–filter layer exposed, loss of filter layer and/or seabed lowering;
- : dynamic behaviour—loss of thickness in the armour layer and/or movement of the armour layer units;
- : static behaviour—no movement, or residual movement, of armour layer units;
- : accretion of sediments around the armour layer unit;
3.2. Overlapping Grid Ratio
3.3. KCtot—MOBtop Effect and Ucw Analysis
3.4. Wave Transmission (CTr) and Wave Reduction (CRed) Coefficients
4. Conclusions
- Application of a scour protection in a hybrid monopile-WEC system: comparative assessment of scour damage with a monopile foundation.
- ○
- Paddle-based WECs can intensify scour in hybrid foundations: although the used OSWEC device attenuated incoming wave heights by almost 30%, its oscillatory movement generates complex flow patterns and significantly increases the scour damage.
- Application and evaluation of the innovative overlapping-circle 3D method: demonstration of its effectiveness and high-resolution scour quantification capabilities of the method proposed by [21], while comparing it with two other different methods [7,22], making a sensitivity analysis to understand the need for a methodological standardisation.
- ○
- Overlapping method revealed limitations in existing design damage analysis methods: the overlapping method effectively quantified scour damage via S3D number, providing more insights into its behaviour, completing the information acquired from the studies performed by [7,22], mainly for hybrid configurations. However, its high sensitivity to the grid ratio indicates that the optimal value should fall within the 1/4 and 1/6 ratio interval, which aligns with the proposal made by [21].
- Identification of limitations in existing design standards and predictive formulas: the results lead to questioning the conservatism of existing design standards and their inability to capture WEC-induced enhanced flow complexities.
- ○
- Hybrid monopile riprap protections exhibited early failure: when compared to standard monopile tests, the scour countermeasures applied to hybrid structures showed markedly higher damage rates, often failing within the initial 1000 waves, thus indicating that the current design methods do not accommodate the dynamic loads induced by WECs.
- Proposal of alternative performance-aligned scour metrics: S/ts and/or S3D/ns ratios offer more accurate and straightforward indicators for quantifying and evaluating riprap scour protection performance in complex offshore environments by shifting the comparative/relative referential from the foundation to the protection itself.
- ○
- Alternative S/ts and S3D/ns indicators shown to be reliable: these two relative scour damage ratios better represent the actual riprap state and performance under hydrodynamic loading than the traditional S/Dp or S3D > 1.0 threshold, offering a more reliable basis for future design approaches.
- Framework for advancing design methodologies in hybrid offshore foundations: to update predictive tools that account for dynamic structural effects and vortex-induced shear amplifications of coupling (extra) devices, to promote safer, more adaptable infrastructures for marine harvesting technologies.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADV | Acoustic Doppler Velocimeter |
Afailure | Area of failure |
Asub | Area of the overlapping-circle sub-areas |
a0, a2, a3 | Regression fitting coefficients |
a1, a4 | Coefficient for hydrodynamic conditions |
b0 | Regression fitting coefficient |
CRed | Wave reduction coefficient |
CTr | Wave transmission coefficient |
D | Scour protection’s armour layer extent |
D* | Dimensionless grain size |
Dcr | Critical stone size |
Dp | Pile diameter |
Dn50 | Nominal stone diameter of the scour protection |
