Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,918)

Search Parameters:
Keywords = winter wheat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3832 KiB  
Article
Effects of Water Use Efficiency Combined with Advancements in Nitrogen and Soil Water Management for Sustainable Agriculture in the Loess Plateau, China
by Hafeez Noor, Fida Noor, Zhiqiang Gao, Majed Alotaibi and Mahmoud F. Seleiman
Water 2025, 17(15), 2329; https://doi.org/10.3390/w17152329 - 5 Aug 2025
Abstract
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among [...] Read more.
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among researchers on the most appropriate field management practices regarding WUE, which requires further integrated quantitative analysis. We conducted a meta-analysis by quantifying the effect of agricultural practices surrounding nitrogen (N) fertilizer management. The two experimental cultivars were Yunhan–20410 and Yunhan–618. The subplots included nitrogen 0 kg·ha−1 (N0), 90 kg·ha−1 (N90), 180 kg·ha−1 (N180), 210 kg·ha−1 (N210), and 240 kg·ha−1 (N240). Our results show that higher N rates (up to N210) enhanced water consumption during the node-flowering and flowering-maturity time periods. YH–618 showed higher water use during the sowing–greening and node-flowering periods but decreased use during the greening-node and flowering-maturity periods compared to YH–20410. The N210 treatment under YH–618 maximized water use efficiency (WUE). Increased N rates (N180–N210) decreased covering temperatures (Tmax, Tmin, Taver) during flowering, increasing the level of grain filling. Spike numbers rose with N application, with an off-peak at N210 for strong-gluten wheat. The 1000-grain weight was at first enhanced but decreased at the far end of N180–N210. YH–618 with N210 achieved a harvest index (HI) similar to that of YH–20410 with N180, while excessive N (N240) or water reduced the HI. Dry matter accumulation increased up to N210, resulting in earlier stabilization. Soil water consumption from wintering to jointing was strongly correlated with pre-flowering dry matter biological process and yield, while jointing–flowering water use was linked to post-flowering dry matter and spike numbers. Post-flowering dry matter accumulation was critical for yield, whereas spike numbers positively impacted yield but negatively affected 1000-grain weight. In conclusion, our results provide evidence for determining suitable integrated agricultural establishment strategies to ensure efficient water use and sustainable production in the Loess Plateau region. Full article
(This article belongs to the Special Issue Soil–Water Interaction and Management)
Show Figures

Figure 1

10 pages, 386 KiB  
Article
Certified Seed Use Enhances Yield Stability in Cereal Production Under Temperate Climate Conditions
by Patrycja Ojdowska, Tadeusz Oleksiak, Marcin Studnicki and Marzena Iwańska
Agronomy 2025, 15(8), 1886; https://doi.org/10.3390/agronomy15081886 - 5 Aug 2025
Abstract
In the face of growing demand for food and climate change, ensuring the stability and height of crop yields is becoming a key challenge for modern agriculture. One of the solutions supporting the sustainable development of crop production is the use of certified [...] Read more.
In the face of growing demand for food and climate change, ensuring the stability and height of crop yields is becoming a key challenge for modern agriculture. One of the solutions supporting the sustainable development of crop production is the use of certified seed. The aim of this study was to assess the impact of using certified seed on the level and stability of yields of three cereal species: winter wheat, winter triticale and spring barley, in temperate climate conditions. Data came from surveys conducted on over 8000 farms in six agroecoregions of Poland in 2021–2023. The analysis showed significantly higher yields on farms using certified seed for all species studied. Additionally, greater yield stability (lower values of Shukla variance and Wricke ecovalence) was noted in the case of using certified seeds, especially in region IV. This indicates the positive impact of certified seeds (e.g., genetic purity, health, and vigor) on the efficiency and resilience of agricultural systems. This phenomenon is of particular importance in the context of climate change and may be an important element of risk management strategies in agriculture. Full article
(This article belongs to the Special Issue Genotype × Environment Interactions in Crop Production—2nd Edition)
Show Figures

