Perspectives for Exploitation of Sabella spallanzanii’s Biomass as a New Integrated Multi-Trophic Aquaculture (IMTA) By-Product: Feeding Trial on Amphiprion ocellaris Using Sabella Meal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Activities
2.2. Biochemical Analysis
2.3. Feed Formulation
2.4. Feeding Experiment
- Survival rate (%) = (final number of fish/initial number of fish) × 100;
- Weight gain (g) = final individual weight/initial individual weight;
- Weight gain (%) = (weight gain/initial individual weight) × 100;
- Specific growth rate (%) = [(ln final weight − ln initial weight)/feeding days] × 100;
- Feed conversion ratio = total weight feed given/weight gain/feeding days.
3. Results
3.1. Biochemical Analysis
3.2. Experimental Feed Composition
3.3. Laboratory Experiment
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2020; FAO: Rome, Italy, 2020; ISBN 978-92-5-132692-3. [Google Scholar]
- Kalantzi, I.; Karakassis, I. Benthic Impacts of Fish Farming: Meta-Analysis of Community and Geochemical Data. Mar. Pollut. Bull. 2006, 52, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Read, P.; Fernandes, T. Management of Environmental Impacts of Marine Aquaculture in Europe. Aquaculture 2003, 226, 139–163. [Google Scholar] [CrossRef]
- Sarà, G.; Scilipoti, D.; Mazzola, A.; Modica, A. Effects of Fish Farming Waste to Sedimentary and Particulate Organic Matter in a Southern Mediterranean Area (Gulf of Castellammare, Sicily): A Multiple Stable Isotope Study (Δ13C and Δ15N). Aquaculture 2004, 234, 199–213. [Google Scholar] [CrossRef]
- Sarà, G. A Meta-Analysis on the Ecological Effects of Aquaculture on the Water Column: Dissolved Nutrients. Mar. Environ. Res. 2007, 63, 390–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, Y. Resources for Fish Feed in Future Mariculture. Aquac. Environ. Interact. 2011, 1, 187–200. [Google Scholar] [CrossRef] [Green Version]
- Olsen, R.L.; Hasan, M.R. A Limited Supply of Fishmeal: Impact on Future Increases in Global Aquaculture Production. Trends Food Sci. Technol. 2012, 27, 120–128. [Google Scholar] [CrossRef]
- Belghit, I.; Liland, N.S.; Gjesdal, P.; Biancarosa, I.; Menchetti, E.; Li, Y.; Waagbø, R.; Krogdahl, Å.; Lock, E.J. Black Soldier Fly Larvae Meal Can Replace Fish Meal in Diets of Sea-Water Phase Atlantic Salmon (Salmo salar). Aquaculture 2019, 503, 609–619. [Google Scholar] [CrossRef]
- Chopin, T. Aquaculture, Integrated Multi-Trophic (IMTA). In Sustainable Food Production; Springer: New York, NY, USA, 2013; pp. 184–205. [Google Scholar]
- Chatzivasileiou, D.; Dimitriou, P.D.; Theodorou, J.; Kalantzi, I.; Magiopoulos, I.; Papageorgiou, N.; Pitta, P.; Tsapakis, M.; Karakassis, I. An IMTA in Greece: Co-Culture of Fish, Bivalves, and Holothurians. J. Mar. Sci. Eng. 2022, 10, 776. [Google Scholar] [CrossRef]
- Giangrande, A.; Pierri, C.; Arduini, D.; Borghese, J.; Licciano, M.; Trani, R.; Corriero, G.; Basile, G.; Cecere, E.; Petrocelli, A.; et al. An Innovative IMTA System: Polychaetes, Sponges and Macroalgae Co-Cultured in a Southern Italian In-Shore Mariculture Plant (Ionian Sea). J. Mar. Sci. Eng. 2020, 8, 733. [Google Scholar] [CrossRef]
- Pierri, C.; Longo, C.; Giangrande, A. Variability of Fouling Communities in the Mar Piccolo of Taranto (Northern Ionian Sea, Mediterranean Sea). J. Mar. Biol. Assoc. U. K. 2010, 90, 159–167. [Google Scholar] [CrossRef]
- Pierri, C.; Colangelo, P.; del Pasqua, M.; Longo, C.; Giangrande, A. Consequences of the Experimental Removal of Sabella spallanzanii (Gmelin, 1791) from the Fouling Assemblage of a Mediterranean Harbour. Mediterr. Mar. Sci. 2019, 20, 476–486. [Google Scholar] [CrossRef]
- Licciano, M.; Stabili, L.; Giangrande, A. Clearance Rates of Sabella spallanzanii and Branchiomma luctuosum (Annelida: Polychaeta) on a Pure Culture of Vibrio alginolyticus. Water Res. 2005, 39, 4375–4384. [Google Scholar] [CrossRef] [PubMed]
- Stabili, L.; Licciano, M.; Giangrande, A.; Fanelli, G.; Cavallo, R.A. Sabella spallanzanii Filter-Feeding on Bacterial Community: Ecological Implications and Applications. Mar. Environ. Res. 2006, 61, 74–92. [Google Scholar] [CrossRef] [PubMed]
- Stabili, L.; Schirosi, R.; Licciano, M.; Mola, E.; Giangrande, A. Bioremediation of Bacteria in Aquaculture Waste Using the Polychaete Sabella spallanzanii. N. Biotechnol. 2010, 27, 774–781. [Google Scholar] [CrossRef]