D15 | 15th percentile of scour protection material grading |
D50 | Mean stone diameter of the scour protection material |
D67.5 | 67.5th percentile of scour protection material grading |
D85 | 85th percentile of scour protection material grading |
DTM | Digital Terrain Model |
D | Water depth |
d16 | 16th percentile of sediments |
d50 | Mean diameter of sediments |
d84 | 84th percentile of sediments |
Fr | Froude number |
FOSWEC | Floating Oscillating Surge Wave Energy Converter |
GBF | Gravity-based Foundation |
g | Gravitational acceleration |
H | Wave height |
Hm0 | Spectral significant wave height |
Hs | Significant wave height |
KC KCc | Keulegan–Carpenter number (wave contribution) Keulegan–Carpenter number (current contribution) |
KCtot | Total Keulegan–Carpenter number (wave–current contribution) |
MOB | Mobility parameter |
MOBtop | Mobility parameter on the top layer of scour protection |
N | Number of waves |
ns | Number of rock stone sizes (layers) |
OSWEC | Oscillating Surge Wave Energy Converter |
OWT | Offshore Wind Turbine |
p | Multiplication factor for overlapping-circle sub-area |
Rcircle | Radius of overlapping-circle sub-area |
Re | Reynolds number |
S | Scour depth |
Spredicted | Predicted scour depth |
S/Dp | Relative scour depth |
S/ts | Scour depth relative to the scour protection thickness |
Spredicted/Dp | Predicted relative scour depth |
S3D | Damage number |
S3D,failure | Damage number for failure limit |
S3D,max | Damage number (maximum) |
S3D,measured | Damage number (measured) |
S3D,predicted | Damage number (predicted) |
S3Dsub,circle | Damage number for overlapping-circle sub-area |
S3D/ns | Damage number relative to the number of rock stone sizes (layers) |
s | Specific density (ρs/ρw) |
stab | Stability parameter |
T | Wave period |
T* | Dimensionless time scale |
Tm | Mean wave period |
Tm-1,0 | Energy wave period |
Tp | Wave peak period |
TEC | Tidal-current Energy Converter |
ts | Scour protection thickness |
Uc | Depth-averaged current velocity |
Ucr | Mean threshold velocity of sediments |
Ucw | Wave–current velocity ratio |
Um | Wave orbital bottom velocity |
Um,top | Wave orbital bottom velocity at the top of the armour layer |
VA,max | Maximum erosion volume |
Vcircle | Volume of overlapping-circle sub-area |
Ve | Eroded volume |
WEC | Wave Energy Converter |
ws | Settling velocity |
α | Amplification factor |
ΔS3D/ns | Damage increase ratio |
ηS3D,grid | Grid ratio |
θ | Shields parameter |
θcr | Critical Shields parameter |
θmax | Maximum dimensionless wave–current-induced shear stress |
ν | Kinematic viscosity of water |
ρs | Density of rock material |
ρw | Water mass density |
σs | Standard deviation of sediments |
τcr | Critical bed shear stress |
τm | Mean combined bed shear stress (current and wave-induced) |
τmax | Maximum combined bed shear stress (current and wave-induced) |
ϒ | Wave spectrum peak enhancement factor |
Appendix A
Monopile and Hybrid Foundation S3D Results: Overlapping Technique Results (Asub =
Appendix B
Monopile and Hybrid Foundation S3D Results for Different Grid Ratios
Monopile Tests | (A) | (B) | (C) | (D) | (E) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Asub | Value [m2] | ηS3D,grid | p Value | Rcircle [m] | Cnum | S3D,measured | ||||
1.000 | 1.1284 | 23,200 | 3.46 | 2.71 | 3.96 | 3.42 | 5.26 | |||
0.900 | 1.1894 | 20,700 | 3.12 | 2.21 | 3.71 | 3.39 | 4.75 | |||
0.667 | 1.3820 | 15,400 | 3.03 | 2.49 | 3.71 | 3.36 | 4.77 | |||
0.500 | 1.5958 | 11,500 | 2.29 | 2.02 | 3.26 | 3.29 | 4.03 | |||
0.333 | 1.9544 | 7640 | 2.21 | 1.95 | 3.38 | 3.28 | 3.43 | |||
0.250 | 2.2568 | 5570 | 1.95 | 1.83 | 2.87 | 3.08 | 3.18 | |||
0.200 | 2.5231 | 4600 | 2.20 | 1.89 | 2.86 | 2.84 | 3.20 | |||
0.167 | 2.7640 | 3770 | 1.90 | 1.96 | 2.85 | 2.67 | 2.95 | |||
