Abstract
Modifications in leaf architecture disrupt optical properties and internal light-scattering dynamics. Accurate modeling of leaf-scale light scattering is therefore essential not only for understanding how disease affects the availability of light for chlorophyll absorption, but also for evaluating its potential as an early optical marker for plant disease detection prior to visible symptom development. Conventional ray-tracing and radiative-transfer models rely on high-frequency approximations and thus fail to capture diffraction and coherent multiple-scattering effects when internal leaf structures are comparable to optical wavelengths. To overcome these limitations, we present a GPU-accelerated finite-difference time-domain (FDTD) framework for full-wave simulation of light propagation within plant leaves, using anatomically realistic dicot and monocot leaf cross-section geometries. Microscopic images acquired from publicly available sources were segmented into distinct tissue regions and assigned wavelength-dependent complex refractive indices to construct realistic electromagnetic models. The proposed FDTD framework successfully reproduced characteristic reflectance and transmittance spectra of healthy leaves across the visible and near-infrared (NIR) ranges. Quantitative agreement between the FDTD-computed spectral reflectance and transmittance and those predicted by the reference PROSPECT leaf optical model was evaluated using Lin’s concordance correlation coefficient. Higher concordance was observed for dicot leaves ( ) than for monocot leaves ( ), indicating a stronger agreement for anatomically complex dicot structures. Furthermore, simulations mimicking an early-stage fungal infection in a dicot leaf—modeled by the geometric introduction of melanized hyphae penetrating the cuticle and upper epidermis—revealed a pronounced reduction in visible green reflectance and a strong suppression of the NIR reflectance plateau. These trends are consistent with experimental observations reported in previous studies. Overall, this proof-of-concept study represents the first full-wave FDTD-based optical modeling of internal light scattering in plant leaves. The proposed framework enables direct electromagnetic analysis of pre- and post-penetration light-scattering dynamics during early fungal infection and establishes a foundation for exploiting leaf-scale light scattering as a next-generation, pre-symptomatic diagnostic indicator for plant fungal diseases.