- Cavallo, D.; Pusceddu, A.; Danovaro, R.; Giangrande, A. Particulate Organic Matter Uptake Rates of Two Benthic Filter-Feeders (Sabella spallanzanii and Branchiomma luctuosum) Candidates for the Clarification of Aquaculture Wastewaters. Mar. Pollut. Bull. 2007, 54, 622–625. [Google Scholar] [CrossRef]
- Arduini, D.; Borghese, J.; Gravina, M.F.; Trani, R.; Longo, C.; Pierri, C.; Giangrande, A. Biofouling Role in Mariculture Environment Restoration: An Example in the Mar Grande of Taranto (Mediterranean Sea). Front. Mar. Sci. 2022, 9, 842616. [Google Scholar] [CrossRef]
- Stabili, L.; Sicuro, B.; Daprà, F.; Gai, F.; Abete, C.; Dibenedetto, A.; Pastore, C.; Schirosi, R.; Giangrande, A. The Biochemistry of Sabella spallanzanii (Annelida: Polychaeta): A Potential Resource for the Fish Feed Industry. J. World Aquac. Soc. 2013, 44, 384–395. [Google Scholar] [CrossRef]
- Stabili, L.; Cecere, E.; Licciano, M.; Petrocelli, A.; Sicuro, B.; Giangrande, A. Integrated Multitrophic Aquaculture By-Products with Added Value: The Polychaete Sabella spallanzanii and the Seaweed Chaetomorpha linum as Potential Dietary Ingredients. Mar. Drugs 2019, 17, 677. [Google Scholar] [CrossRef] [Green Version]
- Slattery, M.; McClintock, J.B. Population Structure and Feeding Deterrence in Three Shallow-Water Antarctic Soft Corals. Mar. Biol. 1995, 122, 461–470. [Google Scholar] [CrossRef]
- Barnes, H.; Blackstock, J. Estimation of Lipids in Marine Animals and Tissues: Detailed Investigation of the Sulphophosphovanilun Method for ‘Total’ Lipids. J. Exp. Mar. Biol. Ecol. 1973, 12, 103–118. [Google Scholar] [CrossRef]
- Rossi, S.; Sabatés, A.; Latasa, M.; Reyes, E. Lipid Biomarkers and Trophic Linkages between Phytoplankton, Zooplankton and Anchovy (Engraulis encrasicolus) Larvae in the NW Mediterranean. J. Plankton Res. 2006, 28, 551–562. [Google Scholar] [CrossRef] [Green Version]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for the Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Southgate, D.A.T.; Durnin, J.V.G.A. Calorie Conversion Factors. An Experimental Reassessment of the Factors Used in the Calculation of the Energy Value of Human Diets. Br. J. Nutr. 1970, 24, 517–535. [Google Scholar] [CrossRef] [PubMed]
- Caroppo, C.; Pagliara, P. Microalgae: A Promising Future. Microorganisms 2022, 10, 1488. [Google Scholar] [CrossRef]
- Sarma, N. Can Garlic (Allium sativum) Be Used as a Meat Preservative? Trans. Kans. Acad. Sci. 2004, 107, 148–154. [Google Scholar] [CrossRef]
- Giangrande, A.; Licciano, M.; del Pasqua, M.; Fanizzi, F.P.; Migoni, D.; Stabili, L. Heavy Metals in Five Sabellidae Species (Annelida, Polychaeta): Ecological Implications. Environ. Sci. Pollut. Res. 2017, 24, 3759–3768. [Google Scholar] [CrossRef]
- Wabnitz, C.; Taylor, M.; Green, E.; Razak, T. From Ocean to Aquarium: The Global Trade in Marine Ornamental Species; UNEP/Earthprint: Cambridge, UK, 2003. [Google Scholar]
- Militz, T.A.; Foale, S. The “Nemo Effect”: Perception and Reality of Finding Nemo’s Impact on Marine Aquarium Fisheries. Fish Fish. 2017, 18, 596–606. [Google Scholar] [CrossRef]
- Díaz-Jiménez, L.; Hernández-Vergara, M.P.; Pérez-Rostro, C.I. Protein/Lipid Ratio for the Growth of Juvenile Clownfish, Amphiprion ocellaris. J. World Aquac Soc. 2020, 51, 666–678. [Google Scholar] [CrossRef]
- Johnston, G.; Kaiser, H.; Hecht, T.; Oellermann, L. Effect of Ration Size and Feeding Frequency on Growth, Size Distribution and Survival of Juvenile Clownfish, Amphiprion Percula. J. Appl. Ichthyol. 2003, 19, 40–43. [Google Scholar] [CrossRef]
- Pan, Y.L.; Rodrigues, M.J.; Pereira, C.G.; Engrola, S.; Colen, R.; Mansinhos, I.; Romano, A.; Andrade, P.B.; Fernandes, F.; Custódio, L. Exploring the Biotechnological Value of Marine Invertebrates: A Closer Look at the Biochemical and Antioxidant Properties of Sabella spallanzanii and Microcosmus squamiger. Animals 2021, 11, 3557. [Google Scholar] [CrossRef] [PubMed]
- Craig, S.R.; Helfrich, L.A.; Kuhn, D.; Schwarz, M.H. Understanding Fish Nutrition, Feeds, and Feeding. Va. Coop. Ext. 2017. Available online: https://vtechworks.lib.vt.edu/bitstream/handle/10919/80712/FST-269.pdf (accessed on 22 October 2022).