0.143 | 2.9854 | 3250 | 1.94 | 1.78 | 2.79 | 2.63 | 2.59 | |||
0.125 | 3.1915 | 2780 | 1.76 | 1.87 | 2.93 | 2.82 | 2.71 | |||
0.111 | 3.3851 | 2550 | 1.91 | 1.85 | 2.78 | 2.85 | 2.82 | |||
0.100 | 3.5682 | 2150 | 1.70 | 1.64 | 2.69 | 2.70 | 2.49 | |||
0.063 | 4.5135 | 1400 | 1.75 | 1.61 | 2.68 | 2.55 | 2.30 | |||
0.050 | 5.0463 | 1100 | 1.58 | 1.51 | 2.58 | 2.55 | 2.30 | |||
0.040 | 5.6419 | 839 | 1.36 | 1.56 | 2.64 | 2.50 | 1.91 | |||
0.020 | 7.9788 | 409 | 1.24 | 1.34 | 2.40 | 2.07 | 1.69 | |||
0.010 | 11.2838 | 189 | 1.04 | 1.03 | 2.03 | 1.95 | 1.43 | |||
Apile | 0.00143 | 29.8103 | 24 | 0.62 | −0.02 | 0.52 | 0.31 | 0.60 |
Hybrid Monopile Tests | (A) | (B) | (C) | (D) | (E) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Asub | Value [m2] | ηS3D,grid | p Value | Rcircle [m] | Cnum | S3D,measured | ||||
1.000 | 1.1284 | 23,200 | 3.22 | 5.88 | 10.7 | 8.79 | 12.1 | |||
0.900 | 1.1894 | 20,700 | 3.54 | 5.72 | 11.2 | 9.4 | 10.4 | |||
0.667 | 1.3820 | 15,400 | 3.31 | 5.97 | 11.4 | 8.64 | 10.9 | |||
0.500 | 1.5958 | 11,500 | 3.14 | 5.28 | 11.1 | 8.74 | 10.3 | |||
0.333 | 1.9544 | 7640 | 3.11 | 5.44 | 10.1 | 8.30 | 9.40 | |||
0.250 | 2.2568 | 5570 | 2.86 | 5.38 | 9.81 | 7.28 | 8.55 | |||
0.200 | 2.5231 | 4600 | 2.60 | 4.97 | 10.1 | 7.34 | 9.59 | |||
0.167 | 2.7640 | 3770 | 2.63 | 5.02 | 9.13 | 6.90 | 8.35 | |||
0.143 | 2.9854 | 3250 | 2.60 | 4.80 | 8.88 | 7.11 | 8.49 | |||
0.125 | 3.1915 | 2780 | 2.68 | 4.68 | 9.12 | 7.00 | 8.04 | |||
0.111 | 3.3851 | 2550 | 2.49 | 4.87 | 8.96 | 6.79 | 8.57 | |||
0.100 | 3.5682 | 2150 | 2.32 | 5.03 | 8.97 | 6.59 | 8.21 | |||
0.063 | 4.5135 | 1400 | 2.16 | 4.95 | 8.68 | 6.38 | 7.75 | |||
0.050 | 5.0463 | 1100 | 1.93 | 4.71 | 8.54 | 6.43 | 7.15 | |||
0.040 | 5.6419 | 839 | 1.95 | 4.39 | 8.41 | 6.38 | 7.48 | |||
0.020 | 7.9788 | 409 | 1.41 | 4.20 | 8.24 | 6.04 | 6.37 | |||
0.010 | 11.2838 | 189 | 1.20 | 3.56 | 8.16 | 5.37 | 5.77 | |||
Apile | 0.00143 | 29.8103 | 24 | 0.30 | 2.22 | 7.06 | 3.69 | 3.45 |
Appendix C
MATLAB Function for Calculating S/Dp, Kctot, and MOBtot—Using Formulas Developed by [21,42]
References
- WindEurope. Getting Fit for 55 and Set for 2050: Electrifying Europe with Wind Energy; WindEurope: Brussels, Belgium, 2021. [Google Scholar]
- Matutano, C.; Negro, V.; Lopez-Gutierrez, J.S.; Esteban, M.D. Scour prediction and scour protections in offshore wind farms. Renew. Energy 2013, 57, 358–365. [Google Scholar] [CrossRef]
- Bhattacharya, S. Challenges in Design of Foundations for Offshore Wind Turbines. Eng. Technol. Ref. 2014, 2014. [Google Scholar] [CrossRef]
- Sørensen, S.P.H.; Ibsen, L.B. Assessment of foundation design for offshore monopiles unprotected against scour. Ocean Eng. 2013, 63, 17–25. [Google Scholar] [CrossRef]
- Saathoff, J.E.; Goldau, N.; Achmus, M.; Schendel, A.; Welzel, M.; Schlurmann, T. Influence of scour and scour protection on the stiffness of monopile foundations in sand. Appl. Ocean Res. 2024, 144, 103920. [Google Scholar] [CrossRef]
- Fazeres-Ferradosa, T.; Taveira-Pinto, F.; Rosa-Santos, P.; Chambel, J. A review of reliability analysis of offshore scour protections. Proc. Inst. Civ. Eng. Marit. Eng. 2019, 172, 104–117. [Google Scholar] [CrossRef]
- De Vos, L.; De Rouck, J.; Troch, P.; Frigaard, P. Empirical design of scour protections around monopile foundations. Part 2: Dynamic approach. Coast. Eng. 2012, 60, 286–298. [Google Scholar] [CrossRef]
- Chambel, J.; Fazeres Ferradosa, T.; Miranda, F.; Bento, A.; Taveira-Pinto, F.; Lomonaco, P. A Comprehensive Review on Scour and Scour Protections for Complex Bottom-Fixed Offshore and Marine Renewable Energy Foundations. Ocean Eng. 2024, 304, 117829. [Google Scholar] [CrossRef]