Figure 1

12 pages, 249 KiB  
Article
Optimization of Grist Composition for Mash Production from Unmalted Wheat and Wheat Malt of Red Winter Wheat with Hybrid Endosperm Type
by Kristina Habschied, Iztok Jože Košir, Miha Ocvirk, Krešimir Mastanjević and Vinko Krstanović
Beverages 2025, 11(4), 110; https://doi.org/10.3390/beverages11040110 - 4 Aug 2025
Abstract
Since wheats used for use in brewing mainly belong to the winter red hard hybrid endosperm type, this paper examined the influence of different proportions of wheat of this type (seven varieties) in the ratio of 0–100% in the grist, both unmalted and [...] Read more.
Since wheats used for use in brewing mainly belong to the winter red hard hybrid endosperm type, this paper examined the influence of different proportions of wheat of this type (seven varieties) in the ratio of 0–100% in the grist, both unmalted and as wheat malt. The quality of the starting wheats, the resulting malts and mashs with different added wheat proportions (100, 80, 60, 40, 20 and 0%) were examined. The obtained results show that the maximum shares of wheat/wheat malt in the infusion are significantly different between varieties of similar initial quality. However, they can differ considerably for the same variety when it is used as unmalted raw material and when it is used as wheat malt. Wheat malt can be added to the mixture in a significantly larger proportion compared to unmalted wheat. Furthermore, when an extended number of criteria (parameters) are applied, some varieties may be acceptable that otherwise would not be if the basic number of parameters were applied (total protein—TP, total soluble protein—TSP and viscosity—VIS) and vice versa. The inclusion of other parameters—filtration speed (FIL), saccharification time (SAC), color (COL), proportion of fine extract (EXT) and fermentability of pomace (FAL) (some of which have the character of so-called “cumulative parameters”)—complicates a clear classification into the aforementioned qualitative groups but also increases the number of varieties acceptable or conditionally acceptable for brewing. Full article
Show Figures

Graphical abstract

22 pages, 2180 KiB  
Article
Regulated Deficit Irrigation Improves Yield Formation and Water and Nitrogen Use Efficiency of Winter Wheat at Different Soil Fertility Levels
by Xiaolei Wu, Zhongdong Huang, Chao Huang, Zhandong Liu, Junming Liu, Hui Cao and Yang Gao
Agronomy 2025, 15(8), 1874; https://doi.org/10.3390/agronomy15081874 - 1 Aug 2025
Viewed by 261
Abstract
Water scarcity and spatial variability in soil fertility are key constraints to stable grain production in the Huang-Huai-Hai Plain. However, the interaction mechanisms between regulated deficit irrigation and soil fertility influencing yield formation and water-nitrogen use efficiency in winter wheat remain unclear. In [...] Read more.
Water scarcity and spatial variability in soil fertility are key constraints to stable grain production in the Huang-Huai-Hai Plain. However, the interaction mechanisms between regulated deficit irrigation and soil fertility influencing yield formation and water-nitrogen use efficiency in winter wheat remain unclear. In this study, a two-year field experiment (2022–2024) was conducted to investigate the effects of two irrigation regimes—regulated deficit irrigation during the heading to grain filling stage (D) and full irrigation (W)—under four soil fertility levels: F1 (N: P: K = 201.84: 97.65: 199.05 kg ha−1), F2 (278.52: 135: 275.4 kg ha−1), F3 (348.15: 168.75: 344.25 kg ha−1), and CK (no fertilization). The results show that aboveground dry matter accumulation, total nitrogen content, pre-anthesis dry matter and nitrogen translocation, and post-anthesis accumulation significantly increased with fertility level (p < 0.05). Regulated deficit irrigation promoted the contribution of post-anthesis dry matter to grain yield under the CK and F1 treatments, but suppressed it under the F2 and F3 treatments. However, it consistently enhanced the contribution of post-anthesis nitrogen to grain yield (p < 0.05) across all fertility levels. Higher fertility levels prolonged the grain filling duration by 18.04% but reduced the mean grain filling rate by 15.05%, whereas regulated deficit irrigation shortened the grain filling duration by 3.28% and increased the mean grain filling rate by 12.83% (p < 0.05). Grain yield significantly increased with improved fertility level (p < 0.05), reaching a maximum of 9361.98 kg·ha−1 under the F3 treatment. Regulated deficit irrigation increased yield under the CK and F1 treatments but reduced it under the F2 and F3 treatments. Additionally, water use efficiency exhibited a parabolic response to fertility level and was significantly enhanced by regulated deficit irrigation. Nitrogen partial factor productivity (NPFP) declined with increasing fertility level (p < 0.05); Regulated deficit irrigation improved NPFP under the F1 treatment but reduced it under the F2 and F3 treatments. The highest NPFP (41.63 kg·kg−1) was achieved under the DF1 treatment, which was 54.81% higher than that under the F3 treatment. TOPSIS analysis showed that regulated deficit irrigation combined with the F1 fertility level provided the optimal balance among yield, WUE, and NPFP. Therefore, implementing regulated deficit irrigation during the heading–grain filling stage under moderate fertility (F1) is recommended as the most effective strategy for achieving high yield and efficient resource utilization in winter wheat production in this region. Full article
(This article belongs to the Special Issue Crop Management in Water-Limited Cropping Systems)
Show Figures

