Organic Geochemical Signatures of the Upper Miocene (Tortonian—Messinian) Sedimentary Succession Onshore Crete Island, Greece: Implications for Hydrocarbon Prospectivity
Abstract
:1. Introduction
2. Geological Setting
3. Stratigraphic and Environmental Constraints
4. Material and Methods
5. Results
6. Discussion
6.1. Amount, Type and Maturation Level of the Organic Material
6.2. Exploration Opportunities
6.3. Eastern Mediterranean Petroleum Plays Related to the Messinian Evaporites
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bruneton, A.; Konofagos, E.; Foscolos, A. Economic and geopolitical importance of Eastern Mediterranean gas fields for Greece and the E. U. Emphasis on the probable natural gas deposits occurring in the Libyan Sea within the Exclusive Economic Zone of Greece. Miner. Wealth 2011, 160, 7–30. [Google Scholar]
- Bertoni, C.; Cartwright, J.A. Major erosion at the end of the Messinian Salinity Crisis: Evidence from the Levant Basin, Eastern Mediterranean. Basin Res. 2007, 19, 1–18. [Google Scholar] [CrossRef]
- Bou Daher, S.; Ducros, M.; Michel, P.; Hawie, N.; Nader, F.H.; Littke, R. 3D thermal history and maturity modelling of the Levant Basin and its eastern margin, offshore–onshore Lebanon. Arab. J. Geosci. 2016, 9, 440. [Google Scholar] [CrossRef]
- Grohmann, S.; Romero-Sarmiento, M.-F.; Nader, F.H.; Baudin, F.; Littke, R. Geochemical and petrographic investigation of Triassic and Late Miocene organic-rich intervals from onshore Cyprus, Eastern Mediterranean. Int. J. Coal Geol. 2019, 209, 94–116. [Google Scholar] [CrossRef]
- Esestime, P.; Hewitt, A.; Hodgson, N. Zohr—A newborn carbonate play in the Levantine Basin, East-Mediterranean. First Break 2016, 34, 87–93. [Google Scholar] [CrossRef]
- Warren, J.K. Evaporites: Sediments, Resources and Hydrocarbons; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Morley, C.K.; King, R.; Hillis, R.; Tingay, M.; Backe, G. Deepwater fold and thrust belt classification, tectonics, structure and hydrocarbon prospectivity: A review. Earth-Sci. Rev. 2011, 104, 41–91. [Google Scholar] [CrossRef]
- Basso, M.; Belila, A.M.P.; Chinelatto, G.F.; Souza, J.P.d.P.; Vidal, A.C. Sedimentology and petrophysical analysis of pre-salt lacustrine carbonate reservoir from the Santos Basin, southeast Brazil. Int. J. Earth Sci. 2021, 110, 2573–2595. [Google Scholar] [CrossRef]
- De Freitas, V.A.; Vital, J.C.d.S.; Rodrigues, B.R.; Rodrigues, R. Source rock potential, main depocenters, and CO2 occurrence in the pre-salt section of Santos Basin, southeast Brazil. J. S. Am. Earth Sci. 2022, 115, 103760. [Google Scholar] [CrossRef]
- Gardosh, M.A.; Druckman, Y. Seismic stratigraphy, structure and tectonic evolution of the Levantine Basin, offshore Israel. Geol. Soc. Lond. Spec. Publ. 2006, 260, 201–227. [Google Scholar] [CrossRef]
- Roberts, G.; Peace, D. Hydrocarbon plays and prospectivity of the Levantine Basin, offshore Lebanon and Syria from modern seismic data. GeoArabia 2007, 12, 99–124. [Google Scholar] [CrossRef]
- Semb, P.H. Possible seismic hydrocarbon indicators in offshore Cyprus and Lebanon. GeoArabia 2009, 14, 49–66. [Google Scholar] [CrossRef]
- Elia, C.; Konstantopoulos, P.; Maravelis, A.G.; Zelilidis, A. The tectono-stratigraphic evolution of SE Mediterranean with emphasis on Herodotus Basin prospectivity for the development of hydrocarbon fields. Bull. Geol. Soc. Greece 2013, 47, 1970–1979. [Google Scholar] [CrossRef]
- Maravelis, A.G.; Koukounya, A.; Tserolas, P.; Pasadakis, N.; Zelilidis, A. Geochemistry of Upper Miocene–Lower Pliocene source rocks in the Hellenic Fold and Thrust Belt, Zakynthos Island, Ionian Sea, western Greece. Mar. Pet. Geol. 2015, 66, 217–230. [Google Scholar] [CrossRef]
- Ford, J. Eastern Mediterranean Hydrocarbon Hotspot. NVentures. 2017. Available online: https://www.geoexpro.com/articles/2018/07/hydrocarbon-developments-in-the-eastern-mediterranean (accessed on 24 July 2022).