- Fazeres-Ferradosa, T.; Chambel, J.; Taveira-Pinto, F.; Rosa-Santos, P.; Taveira-Pinto, F.V.C.; Giannini, G.; Haerens, P. Scour Protections for Offshore Foundations of Marine Energy Harvesting Technologies: A Review. J. Mar. Sci. Eng. 2021, 9, 297. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, X.; Yan, J.; Gao, X. Countermeasures for local scour around offshore wind turbine monopile foundations: A review. Appl. Ocean Res. 2023, 141, 103764. [Google Scholar] [CrossRef]
- Soulsby, R.L. Dynamics of Marine Sands, a Manual for Practical Applications; Thomas Telford Publications: London, UK, 1997; p. 256. [Google Scholar]
- den Boon, J.H.; Sutherland, J.; Whitehouse, R.J.S.; Soulsby, R.L.; Stam, C.J.M.; Verhoeven, K.; Høgedal, M.; Hald, T. Scour behaviour and scour protection for monopile foundations of offshore wind turbines. In Proceedings of the European Wind Energy Conference & Exhibition, London, UK, 22–25 November 2004; p. 14. [Google Scholar]
- Sumer, M.B.; Fredsøe, J. Hydrodynamics Around Cylindrical Structures; World Scientific: Singapore, 1997. [Google Scholar]
- Whitehouse, R.J.S. Scour at Marine Structures: A Manual for Practical Applications; Thomas Telford: London, UK, 1998. [Google Scholar]
- De Vos, L.; De Rouck, J.; Troch, P.; Frigaard, P. Empirical design of scour protections around monopile foundations: Part 1: Static approach. Coast. Eng. 2011, 58, 540–553. [Google Scholar] [CrossRef]
- De Vos, L. Optimisation of Scour Protection Design for Monopiles and Quantification of Waver Run-Up; Faculty of Engineering, Ghent University: Ghent, Belgium, 2008; p. 278. [Google Scholar]
- Van der Meer, J.W. Stability of breakwater armour layers—Design formulae. Coast. Eng. 1987, 11, 219–239. [Google Scholar] [CrossRef]
- De Schoesitter, P.; Audenaert, S.; Baelus, L.; Bolle, A.; Brown, A.; das Neves, L.; Fazeres-Ferradosa, T.; Haerens, P.; Taveira-Pinto, F.; Troch, P. Feasibility of a dynamically stable rock armour layer scour protection for offshore wind farms. In Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, San Francisco, CA, USA, 8–13 June 2014. V003T10A026. [Google Scholar]
- Whitehouse, R.J.S.; Brown, A.; Audenaert, S.; Bolle, A.; de Schoesitter, P.; Haerens, P.; Baelus, L.; Troch, P.; Das Neves, L.; Fazeres-Ferradosa, T. Optimising scour protection stability at offshore foundations. In Proceedings of the 7th International Conference on Scour and Erosion, Perth, Australia, 2–4 December 2014. [Google Scholar]
- Fazeres-Ferradosa, T.; Taveira-Pinto, F.; Reis, M.T.; das Neves, L. Physical modelling of dynamic scour protections: Analysis of the damage number. Proc. Inst. Civ. Eng. Marit. Eng. 2018, 171, 11–24. [Google Scholar] [CrossRef]
- Fazeres-Ferradosa, T.; Welzel, M.; Schendel, A.; Baelus, L.; Santos, P.R.; Pinto, F.T. Extended characterization of damage in rubble mound scour protections. Coast. Eng. 2020, 158, 103671. [Google Scholar] [CrossRef]
- Broekema, Y.B.; van Steijn, P.W.; Wu, M.; Robijns, T. Predicting loose rock scour protection deformation around monopiles using the relative mobility number and the Keulegan–Carpenter number. Ocean Eng. 2024, 300, 117475. [Google Scholar] [CrossRef]
- van Steijn, P.; Wu, M.; Broekema, Y. Towards a better understanding of loose rock scour protection stability around monopile foundations. In Proceedings of the 11th International Conference on Scour and Erosion (ICSE-11), Copenhagen, Denmark, 17–21 September 2023; Society for Soil Mechanics and Geotechnical Engineering (ISSMGE): London, UK, 2023. [Google Scholar]
- Ruehl, K.M.; Forbush, D.; Lomonaco, P.; Bosma, B.; Simmons, A.; Gunawan, B.; Bacelli, G.; Michelen, C. Experimental Testing of a Floating Oscillating Surge Wave Energy Converter; Sandia National Laboratories: Albuquerque, NM, USA, 2019. [Google Scholar]