Figure 1

19 pages, 5891 KiB  
Article
Potential of Multi-Source Multispectral vs. Hyperspectral Remote Sensing for Winter Wheat Nitrogen Monitoring
by Xiaokai Chen, Yuxin Miao, Krzysztof Kusnierek, Fenling Li, Chao Wang, Botai Shi, Fei Wu, Qingrui Chang and Kang Yu
Remote Sens. 2025, 17(15), 2666; https://doi.org/10.3390/rs17152666 - 1 Aug 2025
Viewed by 102
Abstract
Timely and accurate monitoring of crop nitrogen (N) status is essential for precision agriculture. UAV-based hyperspectral remote sensing offers high-resolution data for estimating plant nitrogen concentration (PNC), but its cost and complexity limit large-scale application. This study compares the performance of UAV hyperspectral [...] Read more.
Timely and accurate monitoring of crop nitrogen (N) status is essential for precision agriculture. UAV-based hyperspectral remote sensing offers high-resolution data for estimating plant nitrogen concentration (PNC), but its cost and complexity limit large-scale application. This study compares the performance of UAV hyperspectral data (S185 sensor) with simulated multispectral data from DJI Phantom 4 Multispectral (P4M), PlanetScope (PS), and Sentinel-2A (S2) in estimating winter wheat PNC. Spectral data were collected across six growth stages over two seasons and resampled to match the spectral characteristics of the three multispectral sensors. Three variable selection strategies (one-dimensional (1D) spectral reflectance, optimized two-dimensional (2D), and three-dimensional (3D) spectral indices) were combined with Random Forest Regression (RFR), Support Vector Machine Regression (SVMR), and Partial Least Squares Regression (PLSR) to build PNC prediction models. Results showed that, while hyperspectral data yielded slightly higher accuracy, optimized multispectral indices, particularly from PS and S2, achieved comparable performance. Among models, SVM and RFR showed consistent effectiveness across strategies. These findings highlight the potential of low-cost multispectral platforms for practical crop N monitoring. Future work should validate these models using real satellite imagery and explore multi-source data fusion with advanced learning algorithms. Full article
(This article belongs to the Special Issue Perspectives of Remote Sensing for Precision Agriculture)
Show Figures

Figure 1

17 pages, 2292 KiB  
Article
Employing Cover Crops and No-Till in Southern Great Plains Cotton Production to Manage Runoff Water Quantity and Quality
by Jack L. Edwards, Kevin L. Wagner, Lucas F. Gregory, Scott H. Stoodley, Tyson E. Ochsner and Josephus F. Borsuah
Water 2025, 17(15), 2283; https://doi.org/10.3390/w17152283 - 31 Jul 2025
Viewed by 166
Abstract
Conventional tillage and monocropping are common practices employed for cotton production in the Southern Great Plains (SGP) region, but they can be detrimental to soil health, crop yield, and water resources when improperly managed. Regenerative practices such as cover crops and conservation tillage [...] Read more.
Conventional tillage and monocropping are common practices employed for cotton production in the Southern Great Plains (SGP) region, but they can be detrimental to soil health, crop yield, and water resources when improperly managed. Regenerative practices such as cover crops and conservation tillage have been suggested as an alternative. The proposed shift in management practices originates from the need to make agriculture resilient to extreme weather events including intense rainfall and drought. The objective of this study is to test the effects of these regenerative practices in an environment with limited rainfall. Runoff volume, nutrient and sediment concentrations and loadings, and surface soil moisture levels were compared on twelve half-acre (0.2 hectare) cotton plots that employed different cotton seeding rates and variable winter wheat cover crop presence. A winter cover implemented on plots with a high cotton seeding rate significantly reduced runoff when compared to other treatments (p = 0.032). Cover cropped treatments did not show significant effects on nutrient or sediment loadings, although slight reductions were observed in the concentrations and loadings of total Kjeldahl nitrogen, total phosphorus, total solids, and Escherichia coli. The limitations of this study included a short timeframe, mechanical failures, and drought. These factors potentially reduced the statistical differences in several findings. More efficient methods of crop production must continue to be developed for agriculture in the SGP to conserve soil and water resources, improve soil health and crop yields, and enhance resiliency to climate change. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