- Montadert, L.; Nikolaides, S. The geological structure of the Eratosthenes continental block and its margins with the Levantine and Herodotus Basins (Eastern Mediterranean) from new seismic reflection data. In Proceedings of the AAPG European Region Conference, Athens, Greece, 18–21 November 2007. [Google Scholar]
- Krois, P.; Hannke, K.; Novotny, B.; Bayoumi, T.; Hussein, H.; Tari, G. The emerging deepwater province of Northwest Egypt. In Proceedings of the AAPG International Conference and Exhibition, Rio de Janeiro, Brazil, 15–18 November 2009. [Google Scholar]
- Panagiotopoulos, I.P.; Paraschos, F.; Rousakis, G.; Hatzianestis, I.; Parinos, C.; Morfis, I.; Gogou, A. Assessment of the eruptive activity and identification of the mud breccia’s source in the Olimpi mud volcano field, Eastern Mediterranean. Deep Sea Res. Part II Top. Stud. Oceanogr. 2020, 171, 104701. [Google Scholar] [CrossRef]
- Maravelis, A.; Manutsoglu, E.; Konstantopoulos, P.; Pantopoulos, G.; Makrodimitras, G.; Zoumpouli, E.; Zelilidis, A. Hydrocarbon Plays and Prospectivity of the Mediterranean Ridge. Energy Sources Part A Recovery Util. Environ. Eff. 2015, 37, 347–355. [Google Scholar] [CrossRef]
- Bertoni, C.; Kirkham, C.; Cartwright, J.; Hodgson, N.; Rodriguez, K. Seismic indicators of focused fluid flow and cross-evaporitic seepage in the Eastern Mediterranean. Mar. Pet. Geol. 2017, 88, 472–488. [Google Scholar] [CrossRef]
- Zelilidis, A.; Piper, D.J.W.; Vakalas, I.; Avramidis, P.; Getsos, K. Oil and gas plays in Albania: Do equivalent plays exist in Greece? J. Pet. Geol. 2003, 26, 29–48. [Google Scholar] [CrossRef]
- Karakitsios, V. Western Greece and Ionian petroleum systems. AAPG Bull. 2013, 97, 1567–1595. [Google Scholar] [CrossRef]
- Maravelis, A.G.; Makrodimitras, G.; Zelilidis, A. Hydrocarbon prospectivity in western Greece. Oil Gas Eur. Mag. 2012, 38, 84–89. [Google Scholar]
- Makri, V.I.; Panagopoulos, G.; Nikolaou, K.; Bellas, S.; Pasadakis, N. Evaluation of Gas Generation Potential Using Thermal Maturity Modelling—The Katakolo Case: A Probable Pathway to Energy Transition. Mater. Proc. 2021, 5, 70. [Google Scholar] [CrossRef]
- Kontakiotis, G.; Karakitsios, V.; Maravelis, A.G.; Zarkogiannis, S.D.; Agiadi, K.; Antonarakou, A.; Pasadakis, N.; Zelilidis, A. Integrated isotopic and organic geochemical constraints on the depositional controls and source rock quality of the Neogene Kalamaki sedimentary successions (Zakynthos Island, Ionian Sea). Mediterr. Geosci. Rev. 2021, 3, 193–217. [Google Scholar] [CrossRef]
- Mavromatidis, A. Review of Hydrocarbon Prospectivity in the Ionian Basin, Western Greece. Energy Sources Part A Recovery Util. Environ. Eff. 2009, 31, 619–632. [Google Scholar] [CrossRef]
- Pyliotis, I.; Zelilidis, A.; Pasadakis, N.; Panagopoulos, G.; Manoutsoglou, E. Source rock potential of the late Miocene Metochia formation of Gavdos island, Greece. Bull. Geol. Soc. Greece 2013, 43, 871–879. [Google Scholar] [CrossRef]
- Pasadakis, N.; Dagounaki, V.; Chamilaki, E.; Vafidis, A.; Zelilidis, A.; Piliotis, I.; Panagopoulos, G.; Manoutsoglou, E. Organic geochemical evaluation of Neogene formations in Messara (Heraklion, Crete) basin as source rocks of biogenetic methane. Miner. Wealth 2012, 166, 8–26. [Google Scholar]
- Maravelis, A.G.; Panagopoulos, G.; Piliotis, J.; Pasadakis, N.; Manoutsoglou, E.; Zelilidis, A. Pre-Messinian (sub-salt) source-rock potential on back-stop basins of the Hellenic Trench System (Messara Basin, Central Crete, Greece). Oil Gas Sci. Technol. Rev. IFP Energ. Nouv. 2016, 71, 1–19. [Google Scholar] [CrossRef]
