You are currently viewing a new version of our website. To view the old version click .
Agriculture
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

24 December 2025

Spatiotemporal Evolution and Drivers of Harvest-Disrupting Rainfall Risk for Winter Wheat in the Huang–Huai–Hai Plain

,
,
,
,
,
and
College of Resource and Environment, Anhui Agriculture University, Hefei 230036, China
*
Author to whom correspondence should be addressed.
This article belongs to the Topic Advances in Smart Agriculture with Remote Sensing as the Core and Its Applications in Crops Field

Abstract

Harvest-disrupting rain events (HDREs) are prolonged cloudy–rainy spells during winter wheat maturity that impede harvesting and drying, induce pre-harvest sprouting and grain mould, and threaten food security in the Huang–Huai–Hai Plain (HHHP), China’s core winter wheat region. Using daily meteorological records (1960–2019), remote sensing-derived land-use data and topography, we develop a hazard–exposure–vulnerability framework to quantify HDRE risk and its drivers at 1 km resolution. Results show that HDRE risk has increased markedly over the past six decades, with the area of medium-to-high risk rising from 26.9% to 73.1%. The spatial pattern evolved from a “high-south–low-north” structure to a concentrated high-risk belt in the central–northern HHHP, and the risk centroid migrated from Fuyang (Anhui) to Heze (Shandong), with an overall displacement of 124.57 km toward the north–northwest. GeoDetector analysis reveals a shift from a “humidity–temperature dominated” mechanism to a “sunshine–humidity–precipitation co-driven” mechanism; sunshine duration remains the leading factor (q > 0.8), and its interaction with relative humidity shows strong nonlinear enhancement (q = 0.91). High-risk hot spots coincide with low-lying plains and river valleys with dense winter wheat planting, indicating the joint amplification of meteorological conditions and underlying surface features. The results can support regional decision-making for harvest-season early warning, risk zoning, and disaster risk reduction in the HHHP.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.