30 pages, 4804 KiB  
Article
Deep Storage Irrigation Enhances Grain Yield of Winter Wheat by Improving Plant Growth and Grain-Filling Process in Northwest China
by Xiaodong Fan, Dianyu Chen, Haitao Che, Yakun Wang, Yadan Du and Xiaotao Hu
Agronomy 2025, 15(8), 1852; https://doi.org/10.3390/agronomy15081852 - 31 Jul 2025
Viewed by 214
Abstract
In the irrigation districts of Northern China, the flood resources utilization for deep storage irrigation, which is essentially characterized by active excessive irrigation, aims to have the potential to mitigate freshwater shortages, and long-term groundwater overexploitation. It is crucial to detect the effects [...] Read more.
In the irrigation districts of Northern China, the flood resources utilization for deep storage irrigation, which is essentially characterized by active excessive irrigation, aims to have the potential to mitigate freshwater shortages, and long-term groundwater overexploitation. It is crucial to detect the effects of irrigation amounts on agricultural yield and the mechanisms under deep storage irrigation. A three-year field experiment (2020–2023) was conducted in the Guanzhong Plain, according to five soil wetting layer depths (RF: 0 cm; W1: control, 120 cm; W2: 140 cm; W3: 160 cm; W4: 180 cm) with soil saturation water content as the irrigation upper limit. Results exhibited that, compared to W1, the W2, W3, and W4 treatments led to the increased plant height, leaf area index, and dry matter accumulation. Meanwhile, the W2, W3, and W4 treatments improved kernel weight increment achieving maximum grain-filling rate (Wmax), maximum grain-filling rate (Gmax), and average grain-filling rate (Gave), thereby enhancing the effective spikes (ES) and grain number per spike (GS), and thus increased wheat grain yield (GY). In relative to W1, the W2, W3, and W4 treatments increased the ES, GS, and GY by 11.89–19.81%, 8.61–14.36%, and 8.17–13.62% across the three years. Notably, no significant difference was observed in GS and GY between W3 and W4 treatments, but W4 treatment displayed significant decreases in ES by 3.04%, 3.06%, and 2.98% in the respective years. The application of a structural equation modeling (SEM) revealed that deep storage irrigation improved ES and GS by positively regulating Wmax, Gmax, and Gave, thus significantly increasing GY. Overall, this study identified the optimal threshold (W3 treatment) to maximize wheat yields by optimizing both the vegetative growth and grain-filling dynamics. This study provides essential support for the feasibility assessment of deep storage irrigation before flood seasons, which is vital for the balance and coordination of food security and water security. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

28 pages, 7240 KiB  
Article
MF-FusionNet: A Lightweight Multimodal Network for Monitoring Drought Stress in Winter Wheat Based on Remote Sensing Imagery
by Qiang Guo, Bo Han, Pengyu Chu, Yiping Wan and Jingjing Zhang
Agriculture 2025, 15(15), 1639; https://doi.org/10.3390/agriculture15151639 - 29 Jul 2025
Viewed by 243
Abstract
To improve the identification of drought-affected areas in winter wheat, this paper proposes a lightweight network called MF-FusionNet based on multimodal fusion of RGB images and vegetation indices (NDVI and EVI). A multimodal dataset covering various drought levels in winter wheat was constructed. [...] Read more.
To improve the identification of drought-affected areas in winter wheat, this paper proposes a lightweight network called MF-FusionNet based on multimodal fusion of RGB images and vegetation indices (NDVI and EVI). A multimodal dataset covering various drought levels in winter wheat was constructed. To enable deep fusion of modalities, a Lightweight Multimodal Fusion Block (LMFB) was designed, and a Dual-Coordinate Attention Feature Extraction module (DCAFE) was introduced to enhance semantic feature representation and improve drought region identification. To address differences in scale and semantics across network layers, a Cross-Stage Feature Fusion Strategy (CFFS) was proposed to integrate multi-level features and enhance overall performance. The effectiveness of each module was validated through ablation experiments. Compared to traditional single-modal methods, MF-FusionNet achieved higher accuracy, recall, and F1-score—improved by 1.35%, 1.43%, and 1.29%, respectively—reaching 96.71%, 96.71%, and 96.64%. A basis for real-time monitoring and precise irrigation management under winter wheat drought stress was provided by this study. Full article
Show Figures