- Kontakiotis, G.; Karakitsios, V.; Cornée, J.-J.; Moissette, P.; Zarkogiannis, S.D.; Pasadakis, N.; Koskeridou, E.; Manoutsoglou, E.; Drinia, H.; Antonarakou, A. Preliminary results based on geochemical sedimentary constraints on the hydrocarbon potential and depositional environment of a Messinian sub-salt mixed siliciclastic-carbonate succession onshore Crete (Plouti section, eastern Mediterranean). Mediterr. Geosci. Rev. 2020, 2, 247–265. [Google Scholar] [CrossRef]
- Panagopoulos, G.; Vafidis, A.; Soupios, P.; Manoutsoglou, E. A study on the Gas-bearing Miocene Sediments of MESSARA Basin in Crete (Greece) by Using Seismic Reflection, Geochemical and Petrophysical Data. Arab. J. Sci. Eng. 2022, 47, 7449–7465. [Google Scholar] [CrossRef]
- Safaei-Farouji, M.; Kamali, M.; Hakimi, M.H. Hydrocarbon source rocks in Kazhdumi and Pabdeh formations—a quick outlook in Gachsaran oilfield, SW Iran. J. Pet. Explor. Prod. Technol. 2021, 12, 1489–1507. [Google Scholar] [CrossRef]
- Ahmed, A.; Jahandad, S.; Hakimi, M.H.; Gharib, A.F.; Mehmood, S.; Kahal, A.Y.; Khan, M.A.; Munir, M.N.; Lashin, A. Organic matter characteristics and conventional oil potentials of shales from the Early Jurassic Datta Formation in the Upper Indus Basin, Northern Pakistan. J. Asian Earth Sci. 2022, 224, 104975. [Google Scholar] [CrossRef]
- Chan, S.A.; Hassan, A.M.; Usman, M.; Humphrey, J.D.; Alzayer, Y.; Duque, F. Total organic carbon (TOC) quantification using artificial neural networks: Improved prediction by leveraging XRF data. J. Pet. Sci. Eng. 2022, 208, 109302. [Google Scholar] [CrossRef]
- Jacobshagen, V. Geologie von Griechenland; Borntraeger: Berlin-Stuttgart, Germany, 1986; pp. 257–269. [Google Scholar]
- Faccenna, C.; Jolivet, L.; Piromallo, C.; Morelli, A. Subduction and the depth of convection in the Mediterranean mantle. J. Geophys. Res. Solid Earth 2003, 108, 2099. [Google Scholar] [CrossRef]
- Van Hinsbergen, D.J.J.; Kouwenhoven, T.J.; van der Zwaan, G.J. Paleobathymetry in the backstripping procedure: Correction for oxygenation effects on depth estimates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 221, 245–265. [Google Scholar] [CrossRef]
- Rögl, F.; Steininger, F.-F. Neogene Paratethys, Mediterranean and Indo-Pacific Seaways; J. Wiley & Sons: London, UK, 1984; pp. 171–200. [Google Scholar]
- Kokkalas, S.; Xypolias, P.; Koukouvelas, I.; Doutsos, T. Postcollisional contractional and extensional deformation in the Aegean region. In Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia; Dilek, Y., Pavlides, S., Eds.; Geological Society of America: Boulder, CO, USA, 2006; Volume 409, pp. 97–123. [Google Scholar]
- Kokkalas, S.; Doutsos, T. Kinematics and strain partitioning in the southeast Hellenides (Greece). Geol. J. 2004, 39, 121–140. [Google Scholar] [CrossRef]
- Skourlis, K.; Doutsos, T. The Pindos Fold-and-thrust belt (Greece): Inversion kinematics of a passive continental margin. Int. J. Earth Sci. 2003, 92, 891–903. [Google Scholar] [CrossRef]
- Robertson, A.H.F.; Clift, P.D.; Degnan, P.J.; Jones, G. Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1991, 87, 289–343. [Google Scholar] [CrossRef]
- Doutsos, T.; Koukouvelas, I.K.; Xypolias, P. A new orogenic model for the External Hellenides. Geol. Soc. Lond. Spec. Publ. 2006, 260, 507. [Google Scholar] [CrossRef]