- Aursand, M.; Bleivik, B.; Rainuzzo, J.R.; Leif, J.; Mohr, V. Lipid Distribution and Composition of Commercially Farmed Atlantic Salmon (Salmosalar). J. Sci. Food Agric. 1994, 64, 239–248. [Google Scholar] [CrossRef]
- Hamilton, M.C.; Hites, R.A.; Schwager, S.J.; Foran, J.A.; Knuth, B.A.; Carpenter, D.O. Lipid Composition and Contaminants in Farmed and Wild Salmon. Environ. Sci. Technol. 2005, 39, 8622–8629. [Google Scholar] [CrossRef] [PubMed]
- Tarricone, S.; Caputi Jambrenghi, A.; Cagnetta, P.; Ragni, M. Wild and Farmed Sea Bass (Dicentrarchus labrax): Comparison of Biometry Traits, Chemical and Fatty Acid Composition of Fillets. Fishes 2022, 7, 45. [Google Scholar] [CrossRef]
- Handå, A.; Min, H.; Wang, X.; Broch, O.J.; Reitan, K.I.; Reinertsen, H.; Olsen, Y. Incorporation of Fish Feed and Growth of Blue Mussels (Mytilus edulis) in Close Proximity to Salmon (Salmo salar) Aquaculture: Implications for Integrated Multi-Trophic Aquaculture in Norwegian Coastal Waters. Aquaculture 2012, 356–357, 328–341. [Google Scholar] [CrossRef]
- Giangrande, A.; Licciano, M.; Pagliara, P.; Gambi, M.C. Gametogenesis and Larval Development in Sabella spallanzanii (Polychaeta: Sabellidae) from the Mediterranean Sea. Mar. Biol. 2000, 136, 847–861. [Google Scholar] [CrossRef]
- Li, P.; Mai, K.; Trushenski, J.; Wu, G. New Developments in Fish Amino Acid Nutrition: Towards Functional and Environmentally Oriented Aquafeeds. Amino Acids 2009, 37, 43–53. [Google Scholar] [CrossRef]
- Ferrer Llagostera, P.; Kallas, Z.; Reig, L.; Amores de Gea, D. The Use of Insect Meal as a Sustainable Feeding Alternative in Aquaculture: Current Situation, Spanish Consumers’ Perceptions and Willingness to Pay. J. Clean Prod. 2019, 229, 10–21. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; El-Sayed, G.O.; Monier, M.N.; Shady, S.H. Dietary EDTA Supplementation Improved Growth Performance, Biochemical Variables, Antioxidant Response, and Resistance of Nile tilapia, Oreochromis niloticus (L.) to Environmental Heavy Metals Exposure. Aquaculture 2017, 473, 478–486. [Google Scholar] [CrossRef]
- Sales, J.; Janssens, G.P.J. Nutrient Requirements of Ornamental Fish. Aquat. Living Resour. 2003, 16, 533–540. [Google Scholar] [CrossRef]
- Tocher, D.R.; Glencross, B.D. Lipids and Fatty Acids. In Dietary Nutrients, Additives, and Fish Health; Lee, C.S., Lim, C., Gatlin, D.M., III, Webster, C.D., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 47–94. [Google Scholar]
- Khoo, M.L.; Das, S.K.; Ghaffar, M.A. Growth Pattern, Diet and Reproductive Biology of the Clownfish Amphiprion Ocellaris in Waters of Pulau Tioman, Malaysia. Egypt. J. Aquat. Res. 2018, 44, 233–239. [Google Scholar] [CrossRef]
- Galetto, M.J.; Bellwood, D.R. Digestion of Algae by Stegastes Nigricans and Amphiprion Akindynos (Pisces: Pomacentridae), with an Evaluation of Methods Used in Digestibility Studies. J. Fish Biol. 1994, 44, 415–428. [Google Scholar] [CrossRef]