Figure 1

15 pages, 5270 KiB  
Article
Dynamic Changes in Microorganisms and Metabolites During Silage Fermentation of Whole Winter Wheat
by Li Zhang, Yu Zeng, Lin Fu, Yan Zhou, Juncai Chen, Gaofu Wang, Qifan Ran, Liang Hu, Rui Hu, Jia Zhou and Xianwen Dong
Vet. Sci. 2025, 12(8), 708; https://doi.org/10.3390/vetsci12080708 - 28 Jul 2025
Viewed by 226
Abstract
Winter wheat (Triticum aestivum L.) silage has high feeding value and has become an important roughage resource in China. To recognize the optimal fermentation time of the silage product, this study systematically evaluated the temporal dynamics of microbial communities and metabolic profiles [...] Read more.
Winter wheat (Triticum aestivum L.) silage has high feeding value and has become an important roughage resource in China. To recognize the optimal fermentation time of the silage product, this study systematically evaluated the temporal dynamics of microbial communities and metabolic profiles in whole winter wheat silage at days 7, 14, 30, 50, and 70. The dry matter (DM) content slightly fluctuated with the extension of fermentation time, with 28.14% at 70 days of ensiling. The organic matter and neutral detergent fiber content gradually decreased with the extension of fermentation time. A significant decrease in pH was observed at days 30, 50, and 70 compared to days 7 and 14 (p < 0.05), with the lowest pH value of 4.4 recorded at day 70. The contents of lactic acid, acetic acid, butyric acid, and total volatile fatty acids gradually increased with the extension of fermentation time, reaching a maximum at 70 days of ensiling. The dominant bacteria were Proteobacteria and Firmicutes at the phylum level, and the predominant bacteria were Hafnia-Obesumbacterium, Enterobacter, and Lactobacillus at the genus level. The relative abundance of Hafnia-Obesumbacterium and Lactobacillus fluctuated slightly with the duration of fermentation, reaching a minimum for the former and a maximum for Lactobacillus at 50 days of ensiling. By day 70, Sporolactobacillus emerged as a distinct silage biomarker. The dominant fungi was Ascomycota at the phylum level, and the predominant fungi were Fusarium and an unidentified fungus at the genus level. The correlation analysis revealed significant pH–organic acid–microbe interactions, with pH negatively correlating with organic acids but positively with specific bacteria, while organic acids showed complex microbial associations. Collectively, under natural fermentation conditions, the optimal fermentation period for wheat silage exceeds 70 days, and Sporolactobacillus shows potential as a microbial inoculant for whole winter wheat silage. These findings provide a theoretical foundation for optimizing whole winter wheat silage utilization and enhancing fermentation quality. Full article
Show Figures

Figure 1

21 pages, 1758 KiB  
Article
The Effect of Different Tillage Methods on Spring Barley Productivity and Grain Quality Indicators
by Aušra Sinkevičienė, Kęstutis Romaneckas, Edita Meškinytė and Rasa Kimbirauskienė
Agronomy 2025, 15(8), 1823; https://doi.org/10.3390/agronomy15081823 - 28 Jul 2025
Viewed by 205
Abstract
The production of winter wheat, spring barley, spring oilseed rape, and field beans requires detailed experimental data studies to analyze the quality and productivity of spring barley grain under different cultivation and tillage conditions. As the world’s population grows, more food is required [...] Read more.
The production of winter wheat, spring barley, spring oilseed rape, and field beans requires detailed experimental data studies to analyze the quality and productivity of spring barley grain under different cultivation and tillage conditions. As the world’s population grows, more food is required to maintain a stable food supply chain. For many years, intensive farming systems have been used to meet this need. Today, intensive climate change events and other global environmental challenges are driving a shift towards sustainable use of natural resources and simplified cultivation methods that produce high-quality and productive food. It is important to study different tillage systems in order to understand how these methods can affect the chemical composition and nutritional value of the grain. Both agronomic and economic aspects contribute to the complexity of this field and their analysis will undoubtedly contribute to the development of more efficient agricultural practice models and the promotion of more conscious consumption. An appropriate tillage system should be oriented towards local climatic characteristics and people’s needs. The impact of reduced tillage on these indicators in spring barley production is still insufficiently investigated and requires further analysis at a global level. This study was carried out at Vytautas Magnus University Agriculture Academy (Lithuania) in 2022–2024. Treatments were arranged using a split-plot design. Based on a long-term tillage experiment, five tillage systems were tested: deep and shallow plowing, deep cultivation–chiseling, shallow cultivation–disking, and no-tillage. The results show that in 2022–2024, the hectoliter weight and moisture content of spring barley grains increased, but protein content and germination decreased in shallowly plowed fields. In deep cultivation–chiseling fields, the protein content (0.1–1.1%) of spring barley grains decreased, and in shallow cultivation–disking fields, the moisture content (0.2–0.3%) decreased. In all fields, the simplified tillage systems applied reduced spring barley germination (0.4–16.7%). Tillage systems and meteorological conditions are the two main forces shaping the quality indicators of spring barley grains. Properly selected tillage systems and favorable climatic conditions undoubtedly contribute to better grain properties and higher yields, while reducing the risk of disease spread. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