- Ten Veen, J.H.; Postma, G. Neogene tectonics and basin fill patterns in the Hellenic outer-arc (Crete, Greece). Basin Res. 1999, 11, 223–241. [Google Scholar] [CrossRef]
- Caputo, R.; Catalano, S.; Monaco, C.; Romagnoli, G.; Tortorici, G.; Tortorici, L. Active faulting on the island of Crete (Greece). Geophys. J. Int. 2010, 183, 111–126. [Google Scholar] [CrossRef]
- Van Hinsbergen, D.J.J.; Meulenkamp, J.E. Neogene supradetachment basin development on Crete (Greece) during exhumation of the South Aegean core complex. Basin Res. 2006, 18, 103–124. [Google Scholar] [CrossRef]
- Papanikolaou, D.; Vassilakis, E. Thrust faults and extensional detachment faults in Cretan tectono-stratigraphy: Implications for Middle Miocene extension. Tectonophysics 2010, 488, 233–247. [Google Scholar] [CrossRef]
- Zachariasse, W.J.; van Hinsbergen, D.J.J.; Fortuin, A.R. Formation and fragmentation of a late Miocene supradetachment basin in central Crete: Implications for exhumation mechanisms of high-pressure rocks in the Aegean forearc. Basin Res. 2011, 23, 678–701. [Google Scholar] [CrossRef]
- Xypolias, P.; Dörr, W.; Zulauf, G. Late Carboniferous plutonism within the pre-Alpine basement of the External Hellenides (Kithira, Greece): Evidence from U–Pb zircon dating. J. Geol. Soc. 2006, 163, 539. [Google Scholar] [CrossRef]
- Zulauf, G.; Dörr, W.; Fisher-Spurlock, S.C.; Gerdes, A.; Chatzaras, V.; Xypolias, P. Closure of the Paleotethys in the External Hellenides: Constraints from U–Pb ages of magmatic and detrital zircons (Crete). Gondwana Res. 2015, 28, 642–667. [Google Scholar] [CrossRef]
- Meulenkamp, J.E.; Wortel, M.J.R.; van Wamel, W.A.; Spakman, W.; Hoogerduyn Strating, E. On the Hellenic subduction zone and the geodynamic evolution of Crete since the late Middle Miocene. Tectonophysics 1988, 146, 203–215. [Google Scholar] [CrossRef]
- Fassoulas, C. The tectonic development of a Neogene basin at the leading edge of the active European margin: The Heraklion basin, Crete, Greece. J. Geodyn. 2001, 31, 49–70. [Google Scholar] [CrossRef]
- Meulenkamp, J.E.; Sissingh, W. Tertiary palaeogeography and tectonostratigraphic evolution of the Northern and Southern Peri-Tethys platforms and the intermediate domains of the African–Eurasian convergent plate boundary zone. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 196, 209–228. [Google Scholar] [CrossRef]
- Chatzaras, V.; Xypolias, P.; Doutsos, T. Exhumation of high-pressure rocks under continuous compression: A working hypothesis for the southern Hellenides (central Crete, Greece). Geol. Mag. 2006, 143, 859–876. [Google Scholar] [CrossRef]
- Chatzaras, V.; Dörr, W.; Finger, F.; Xypolias, P.; Zulauf, G. U–Pb single zircon ages and geochemistry of metagranitoid rocks in the Cycladic Blueschists (Evia Island): Implications for the Triassic tectonic setting of Greece. Tectonophysics 2013, 595–596, 125–139. [Google Scholar] [CrossRef]
- Tortorici, L.; Caputo, R.; Monaco, C. Late Neogene to Quaternary contractional structures in Crete (Greece). Tectonophysics 2010, 483, 203–213. [Google Scholar] [CrossRef]
- Vafidis, A.; Andronikidis, N.; Economou, N.; Panagopoulos, G.; Zelilidis, A.; Manoutsoglou, E. Reprocessing and interpretation of seismic reflection data at Messara Basin, Crete, Greece. J. Balk. Geophys. Soc. 2012, 15, 31–40. [Google Scholar]
- Meulenkamp, J.E.; Dermitzakis, M.; Georgiadou-Dikeoulia, E.; Jonkers, H.A.; Boger, H. Field Guide to the Neogene of Crete; University of Athens: Athens, Greece, 1979. [Google Scholar]