- Ruehl, K.M.; Forbush, D.D.; Yu, Y.H.; Tom, N. Experimental and numerical comparisons of a dual-flap floating oscillating surge wave energy converter in regular waves. Ocean Eng. 2020, 196, 106575. [Google Scholar] [CrossRef]
- Coe, R.G.; Bacelli, G.; Forbush, D.; Spencer, S.J.; Dullea, K.J.; Bosma, B.; Lomonaco, P. FOSWEC Dynamics and Controls Test Report; Sandia National Laboratories (SNL-NM): Albuquerque, NM, USA, 2020. [Google Scholar]
- Miranda, F.; Margarida Bento, A.; Chambel, J.; Francisca-Sarmento, M.; Rosa-Santos, P.; Taveira-Pinto, F.; Fazeres-Ferradosa, T. A novel and simple passive absorption system for wave-current flumes. Alex. Eng. J. 2023, 71, 463–477. [Google Scholar] [CrossRef]
- Chambel, J. Analysis of Long-Term Damage of Offshore Wind Turbine Foundations; University of Porto: Porto, Portugal, 2019. [Google Scholar]
- Wiberg, P.L.; Sherwood, C.R. Calculating wave-generated bottom orbital velocities from surface-wave parameters. Comput. Geosci. 2008, 34, 1243–1262. [Google Scholar] [CrossRef]
- CIRIA; CUR; CETMEF. The Rock Manual: The Use of Rock in Hydraulic Engineering, 2nd ed.; CIRIA: London, UK, 2007; Volume 683. [Google Scholar]
- Chen, B.; Li, S. Experimental study of local scour around a vertical cylinder under wave-only and combined wave-current conditions in a large-scale flume. J. Hydraul. Eng. 2018, 144, 04018058. [Google Scholar] [CrossRef]
- Sumer, B.M.; Fredsøe, J. Experimental study of 2D scour and its protection at a rubble-mound breakwater. Coast. Eng. 2000, 40, 59–87. [Google Scholar] [CrossRef]
- Petersen, T.U.; Sumer, B.M.; Fredsøe, J.; Raaijmakers, T.C.; Schouten, J. Edge scour at scour protections around piles in the marine environment—Laboratory and field investigation. Coast. Eng. 2015, 106, 42–72. [Google Scholar] [CrossRef]
- Schendel, A.; Welzel, M.; Schlurmann, T.; Hsu, T.-W. Scour around a monopile induced by directionally spread irregular Waves in combination with oblique currents. Coast. Eng. 2020, 161, 103751. [Google Scholar] [CrossRef]
- Sumer, B.M.; Fredsøe, J. Scour around a pile in combined waves and currents. J. Hydraul. Eng. 2001, 127, 403–411. [Google Scholar] [CrossRef]
- Rudolph, D.; Bos, J.K. Scour around a monopile under combined wave-current conditions and low KC-numbers. In Proceedings of the 3rd International Conference on Scour and Erosion (ICSE), Amsterdam, The Netherlands, 1–3 November 2006. [Google Scholar]
- Sumer, B.M.; Petersen, T.U.; Locatelli, L.; Fredsøe, J.; Musumeci, R.E.; Foti, E. Backfilling of a scour hole around a pile in waves and currents. J. Waterw. Port Coast. Ocean Eng. 2013, 139, 9–23. [Google Scholar] [CrossRef]
- Qi, W.G.; Gao, F.P. Physical modeling of local scour development around a large-diameter monopile in combined waves and current. Coast. Eng. 2014, 83, 72–81. [Google Scholar] [CrossRef]
- Taheri, O.; Kolahdoozan, M.; Faghihirad, S. Experimental study of bed level changes in the vicinity of flap-type wave energy converters. Ships Offshore Struct. 2022, 18, 450–461. [Google Scholar] [CrossRef]
- Chen, L.; Hashim, R.; Othman, F.; Motamedi, S. Experimental study on scour profile of pile-supported horizontal axis tidal-current turbine. Renew. Energy 2017, 114, 744–754. [Google Scholar] [CrossRef]
- Sun, C.; Lam, W.H.; Cui, Y.; Zhang, T.; Jiang, J.; Guo, J.; Ma, Y.; Wang, S.; Tan, T.H.; Chuah, J.H. Empirical models for Darrieus-type tidal current turbine induced seabed scour. Energy Convers. Manag. 2018, 171, 478–490. [Google Scholar] [CrossRef]
- Deltares. Handbook of Scour and Cable Protection Methods; Report no. Deltares250; Deltares: Delft, The Netherlands, 2024. [Google Scholar]
Test | Number of Waves | d [m] | Hs [m] | Tp [s] | Um [m/s] | Uc [m/s] | Ucw | S3D,predicted | MOBtop | KCTot |
---|---|---|---|---|---|---|---|---|---|---|