22 pages, 2003 KiB  
Article
Assessment of Different Methods to Determine NH3 Emissions from Small Field Plots After Fertilization
by Hannah Götze, Julian Brokötter, Jonas Frößl, Alexander Kelsch, Sina Kukowski and Andreas Siegfried Pacholski
Environments 2025, 12(8), 255; https://doi.org/10.3390/environments12080255 - 28 Jul 2025
Viewed by 335
Abstract
Ammonia (NH3) emissions affect the environment, climate and human health and originate mainly from agricultural sources like synthetic nitrogen fertilizers. Accurate and replicable measurements of NH3 emissions are crucial for research, inventories and evaluation of mitigation measures. There exist specific [...] Read more.
Ammonia (NH3) emissions affect the environment, climate and human health and originate mainly from agricultural sources like synthetic nitrogen fertilizers. Accurate and replicable measurements of NH3 emissions are crucial for research, inventories and evaluation of mitigation measures. There exist specific application limitations of NH3 emission measurement techniques and a high variability in method performance between studies, in particular from small plots. Therefore, the aim of this study was the assessment of measurement methods for ammonia emissions from replicated small plots. Methods were evaluated in 18 trials on six sites in Germany (2021–2022). Urea was applied to winter wheat as an emission source. Two small-plot methods were employed: inverse dispersion modelling (IDM) with atmospheric concentrations obtained from Alpha samplers and the dynamic chamber Dräger tube method (DTM). Cumulative NH3 losses assessed by each method were compared to the results of the integrated horizontal flux (IHF) method using Alpha samplers (Alpha IHF) as a micrometeorological reference method applied in parallel large-plot trials. For validation, Alpha IHF was also compared to IHF/ZINST with Leuning passive samplers. Cumulative NH3 emissions assessed using Alpha IHF and DTM showed good agreement, with a relative root mean square error (rRMSE) of 11%. Cumulative emissions assessed by Leuning IHF/ZINST deviated from Alpha IHF, with an rRMSE of 21%. For low-wind-speed and high-temperature conditions, NH3 losses detected with Alpha IDM had to be corrected to give acceptable agreement (rRMSE 20%, MBE +2 kg N ha−1). The study shows that quantification of NH3 emissions from small plots is feasible. Since DTM is constrained to specific conditions, we recommend Alpha IDM, but the approach needs further development. Full article
Show Figures

Figure 1

18 pages, 3361 KiB  
Article
Model-Based Assessment of Phenological and Climate Suitability Dynamics for Winter Wheat in the 3H Plain Under Future Climate Scenarios
by Yifei Xu, Te Li, Min Xu, Shuanghe Shen and Ling Tan
Agriculture 2025, 15(15), 1606; https://doi.org/10.3390/agriculture15151606 - 25 Jul 2025
Viewed by 251
Abstract
Understanding future changes in crop phenology and climate suitability is essential for sustaining winter wheat production in the Huang-Huai-Hai (3H) Plain under climate change. This study integrates bias-corrected CMIP6 climate projections, the DSSAT CERES-Wheat crop model, and Random Forest analysis to assess spatiotemporal [...] Read more.
Understanding future changes in crop phenology and climate suitability is essential for sustaining winter wheat production in the Huang-Huai-Hai (3H) Plain under climate change. This study integrates bias-corrected CMIP6 climate projections, the DSSAT CERES-Wheat crop model, and Random Forest analysis to assess spatiotemporal shifts in winter wheat phenology and climate suitability. The assessment focuses on the mid- (2041–2060) and late 21st century (2081–2100) under the SSP2-4.5 and SSP5-8.5 scenarios. The results indicate that the vegetative and whole growing periods (VGP and WGP) will be extended in the mid-century but shorten by the late century. In contrast, the reproductive growing period (RGP) will be slightly reduced in the mid-century and extended under high emissions in the late century. Temperature suitability is projected to increase during the VGP and WGP but decline during the RGP. Precipitation suitability generally improves, except for a decrease during the reproductive period south of 32° N. Solar radiation suitability is expected to decline across all stages. Temperature is identified as the primary driver of phenological changes, with solar radiation and precipitation playing increasingly important roles in the mid- and late 21st century, respectively. Adaptive strategies, including the adoption of heat-tolerant varieties, longer reproductive periods, and earlier sowing, are recommended to enhance yield stability under future climate conditions. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