- Zelilidis, A.; Tserolas, P.; Chamilaki, E.; Pasadakis, N.; Kostopoulou, S.; Maravelis, A.G. Hydrocarbon prospectivity in the Hellenic trench system: Organic geochemistry and source rock potential of upper Miocene–lower Pliocene successions in the eastern Crete Island, Greece. Int. J. Earth Sci. 2016, 105, 1859–1878. [Google Scholar] [CrossRef]
- Moissette, P.; Cornée, J.J.; Antonarakou, A.; Kontakiotis, G.; Drinia, H.; Koskeridou, E.; Tsourou, T.; Agiadi, K.; Karakitsios, V. Palaeoenvironmental changes at the Tortonian/Messinian boundary: A deep-sea sedimentary record of the eastern Mediterranean Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 505, 217–233. [Google Scholar] [CrossRef]
- Kontakiotis, G.; Butiseacă, G.A.; Antonarakou, A.; Agiadi, K.; Zarkogiannis, S.D.; Krsnik, E.; Besiou, E.; Zachariasse, W.J.; Lourens, L.; Thivaiou, D.; et al. Hypersalinity accompanies tectonic restriction in the eastern Mediterranean prior to the Messinian Salinity Crisis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 592, 110903. [Google Scholar] [CrossRef]
- Zachariasse, W.J.; Kontakiotis, G.; Lourens, L.J.; Antonarakou, A. The Messinian of Agios Myron (Crete, Greece): A key to better understanding of diatomite formation on Gavdos (south of Crete). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 581, 110633. [Google Scholar] [CrossRef]
- Zachariasse, W.J.; van Hinsbergen, D.J.J.; Fortuin, A.R. Mass wasting and uplift on Crete and Karpathos during the early Pliocene related to initiation of south Aegean left-lateral, strike-slip tectonics. Geol. Soc. Am. Bull. 2008, 120, 976–993. [Google Scholar] [CrossRef]
- Cosentino, D.; Gliozzi, E.; Pipponzi, G. The late Messinian Lago-Mare episode in the Mediterranean Basin: Preliminary report on the occurrence of Paratethyan ostracod fauna from central Crete (Greece). Geobios 2007, 40, 339–349. [Google Scholar] [CrossRef]
- Espitalie, J.; Deroo, G.; Marquis, F. La pyrolyse Rock-Eval et ses applications. Troisième partie. Rev. Inst. Fr. Pét. 1986, 41, 73–89. [Google Scholar] [CrossRef]
- Lafargue, E.; Marquis, F.; Pillot, D. Rock-Eval 6 Applications in Hydrocarbon Exploration, Production, and Soil Contamination Studies. Oil Gas Sci. Technol. Rev. IFP Energ. Nouv. 1998, 53, 421–437. [Google Scholar] [CrossRef]
- Behar, F.; Beaumont, V.; Penteado, H.L.D.B. Technologie Rock-Eval 6: Performances et développements. Oil Gas Sci. Technol. Rev. IFP 2001, 56, 111–134. [Google Scholar] [CrossRef]
- Espitalié, J.; Laporte, J.L.; Madec, M.; Marquis, F.; Leplat, P.; Paulet, J.; Boutefeu, A. Méthode rapide de caractérisation des roches mères, de leur potentiel pétrolier et de leur degré d’évolution. Rev. L’institut Français Pétrole 1977, 32, 23–42. [Google Scholar] [CrossRef]
- Espitalie, J.; Marquis, F.; Sage, L.; Barsony, I. Géochimie organique du bassin de Paris. Rev. Inst. Fr. Pét. 1987, 42, 271–302. [Google Scholar] [CrossRef]
- Peters, K.E. Guidelines for evaluating petroleum source rock using programmed pyrolysis. Am. Assoc. Pet. Geol. Bull. 1986, 70, 318–329. [Google Scholar]
- Jarvie, D.M. Total organic carbon (TOC) analysis. In Treatise of Petroleum Geology: Handbook of Petroleum Geology, Source and Migration Processes and Evaluation Techniques; Merril, R.K., Ed.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1991; pp. 113–118. [Google Scholar]
- Bostick, N.H.; Daws, T.A. Relationships between data from Rock-Eval pyrolysis and proximate, ultimate, petrographic, and physical analyses of 142 diverse U.S. coal samples. Org. Geochem. 1994, 21, 35–49. [Google Scholar] [CrossRef]