M_WC_7 | 3000 | 0.4 | 0.07 | 1.414 | 0.080 | 0.155 | 0.66 | 0.08 | 0.25 | 3.05 |
M_WC_11 | 0.11 | 1.697 | 0.143 | 0.52 | 0.63 | 0.41 | 4.66 | |||
M_WC_15.5 | 0.155 | 1.980 | 0.183 | 0.050 | 0.21 | 1.79 | 0.48 | 4.28 | ||
M_WI_14 | 0.14 | 2.263 | 0.208 | - | 0.00 | 3.43 | 0.53 | 4.39 | ||
M_WR_14 | 0.14 (Regular) | |||||||||
MH_WC_7 | 3000 | 0.4 | 0.07 | 1.414 | 0.080 | 0.155 | 0.66 | 0.08 | 0.25 | 3.05 |
MH_WC_11 | 0.11 | 1.697 | 0.143 | 0.52 | 0.63 | 0.41 | 4.66 | |||
MH_WC_15.5 | 0.155 | 1.980 | 0.183 | 0.050 | 0.21 | 1.79 | 0.48 | 4.28 | ||
MH_WI_14 | 0.14 | 2.263 | 0.208 | - | 0.00 | 3.43 | 0.53 | 4.39 | ||
MH_WR_14 | 0.14 (Regular) |
Geometric Scale: 1:50 | |
---|---|
Dp (m) | 0.11 |
Dn50 (mm) | 3.696 |
Armour Layer ρs (kg/m3) | 2666 |
Armour Thickness (ts) | 2.5Dn50 |
Armour Extent (D) | 5Dp |
Filter | Geotextile |
D85/D15 | 3 |
MOB | 0.25–0.53 |
Test | Number of Waves | Hs [m] | Tp [s] | Um [m/s] | Uc [m/s] | Ucw | S3D,predicted | S3D,measured | Visual Classification |
---|---|---|---|---|---|---|---|---|---|
M_WC_7_1000 | 1000 | 0.072 | 1.471 | 0.085 | 0.157 | 0.65 | 0.06 | 1.43 | Slightly Dynamic (all 3000 waves) |
M_WC_7_2000 | 1000 | 0.073 | 1.471 | 0.086 | 0.157 | 0.65 | 0.07 | 2.11 | |
M_WC_7_3000 | 1000 | 0.073 | 1.471 | 0.086 | 0.157 | 0.64 | 0.08 | 1.95 | |
M_WC_11_1000 | 1000 | 0.100 | 1.613 | 0.126 | 0.156 | 0.55 | 0.48 | 1.73 | Dynamic (all 3000 waves) |
M_WC_11_2000 | 1000 | 0.104 | 1.613 | 0.131 | 0.158 | 0.55 | 0.57 | 1.63 | |
M_WC_11_3000 | 1000 | 0.111 | 1.613 | 0.140 | 0.157 | 0.53 | 0.63 | 1.83 | |
M_WC_15.5_1000 | 1000 | 0.155 | 2.083 | 0.223 | 0.048 | 0.18 | 1.79 | 2.87 | Failure |
M_WI_14_1000 | 1000 | 0.136 | 2.174 | 0.199 | - | 0.00 | 2.63 | 2.77 | Dynamic (Almost failure, all 3000 waves) |
M_WI_14_2000 | 1000 | 0.136 | 2.174 | 0.199 | 3.11 | 3.08 | |||
M_WI_14_3000 | 1000 | 0.136 | 2.174 | 0.199 | 3.43 | 3.08 | |||
M_WR_14_1000 | 1000 | 0.142 | 2.222 | 0.209 | - | 0.00 | 2.63 | 3.18 | Failure (1000 waves) |
M_WR_14_2000 | 1000 | 0.143 | 2.174 | 0.209 | 3.11 | 3.30 | |||
M_WR_14_3000 | 1000 | 0.143 | 2.174 | 0.209 | 3.43 | 3.21 | |||
MH_WC_7_1000 | 1000 | 0.074 | 1.299 | 0.078 | 0.156 | 0.67 | 0.06 | 1.97 | Failure (2000 waves) |
MH_WC_7_2000 | 1000 | 0.071 | 1.471 | 0.084 | 0.155 | 0.65 | 0.07 | 3.25 | |
MH_WC_7_3000 | 1000 | 0.070 | 1.471 | 0.083 | 0.157 | 0.65 | 0.08 | 2.86 | |
MH_WC_11_1000 | 1000 | 0.110 | 1.613 | 0.139 | 0.157 | 0.53 | 0.48 | 5.38 | Failure |
MH_WC_15.5_1000 | 1000 | 0.156 | 1.961 | 0.219 | 0.051 | 0.19 | 1.79 | 9.81 | Failure |
MH_WI_14_1000 | 1000 | 0.138 | 2.273 | 0.205 | - | 0.00 | 2.63 | 7.28 | Failure |
MH_WR_14_1000 | 1000 | 0.137 | 2.273 | 0.203 | - | 0.00 | 2.63 | 8.55 | Failure |
Test | Visual Classification | ΔS3D/ns |
---|---|---|
M_WC_7_1000 M_WC_7_2000 M_WC_7_3000 | Slightly Dynamic | 0.57 (0–1000 waves) 0.21 (1000–3000 waves) |
M_WC_11_1000 M_WC_11_2000 M_WC_11_3000 | Dynamic | 0.69 (0–1000 waves) 0.04 (1000–3000 waves) |
M_WC_15.5_1000 | Failure | 1.15 |
M_WI_14_1000 M_WI_14_2000 M_WI_14_3000 | Dynamic (Almost Failure) | 1.11 (0–1000 waves) 0.12 (1000–3000 waves) |
M_WR_14_1000 M_WR_14_2000 M_WR_14_3000 | Failure | 1.27 (0–1000 waves) 0.01 (1000–3000 waves) |
MH_WC_7_1000 MH_WC_7_2000 MH_WC_7_3000 | Failure | 0.79 (0–1000 waves) 0.36 (1000–3000 waves) |
MH_WC_11_1000 | Failure | 2.15 |
MH_WC_15.5_1000 | Failure | 3.92 |
MH_WI_14_1000 | Failure | 2.91 |
MH_WR_14_1000 | Failure | 3.42 |
Test | S [mm] | S/ts S3D/ns | S/ts S3D/ns (Failure) | S3D,measured | S3D,failure |
---|---|---|---|---|---|
M_WC_7_1000 | 5.29 | 0.57 | 1.0 | 1.43 | 2.5 |
M_WC_7_2000 | 7.80 | 0.84 | 2.11 | ||
M_WC_7_3000 | 7.21 | 0.78 | 1.95 | ||
M_WC_11_1000 | 6.39 | 0.69 | 1.73 | ||
M_WC_11_2000 | 6.02 | 0.65 | 1.63 | ||
M_WC_11_3000 | 6.76 | 0.73 | 1.83 | ||
M_WC_15.5_1000 | 10.61 | 1.15 | 2.87 | ||
