Cascade DeepLab Net: A Method for Accurate Extraction of Fragmented Cultivated Land in Mountainous Areas Based on a Cascaded Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Sample Construction
2.3. Methodology
2.3.1. DeepLabV3+
2.3.2. Style-Based Recalibration Module (SRM)
2.3.3. Spatial Attention Module (SAM)
2.3.4. Refinement Module (RM)
2.3.5. Evaluation Metrics
2.4. Experimental Environment and Parameter Details
3. Results and Analysis
3.1. Comparison of Different Methods: Quantitative Analysis
3.2. Comparison of Different Methods: Qualitative Analysis
3.3. Validation of the Improvement Mechanism
3.4. Optimization Effect on the Morphology of Fragmented Cultivated Land
4. Discussion
4.1. Possible Value of This Study
4.2. The Combined Effects of Methodological Parametric Volume
4.3. Limitations of the Current Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, J.; Wang, L.; Qin, J.; Zhang, F.; Xu, Y. Evaluating cultivated land stability during the growing season based on precipitation in the Horqin Sandy Land, China. J. Environ. Manag. 2020, 276, 111269. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Xie, B.; Lu, R.; Zhang, X.; Xie, J.; Wei, S. Spatial–Temporal Differentiation and Driving Factors of Cultivated Land Use Transition in Sino–Vietnamese Border Areas. Land 2024, 13, 165. [Google Scholar] [CrossRef]
- Li, M.; Li, J.; Haq, S.U.; Nadeem, M. Agriculture land use transformation: A threat to sustainable food production systems, rural food security, and farmer well-being? PLoS ONE 2024, 19, e0296332. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lopez-Carr, D.; Gong, J.; Gao, J. Editorial: Sustainable cultivated land use and management. Front. Environ. Sci. 2023, 11, 1162769. [Google Scholar] [CrossRef]
- Guo, X.N.; Chen, R.Q.; Li, Q.; Su, W.C.; Liu, M.; Pan, Z.Z. Processes, mechanisms, and impacts of land degradation in the IPBES Thematic Assessment. Acta Ecol. Sin. 2019, 39, 6567–6575. [Google Scholar] [CrossRef]
- The Intergovernmental Panel on Climate Change. Special Report: Special Report on Climate Change and Land. IPCC Website. 2019. Available online: https://www.ipcc.ch/srccl/ (accessed on 1 January 2025).
- Liang, X.; Jin, X.; Yang, X.; Xu, W.; Lin, J.; Zhou, Y. Exploring cultivated land evolution in mountainous areas of Southwest China, an empirical study of developments since the 1980s. Land Degrad. Dev. 2021, 32, 546–558. [Google Scholar] [CrossRef]
- Miao, L.; Li, X.; Zhou, X.; Yao, L.; Deng, Y.; Hang, T.; Zhou, Y.; Yang, H. SNUNet3+: A Full-Scale Connected Siamese Network and a Dataset for Cultivated Land Change Detection in High-Resolution Remote-Sensing Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4400818. [Google Scholar] [CrossRef]
- Chen, X.; Yu, L.; Du, Z.; Liu, Z.; Qi, Y.; Liu, T.; Gong, P. Toward sustainable land use in China: A perspective on China’s national land surveys. Land Use Policy 2022, 123, 106428. [Google Scholar] [CrossRef]
- Rapinel, S.; Clément, B.; Magnanon, S.; Sellin, V.; Hubert-Moy, L. Identification and mapping of natural vegetation on a coastal site using a Worldview-2 satellite image. J. Environ. Manag. 2014, 144, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Li, M.; Yang, G.; Tao, Q.; Luo, Y.; Wang, R.; Chen, P. Urban Vegetation Classification for Unmanned Aerial Vehicle Remote Sensing Combining Feature Engineering and Improved DeepLabV3+. Forests 2024, 15, 382. [Google Scholar] [CrossRef]
- Storie, C.D.; Henry, C.J. Deep learning neural networks for land use land cover mapping. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 3445–3448. [Google Scholar]
- Šćepanović, S.; Antropov, O.; Laurila, P.; Rauste, Y.; Ignatenko, V.; Praks, J. Wide-area land cover mapping with Sentinel-1 imagery using deep learning semantic segmentation models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10357–10374. [Google Scholar] [CrossRef]