- Peters, K.E.; Cassa, M.R. Applied source rock geochemistry. In The Petroleum System—From Source to Trap; Memoir 60; Magoon, L.B., Dow, W.G., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1994; pp. 93–120. [Google Scholar]
- Tissot, B.P.; Welte, D.H. Petroleum Formation and Occurrence, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Burwood, R.; De Witte, S.; Mycke, B.; Paulet, J. Petroleum geochemical characterization of the Lower Congo coastal basin Bucomazi Formation. In Petroleum Source Rocks; Katz, B.J., Ed.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 235–263. [Google Scholar]
- Dymann, T.S.; Palacas, J.G.; Tysdal, R.G.; Perry, W.J.; Pawlewicz, M.J. Source rock potential of Middle Cretaceous rocks in southwestern Montana. AAPG Bull. 1996, 80, 1177–1184. [Google Scholar]
- Dembicki, H., Jr. Three common source rock evaluation errors made by geologists during prospect or play appraisals. Am. Assoc. Pet. Geol. Bull. 2009, 93, 341–356. [Google Scholar] [CrossRef]
- Jackson, K.S.; Hawkins, P.J.; Bennett, A.J.R. Regional facies and geochemical evaluation of southern Denison Trough, Queensland. APPEA J. 1985, 20, 143–158. [Google Scholar] [CrossRef]
- Maravelis, A.G.; Makrodimitras, G.; Pasadakis, N.; Zelilidis, A. Stratigraphic evolution and source rock potential of a Lower Oligocene to Lower-Middle Miocene continental slope system, Hellenic Fold and Thrust Belt, Ionian Sea, northwest Greece. Geol. Mag. 2014, 151, 394–413. [Google Scholar] [CrossRef]
- Maravelis, A.G.; Boutelier, D.; Catuneanu, O.; Seymour, K.S.; Zelilidis, A. A review of tectonics and sedimentation in a forearc setting: Hellenic Thrace Basin, North Aegean Sea and Northern Greece. Tectonophysics 2017, 674, 1–19. [Google Scholar] [CrossRef]
- Hunt, J.M. (Ed.) Petroleum Geochemistry and Geology, 2nd ed.; W.H. Freeman and Company: New York, NY, USA, 1996. [Google Scholar]
- Katz, B.J. Limitations of ‘Rock-Eval’ pyrolysis for typing organic matter. Org. Geochem. 1983, 4, 195–199. [Google Scholar] [CrossRef]
- Peters, K.E.; Moldowan, J.M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1993. [Google Scholar]
- Catuneanu, O. Principles of Sequence Stratigraphy; Elsevier: Amsterdam, The Netherlands, 2006; p. 375. [Google Scholar]
- Vasiliev, I.; Karakitsios, V.; Bouloubassi, I.; Agiadi, K.; Kontakiotis, G.; Antonarakou, A.; Triantaphyllou, M.; Gogou, A.; Kafousia, N.; de Rafélis, M.; et al. Large Sea Surface Temperature, Salinity, and Productivity-Preservation Changes Preceding the Onset of the Messinian Salinity Crisis in the Eastern Mediterranean Sea. Paleoceanogr. Paleoclimatol. 2019, 34, 182–202. [Google Scholar] [CrossRef]
- Kontakiotis, G.; Moforis, L.; Karakitsios, V.; Antonarakou, A. Sedimentary Facies Analysis, Reservoir Characteristics and Paleogeography Significance of the Early Jurassic to Eocene Carbonates in Epirus (Ionian Zone, Western Greece). J. Mar. Sci. Eng. 2020, 8, 706. [Google Scholar] [CrossRef]
- Maravelis, A.; Zelilidis, A. Organic geochemical characteristics of the late Eocene–early Oligocene submarine fans and shelf deposits on Lemnos Island, NE Greece. J. Pet. Sci. Eng. 2010, 71, 160–168. [Google Scholar] [CrossRef]
- Mascle, J.; Le Quellec, P.; Leité, O.; Jongsma, D. Structural sketch of the Hellenic continental margin between the western Peloponnesus and eastern Crete. Geology 1982, 10, 113–116. [Google Scholar] [CrossRef]