M_WI_14_1000 | 10.24 | 1.11 | 2.77 | ||
M_WI_14_2000 | 11.38 | 1.23 | 3.08 | ||
M_WI_14_3000 | 11.38 | 1.23 | 3.08 | ||
M_WR_14_1000 | 11.75 | 1.27 | 3.18 | ||
M_WR_14_2000 | 12.20 | 1.32 | 3.30 | ||
M_WR_14_3000 | 11.86 | 1.28 | 3.21 | ||
MH_WC_7_1000 | 7.28 | 0.79 | 1.0 | 1.97 | 2.5 |
MH_WC_7_2000 | 12.01 | 1.30 | 3.25 | ||
MH_WC_7_3000 | 10.57 | 1.14 | 2.86 | ||
MH_WC_11_1000 | 19.88 | 2.15 | 5.38 | ||
MH_WC_15.5_1000 | 36.26 | 3.92 | 9.81 | ||
MH_WI_14_1000 | 26.91 | 2.91 | 7.28 | ||
MH_WR_14_1000 | 31.60 | 3.42 | 8.55 |
Test | Number of Waves | S [mm] | Spredicted [mm] | S/Dp | Spredicted/Dp | KCtot | MOBtop |
---|---|---|---|---|---|---|---|
M_WC_7_1000 | 1000 | 5.29 | 1.10 | 0.048 | 0.010 | 3.27 | 0.26 |
M_WC_7_2000 | 1000 | 7.80 | 1.10 | 0.071 | 0.010 | 3.29 | 0.26 |
M_WC_7_3000 | 1000 | 7.21 | 1.10 | 0.066 | 0.010 | 3.29 | 0.26 |
M_WC_11_1000 | 1000 | 6.39 | 2.31 | 0.058 | 0.021 | 4.19 | 0.36 |
M_WC_11_2000 | 1000 | 6.02 | 2.64 | 0.055 | 0.024 | 4.29 | 0.38 |
M_WC_11_3000 | 1000 | 6.76 | 3.08 | 0.061 | 0.028 | 4.42 | 0.41 |
M_WC_15.5_1000 | 1000 | 10.61 | 7.59 | 0.096 | 0.069 | 5.25 | 0.62 |
M_WI_14_1000 | 1000 | 10.24 | 3.96 | 0.093 | 0.036 | 4.04 | 0.51 |
M_WI_14_2000 | 1000 | 11.38 | 3.96 | 0.103 | 0.036 | 4.04 | 0.51 |
M_WI_14_3000 | 1000 | 11.38 | 3.96 | 0.103 | 0.036 | 4.04 | 0.51 |
M_WR_14_1000 | 1000 | 11.75 | 4.73 | 0.107 | 0.043 | 4.33 | 0.54 |
M_WR_14_2000 | 1000 | 12.20 | 4.73 | 0.111 | 0.043 | 4.24 | 0.55 |
M_WR_14_3000 | 1000 | 11.86 | 4.73 | 0.108 | 0.043 | 4.24 | 0.55 |
MH_WC_7_1000 | 1000 | 7.28 | 0.99 | 0.066 | 0.009 | 2.79 | 0.25 |
MH_WC_7_2000 | 1000 | 12.01 | 1.10 | 0.109 | 0.010 | 3.23 | 0.25 |
MH_WC_7_3000 | 1000 | 10.57 | 1.10 | 0.096 | 0.010 | 3.24 | 0.25 |
MH_WC_11_1000 | 1000 | 19.88 | 3.08 | 0.181 | 0.028 | 4.40 | 0.41 |
MH_WC_15.5_1000 | 1000 | 36.26 | 7.04 | 0.330 | 0.064 | 4.92 | 0.63 |
MH_WI_14_1000 | 1000 | 26.91 | 4.40 | 0.245 | 0.040 | 4.35 | 0.52 |
MH_WR_14_1000 | 1000 | 31.60 | 4.29 | 0.287 | 0.039 | 4.31 | 0.51 |
Test | Number of Waves | S [mm] | S/Dp | Spredicted [mm] | Spredicted/Dp | Spredicted [mm] | Spredicted/Dp |
---|---|---|---|---|---|---|---|
Θcr = 0.035 | Θcr—Equation (2) | ||||||
M_WC_7_1000 | 1000 | 5.29 | 0.048 | 1.98 | 0.018 | 1.10 | 0.010 |
M_WC_7_2000 | 1000 | 7.80 | 0.071 | 1.98 | 0.018 | 1.10 | 0.010 |
M_WC_7_3000 | 1000 | 7.21 | 0.066 | 1.98 | 0.018 | 1.10 | 0.010 |
M_WC_11_1000 | 1000 | 6.39 | 0.058 | 4.18 | 0.038 | 2.31 | 0.021 |
M_WC_11_2000 | 1000 | 6.02 | 0.055 | 4.73 | 0.043 | 2.64 | 0.024 |
M_WC_11_3000 | 1000 | 6.76 | 0.061 | 5.72 | 0.052 | 3.08 | 0.028 |
M_WC_15.5_1000 | 1000 | 10.61 | 0.096 | 14.30 | 0.130 | 7.59 | 0.069 |
M_WI_14_1000 | 1000 | 10.24 | 0.093 | 7.48 | 0.068 | 3.96 | 0.036 |
M_WI_14_2000 | 1000 | 11.38 | 0.103 | 7.48 | 0.068 | 3.96 | 0.036 |
M_WI_14_3000 | 1000 | 11.38 | 0.103 | 7.48 | 0.068 | 3.96 | 0.036 |
M_WR_14_1000 | 1000 | 11.75 | 0.107 | 9.02 | 0.082 | 4.73 | 0.043 |
M_WR_14_2000 | 1000 | 12.20 | 0.111 | 8.80 | 0.080 | 4.73 | 0.043 |
M_WR_14_3000 | 1000 | 11.86 | 0.108 | 8.80 | 0.080 | 4.73 | 0.043 |
MH_WC_7_1000 | 1000 | 7.28 | 0.066 | 1.87 | 0.017 | 0.99 | 0.009 |
MH_WC_7_2000 | 1000 | 12.01 | 0.109 | 1.98 | 0.018 | 1.10 | 0.010 |
MH_WC_7_3000 | 1000 | 10.57 | 0.096 | 1.98 | 0.018 | 1.10 | 0.010 |
MH_WC_11_1000 | 1000 | 19.88 | 0.181 | 5.72 | 0.052 | 3.08 | 0.028 |
MH_WC_15.5_1000 | 1000 | 36.26 | 0.330 | 13.09 | 0.119 | 7.04 | 0.064 |
MH_WI_14_1000 | 1000 | 26.91 | 0.245 | 8.47 | 0.077 | 4.40 | 0.040 |
MH_WR_14_1000 | 1000 | 31.60 | 0.287 | 7.92 | 0.072 | 4.29 | 0.039 |
Test # | Deformation Class Assessment | Possible Classes (Figure 23 and Figure 24) |
---|---|---|
M_WC_7_1000 | Class 1 | Class 1 or 2 |
M_WC_7_2000 | Class 1 | |
M_WC_7_3000 | Class 1 | |
M_WC_11_1000 | Class 1 | Class 2, 3, or 5 |