24 pages, 5039 KiB  
Article
Advanced Estimation of Winter Wheat Leaf’s Relative Chlorophyll Content Across Growth Stages Using Satellite-Derived Texture Indices in a Region with Various Sowing Dates
by Jingyun Chen, Quan Yin, Jianjun Wang, Weilong Li, Zhi Ding, Pei Sun Loh, Guisheng Zhou and Zhongyang Huo
Plants 2025, 14(15), 2297; https://doi.org/10.3390/plants14152297 - 25 Jul 2025
Viewed by 272
Abstract
Accurately estimating leaves’ relative chlorophyll contents (widely represented by Soil and Plant Analysis Development (SPAD) values) across growth stages is crucial for assessing crop health, particularly in regions characterized by varying sowing dates. Unlike previous studies focusing on high-resolution UAV imagery or specific [...] Read more.
Accurately estimating leaves’ relative chlorophyll contents (widely represented by Soil and Plant Analysis Development (SPAD) values) across growth stages is crucial for assessing crop health, particularly in regions characterized by varying sowing dates. Unlike previous studies focusing on high-resolution UAV imagery or specific growth stages, this research incorporates satellite-derived texture indices (TIs) into a SPAD value estimation model applicable across multiple growth stages (from tillering to grain-filling). Field experiments were conducted in Jiangsu Province, China, where winter wheat sowing dates varied significantly from field to field. Sentinel-2 imagery was employed to extract vegetation indices (VIs) and TIs. Following a two-step variable selection method, Random Forest (RF)-LassoCV, five machine learning algorithms were applied to develop estimation models. The newly developed model (SVR-RBFVIs+TIs) exhibited robust estimation performance (R2 = 0.8131, RMSE = 3.2333, RRMSE = 0.0710, and RPD = 2.3424) when validated against independent SPAD value datasets collected from fields with varying sowing dates. Moreover, this optimal model also exhibited a notable level of transferability at another location with different sowing times, wheat varieties, and soil types from the modeling area. In addition, this research revealed that despite the lower resolution of satellite imagery compared to UAV imagery, the incorporation of TIs significantly improved estimation accuracies compared to the sole use of VIs typical in previous studies. Full article
Show Figures