- Letourneur, Y.; Galzin, R.; Harmelin-Vivien, M. Temporal Variations in the Diet of the Damselfish Stegastes Nigricans (Lacepède) on a Réunion Fringing Reef. J. Exp. Mar. Biol. Ecol. 1997, 217, 1–18. [Google Scholar] [CrossRef]
Farmed S. spallanzanii | Wild S. spallanzanii * | Wild S. spallanzanii ** | |
---|---|---|---|
Proteins (% AFDW) | 51.65 ± 5.06 | 54.80 ± 5.80 | 47.20 ± 0.30 |
Lipids (% AFDW) | 14.42 ± 3.91 | 8.00 | 11.70 ± 1.70 |
Carbohydrates (% AFDW) | 18.44 ± 2.15 | Not available | 41.10 ± 1.40 |
Ash (% DW) | 15.20 ± 5.33 | 30.00 | 53.10 ± 4.80 |
Sabella Meal | Spirulina | Garlic | Control Feed | Experimental Feed | |
---|---|---|---|---|---|
Proteins % | 51.65 | 60.00 | 16.55 | 47.00 | 47.03 |
Lipids % | 14.42 | 1.00 | 0.73 | 7.00 | 7.56 |
Carbohydrates (fibres) % | 18.44 | 19.80 (7.00) | 72.73 (9.00) | 27.00 (4.00) | 25.65 (3.10) |
Ash % | 15.20 | 6.23 | 3.54 | 9.00 | 9.76 |
Moisture % | - | 12.97 | 6.45 | 10.00 | 10.00 |
Energy (kJ/g) | 17.06 | 13.68 | 14.50 | 14.82 | 14.82 |
Survival Rate (%) | Initial Weight (g) | Final Weight (g) | Weight Gain (g) | Weight Gain (%) | Specific Growth Rate (% per Day) | Feed Conversion Ratio (g/g per Day) | |
---|---|---|---|---|---|---|---|
Control | 88.89 ± 19.24 | 0.80 ± 0.30 | 0.92 ± 0.29 | 0.11 ± 0.01 | 14.58 ± 5.92 | 0.19 ± 0.07 | 23.98 ± 2.36 |
Treatment | 100.00 ± 0.00 | 0.86 ± 0.27 | 0.99 ± 0.31 | 0.13 ± 0.04 | 12.71 ± 3.23 | 0.17 ± 0.02 | 21.25 ± 5.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arduini, D.; Calabrese, C.; Borghese, J.; De Domenico, S.; Putignano, M.; Toso, A.; Gravili, C.; Giangrande, A. Perspectives for Exploitation of Sabella spallanzanii’s Biomass as a New Integrated Multi-Trophic Aquaculture (IMTA) By-Product: Feeding Trial on Amphiprion ocellaris Using Sabella Meal. J. Mar. Sci. Eng. 2023, 11, 123. https://doi.org/10.3390/jmse11010123
Arduini D, Calabrese C, Borghese J, De Domenico S, Putignano M, Toso A, Gravili C, Giangrande A. Perspectives for Exploitation of Sabella spallanzanii’s Biomass as a New Integrated Multi-Trophic Aquaculture (IMTA) By-Product: Feeding Trial on Amphiprion ocellaris Using Sabella Meal. Journal of Marine Science and Engineering. 2023; 11(1):123. https://doi.org/10.3390/jmse11010123
Chicago/Turabian StyleArduini, Daniele, Claudio Calabrese, Jacopo Borghese, Stefania De Domenico, Matteo Putignano, Andrea Toso, Cinzia Gravili, and Adriana Giangrande. 2023. "Perspectives for Exploitation of Sabella spallanzanii’s Biomass as a New Integrated Multi-Trophic Aquaculture (IMTA) By-Product: Feeding Trial on Amphiprion ocellaris Using Sabella Meal" Journal of Marine Science and Engineering 11, no. 1: 123. https://doi.org/10.3390/jmse11010123
APA StyleArduini, D., Calabrese, C., Borghese, J., De Domenico, S., Putignano, M., Toso, A., Gravili, C., & Giangrande, A. (2023). Perspectives for Exploitation of Sabella spallanzanii’s Biomass as a New Integrated Multi-Trophic Aquaculture (IMTA) By-Product: Feeding Trial on Amphiprion ocellaris Using Sabella Meal. Journal of Marine Science and Engineering, 11(1), 123. https://doi.org/10.3390/jmse11010123