M_WC_11_2000 | Class 1 | Class 2, 3, or 5 |
M_WC_11_3000 | Class 3 | Class 2–5 |
M_WC_15.5_1000 | Class 2 (or 6) | Classes 3–5 |
M_WI_14_1000 | Class 2 (or 6) | Classes 2–5 |
M_WI_14_2000 | Class 2 (or 6) | |
M_WI_14_3000 | Class 2 (or 6) | |
M_WR_14_1000 | Class 2 (or 6) | Classes 2–5 |
M_WR_14_2000 | Class 2 (or 6) | |
M_WR_14_3000 | Class 2 (or 6) | |
MH_WC_7_1000 | Class 1 | Class 1 or 2 |
MH_WC_7_2000 | Class 3 | |
MH_WC_7_3000 | Class 3 | |
MH_WC_11_1000 | Class 4+ | Class 2–5 |
MH_WC_15.5_1000 | Class 3+ | Classes 2–6 |
MH_WI_14_1000 | Class 6+ | Classes 2–5 |
MH_WR_14_1000 | Class 6+ | Classes 2–5 |
Test | Ucw | KC | KCc | KCTot | S3D,measured |
---|---|---|---|---|---|
M_WC_7_1000 | 0.65 | 1.17 | 2.10 | 3.27 | 1.43 |
M_WC_7_2000 | 0.65 | 1.19 | 2.10 | 3.29 | 2.11 |
M_WC_7_3000 | 0.64 | 1.19 | 2.10 | 3.29 | 1.95 |
M_WC_11_1000 | 0.55 | 1.90 | 2.29 | 4.19 | 1.73 |
M_WC_11_2000 | 0.55 | 1.98 | 2.31 | 4.29 | 1.63 |
M_WC_11_3000 | 0.53 | 2.12 | 2.30 | 4.42 | 1.83 |
M_WC_15.5_1000 | 0.18 | 4.34 | 0.91 | 5.25 | 2.87 |
M_WI_14_1000 | 0.00 | 4.04 | 0.00 | 4.04 | 2.77 |
M_WI_14_2000 | 4.04 | 0.00 | 4.04 | 3.08 | |
M_WI_14_3000 | 4.04 | 0.00 | 4.04 | 3.08 | |
M_WR_14_1000 | 0.00 | 4.33 | 0.00 | 4.33 | 3.18 |
M_WR_14_2000 | 4.24 | 0.00 | 4.24 | 3.30 | |
M_WR_14_3000 | 4.24 | 0.00 | 4.24 | 3.21 | |
MH_WC_7_1000 | 0.67 | 0.95 | 1.84 | 2.79 | 1.97 |
MH_WC_7_2000 | 0.65 | 1.15 | 2.08 | 3.23 | 3.25 |
MH_WC_7_3000 | 0.65 | 1.14 | 2.10 | 3.24 | 2.86 |
MH_WC_11_1000 | 0.53 | 2.10 | 2.30 | 4.40 | 5.38 |
MH_WC_15.5_1000 | 0.19 | 4.01 | 0.91 | 4.92 | 9.81 |
MH_WI_14_1000 | 0.00 | 4.35 | 0.00 | 4.35 | 7.28 |
MH_WR_14_1000 | 0.00 | 4.31 | 0.00 | 4.31 | 8.55 |
Test | Number of Waves | CTr (%) |
---|---|---|
M_WC_7_1000 | 1000 | 100.0 |
M_WC_7_2000 | 1000 | 100.0 |
M_WC_7_3000 | 1000 | 100.0 |
M_WC_11_1000 | 1000 | 105.0 |
M_WC_11_2000 | 1000 | 104.8 |
M_WC_11_3000 | 1000 | 102.7 |
M_WC_15.5_1000 | 1000 | 98.7 |
M_WI_14_1000 | 1000 | 99.3 |
M_WI_14_2000 | 1000 | 97.8 |
M_WI_14_3000 | 1000 | 96.3 |
M_WR_14_1000 | 1000 | 101.4 |
M_WR_14_2000 | 1000 | 102.1 |
M_WR_14_3000 | 1000 | 100.0 |
MH_WC_7_1000 | 1000 | 94.6 |
MH_WC_7_2000 | 1000 | 94.4 |
MH_WC_7_3000 | 1000 | 94.3 |
MH_WC_11_1000 | 1000 | 81.8 |
MH_WC_15.5_1000 | 1000 | 76.8 |
MH_WI_14_1000 | 1000 | 75.4 |
MH_WR_14_1000 | 1000 | 86.1 |
Test | Number of Waves | Seaside CRed (%) | Seaside CRed (%) |
---|---|---|---|
M_WC_7 vs. MH_WC_7 | 1000 | −2.7 | 2.9 |
1000 | 2.8 | 9.0 | |
1000 | 4.3 | 10.6 | |
M_WC_11 vs. MH_WC_11 | 1000 | −9.1 | 16.7 |
M_WC_15.5 vs. MH_WC_15.5 | 1000 | −0.6 | 27.5 |
M_WI_14 vs. MH_WI_14 | 1000 | −1.4 | 29.8 |
M_WR_14 vs. MH_WR_14 | 1000 | 3.6 | 22.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chambel, J.; Fazeres-Ferradosa, T.; Welzel, M.; Taveira-Pinto, F.; Lomónaco, P. Comparative Analysis of Scour in Riprap-Protected Monopiles and Hybrid Foundations. J. Mar. Sci. Eng. 2025, 13, 1639. https://doi.org/10.3390/jmse13091639
Chambel J, Fazeres-Ferradosa T, Welzel M, Taveira-Pinto F, Lomónaco P. Comparative Analysis of Scour in Riprap-Protected Monopiles and Hybrid Foundations. Journal of Marine Science and Engineering. 2025; 13(9):1639. https://doi.org/10.3390/jmse13091639
Chicago/Turabian StyleChambel, João, Tiago Fazeres-Ferradosa, Mario Welzel, Francisco Taveira-Pinto, and Pedro Lomónaco. 2025. "Comparative Analysis of Scour in Riprap-Protected Monopiles and Hybrid Foundations" Journal of Marine Science and Engineering 13, no. 9: 1639. https://doi.org/10.3390/jmse13091639
APA StyleChambel, J., Fazeres-Ferradosa, T., Welzel, M., Taveira-Pinto, F., & Lomónaco, P. (2025). Comparative Analysis of Scour in Riprap-Protected Monopiles and Hybrid Foundations. Journal of Marine Science and Engineering, 13(9), 1639. https://doi.org/10.3390/jmse13091639