Figure 1

35 pages, 1745 KiB  
Article
Balanced Fertilization of Winter Wheat with Potassium and Magnesium—An Effective Way to Manage Fertilizer Nitrogen Sustainably
by Agnieszka Andrzejewska, Katarzyna Przygocka-Cyna and Witold Grzebisz
Sustainability 2025, 17(15), 6705; https://doi.org/10.3390/su17156705 - 23 Jul 2025
Viewed by 412
Abstract
In agricultural practice, in addition to determining the nitrogen (Nf) dose, it is necessary to effectively control its effect on currently grown crops. Meeting these conditions requires not only the use of phosphorus (P) and potassium (K), but also nutrients such [...] Read more.
In agricultural practice, in addition to determining the nitrogen (Nf) dose, it is necessary to effectively control its effect on currently grown crops. Meeting these conditions requires not only the use of phosphorus (P) and potassium (K), but also nutrients such as magnesium (Mg) and sulfur (S). This hypothesis was verified in a single-factor field experiment with winter wheat (WW) carried out in the 2015/2016, 2016/2017, and 2017/2018 growing seasons. The experiment consisted of seven variants: absolute control (AC), NP, NPK-MOP (K as Muriate of Potash), NPK-MOP+Ki (Kieserite), NPK-KK (K as Korn–Kali), NPK-KK+Ki, and NPK-KK+Ki+ES (Epsom Salt). The use of K as MOP increased grain yield (GY) by 6.3% compared to NP. In the NPK-KK variant, GY was 13% (+0.84 t ha−1) higher compared to NP. Moreover, GYs in this fertilization variant (FV) were stable over the years (coefficient of variation, CV = 9.4%). In NPK-KK+Ki+ES, the yield increase was the highest and mounted to 17.2% compared to NP, but the variability over the years was also the highest (CV ≈ 20%). The amount of N in grain N (GN) increased progressively from 4% for NPK-MOP to 15% for NPK-KK and 25% for NPK-KK+Ki+ES in comparison to NP. The nitrogen harvest index was highly stable, achieving 72.6 ± 3.1%. All analyzed NUE indices showed a significant response to FVs. The PFP-Nf (partial factor productivity of Nf) indices increased on NPK-MOP by 5.8%, NPK-KK by 12.9%, and NPK-KK+Ki+ES by 17.9% compared to NP. The corresponding Nf recovery of Nf in wheat grain was 47.2%, 55.9%, and 64.4%, but its total recovery by wheat (grain + straw) was 67%, 74.5%, and 87.2%, respectively. In terms of the theoretical and practical value of the tested indexes, two indices, namely, NUP (nitrogen unit productivity) and NUA (nitrogen unit accumulation), proved to be the most useful. From the farmer’s production strategy, FV with K applied in the form of Korn–Kali proved to be the most stable option due to high and stable yield, regardless of weather conditions. The increase in the number of nutritional factors optimizing the action of nitrogen in winter wheat caused the phenomenon known as the “scissors effect”. This phenomenon manifested itself in a progressive increase in nitrogen unit productivity (NUP) combined with a regressive trend in unit nitrogen accumulation (NUA) in the grain versus the balance of soil available Mg (Mgb). The studies clearly showed that obtaining grain that met the milling requirements was recorded only for NUA above 22 kg N t−1 grain. This was possible only with the most intensive Mg treatment (NPK-KK+Ki and NPK-KK+Ki+ES). The study clearly showed that three of the six FVs fully met the three basic conditions for sustainable crop production: (i) stabilization and even an increase in grain yield; (ii) a decrease in the mass of inorganic N in the soil at harvest, potentially susceptible to leaching; and (iii) stabilization of the soil fertility of P, K, and Mg. Full article
(This article belongs to the Special Issue Soil Fertility and Plant Nutrition for Sustainable Cropping Systems)
Show Figures

Figure 1

21 pages, 3158 KiB  
Article
Estimation of Leaf, Spike, Stem and Total Biomass of Winter Wheat Under Water-Deficit Conditions Using UAV Multimodal Data and Machine Learning
by Jinhang Liu, Wenying Zhang, Yongfeng Wu, Juncheng Ma, Yulin Zhang and Binhui Liu
Remote Sens. 2025, 17(15), 2562; https://doi.org/10.3390/rs17152562 - 23 Jul 2025
Viewed by 241
Abstract
Accurate estimation aboveground biomass (AGB) in winter wheat is crucial for yield assessment but remains challenging to achieve non-destructively. Unmanned aerial vehicle (UAV)-based remote sensing offers a promising solution at the plot level. Traditional field sampling methods, such as random plant selection or [...] Read more.
Accurate estimation aboveground biomass (AGB) in winter wheat is crucial for yield assessment but remains challenging to achieve non-destructively. Unmanned aerial vehicle (UAV)-based remote sensing offers a promising solution at the plot level. Traditional field sampling methods, such as random plant selection or full-quadrat harvesting, are labor intensive and may introduce substantial errors compared to the canopy-level estimates obtained from UAV imagery. This study proposes a novel method using Fractional Vegetation Coverage (FVC) to adjust field-sampled AGB to per-plant biomass, enhancing the accuracy of AGB estimation using UAV imagery. Correlation analysis and Variance Inflation Factor (VIF) were employed for feature selection, and estimation models for leaf, spike, stem, and total AGB were constructed using Random Forest (RF), Support Vector Machine (SVM), and Neural Network (NN) models. The aim was to evaluate the performance of multimodal data in estimating winter wheat leaves, spikes, stems, and total AGB. Results demonstrated that (1) FVC-adjusted per-plant biomass significantly improved correlations with most indicators, particularly during the filling stage, when the correlation between leaf biomass and NDVI increased by 56.1%; (2) RF and NN models outperformed SVM, with the optimal accuracies being R2 = 0.709, RMSE = 0.114 g for RF, R2 = 0.66, RMSE = 0.08 g for NN, and R2 = 0.557, RMSE = 0.117 g for SVM. Notably, the RF model achieved the highest prediction accuracy for leaf biomass during the flowering stage (R2 = 0.709, RMSE = 0.114); (3) among different water treatments, the R2 values of water and drought treatments were higher 0.723 and 0.742, respectively, indicating strong adaptability. This study provides an economically effective method for monitoring winter wheat growth in the field, contributing to improved agricultural productivity and fertilization management. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

Back to TopTop