- Nader, F.H. Insights into the petroleum prospectivity of Lebanon. In Petroleum Systems of the Tethyan Region; AAPG Special volumes memoir; Marlow, L., Kendall, C.C.G., Yose, L.A., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 2014; Volume 160, pp. 241–278. [Google Scholar]
- Nader, F.H.; Inati, L.; Ghalayini, R.; Hawie, N.; Bou Daher, S. Key geological characteristics of the Saida-Tyr Platform along the eastern margin of the Levant Basin, offshore Lebanon: Implications for hydrocarbon exploration. Oil Gas Sci. Technol. Rev. IFP Energ. Nouv. 2018, 73, 50. [Google Scholar] [CrossRef]
- Karakitsios, V.; Rigakis, N. Evolution and petroleum potential of Western Greece. J. Pet. Geol. 2007, 30, 197–218. [Google Scholar] [CrossRef]
- Roveri, M.; Flecker, R.; Krijgsman, W.; Lofi, J.; Lugli, S.; Manzi, V.; Sierro, F.J.; Bertini, A.; Camerlenghi, A.; De Lange, G.; et al. The Messinian Salinity Crisis: Past and future of a great challenge for marine sciences. Mar. Geol. 2014, 352, 25–58. [Google Scholar] [CrossRef]
- Roveri, M.; Gennari, R.; Lugli, S.; Manzi, V.; Minelli, N.; Reghizzi, M.; Riva, A.; Rossi, M.E.; Schreiber, B.C. The Messinian salinity crisis: Open problems and possible implications for Mediterranean petroleum systems. Pet. Geosci. 2016, 22, 283. [Google Scholar] [CrossRef]
- Iadanza, A.; Sampalmieri, G.; Cipollari, P. Deep-seated hydrocarbons in the seep “Brecciated Limestones” of the Maiella area (Adriatic foreland basin): Evaporitic sealing and oil re-mobilization effects linked to the drawdown of the Messinian Salinity Crisis. Mar. Pet. Geol. 2015, 66, 177–191. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maravelis, A.G.; Kontakiotis, G.; Bellas, S.; Antonarakou, A.; Botziolis, C.; Janjuhah, H.T.; Makri, P.; Moissette, P.; Cornée, J.-J.; Pasadakis, N.; et al. Organic Geochemical Signatures of the Upper Miocene (Tortonian—Messinian) Sedimentary Succession Onshore Crete Island, Greece: Implications for Hydrocarbon Prospectivity. J. Mar. Sci. Eng. 2022, 10, 1323. https://doi.org/10.3390/jmse10091323
Maravelis AG, Kontakiotis G, Bellas S, Antonarakou A, Botziolis C, Janjuhah HT, Makri P, Moissette P, Cornée J-J, Pasadakis N, et al. Organic Geochemical Signatures of the Upper Miocene (Tortonian—Messinian) Sedimentary Succession Onshore Crete Island, Greece: Implications for Hydrocarbon Prospectivity. Journal of Marine Science and Engineering. 2022; 10(9):1323. https://doi.org/10.3390/jmse10091323
Chicago/Turabian StyleMaravelis, Angelos G., George Kontakiotis, Spyridon Bellas, Assimina Antonarakou, Chrysanthos Botziolis, Hammad Tariq Janjuhah, Panayota Makri, Pierre Moissette, Jean-Jacques Cornée, Nikolaos Pasadakis, and et al. 2022. "Organic Geochemical Signatures of the Upper Miocene (Tortonian—Messinian) Sedimentary Succession Onshore Crete Island, Greece: Implications for Hydrocarbon Prospectivity" Journal of Marine Science and Engineering 10, no. 9: 1323. https://doi.org/10.3390/jmse10091323
APA StyleMaravelis, A. G., Kontakiotis, G., Bellas, S., Antonarakou, A., Botziolis, C., Janjuhah, H. T., Makri, P., Moissette, P., Cornée, J. -J., Pasadakis, N., Manoutsoglou, E., Zelilidis, A., & Karakitsios, V. (2022). Organic Geochemical Signatures of the Upper Miocene (Tortonian—Messinian) Sedimentary Succession Onshore Crete Island, Greece: Implications for Hydrocarbon Prospectivity. Journal of Marine Science and Engineering, 10(9), 1323. https://doi.org/10.3390/jmse10091323