- Wiguna, S.; Adriano, B.; Mas, E.; Koshimura, S. Evaluation of deep learning models for building damage mapping in emergency response settings. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 5651–5667. [Google Scholar] [CrossRef]
- Cheng, G.; Wang, Z.; Huang, C.; Yang, Y.; Hu, J.; Yan, X.; Tan, Y.; Liao, L.; Zhou, X.; Li, Y. Advances in Deep Learning Recognition of Landslides Based on Remote Sensing Images. Remote Sens. 2024, 16, 1787. [Google Scholar] [CrossRef]
- Dahiya, N.; Singh, G.; Gupta, D.K.; Kalogeropoulos, K.; Detsikas, S.E.; Petropoulos, G.P.; Singh, S.; Sood, V. A novel Deep Learning Change Detection approach for estimating Spatiotemporal Crop Field Variations from Sentinel-2 imagery. Remote Sens. Appl. Soc. Environ. 2024, 35, 101259. [Google Scholar] [CrossRef]
- Huang, Y.; Li, X.; Du, Z.; Shen, H. Spatiotemporal enhancement and interlevel fusion network for remote sensing images change detection. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5609414. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Liu, Z.; Li, N.; Wang, L.; Zhu, J.; Qin, F. A multi-angle comprehensive solution based on deep learning to extract cultivated land information from high-resolution remote sensing images. Ecol. Indic. 2022, 141, 108961. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015, Proceedings, Part III; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Huang, J.; Ning, T. Progress and Prospect of Cultivated Land Extraction from High-Resolution Remote Sensing Images. Geomat. Inf. Sci. Wuhan Univ. 2023, 48, 1582–1590. [Google Scholar]
- Li, Z.; Chen, S.; Meng, X.; Zhu, R.; Lu, J.; Cao, L.; Lu, P. Full Convolution Neural Network Combined with Contextual Feature Representation for Cropland Extraction from High-Resolution Remote Sensing Images. Remote Sens. 2022, 14, 2157. [Google Scholar] [CrossRef]
- Dong, Z.; Li, J.; Zhang, J.; Yu, J.; An, S. Cultivated land extraction from high-resolution remote sensing images based on BECU-Net model with edge enhancement. Natl. Remote Sens. Bull. 2023, 27, 2847–2859. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, Z.; Guo, M.; Huang, Y. Multiscale Edge-Guided Network for Accurate Cultivated Land Parcel Boundary Extraction From Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4501020. [Google Scholar] [CrossRef]
- Liang, J.; Gong, J.; Li, W. Applications and impacts of Google Earth: A decadal review (2006–2016). ISPRS J. Photogramm. Remote Sens. 2018, 146, 91–107. [Google Scholar] [CrossRef]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Lee, H.; Kim, H.-E.; Nam, H. Srm: A style-based recalibration module for convolutional neural networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1854–1862. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Cheng, H.K.; Chung, J.; Tai, Y.-W.; Tang, C.-K. Cascadepsp: Toward class-agnostic and very high-resolution segmentation via global and local refinement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 8890–8899. [Google Scholar]
- Lu, H.; Fu, X.; Liu, C.; Li, L.-G.; He, Y.-X.; Li, N.-W. Cultivated land information extraction in UAV imagery based on deep convolutional neural network and transfer learning. J. Mt. Sci. 2017, 14, 731–741. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, D.; Pan, Y.; Dai, J. High-resolution cropland extraction in Shandong province using MPSPNet and UNet network. Natl. Remote Sens. Bull. 2023, 27, 471–491. [Google Scholar] [CrossRef]
- Shi, X.Q.; Li, P.; Wu, H.; Chen, Q.D.; Zhu, H.Y. A lightweight image splicing tampering localization method based on MobileNetV2 and SRM. IET Image Process. 2023, 17, 1883–1892. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.Y.; Bian, J.W.; Zhang, L.; Cheng, M.M. SAMNet: Stereoscopically Attentive Multi-Scale Network for Lightweight Salient Object Detection. IEEE Trans. Image Process. 2021, 30, 3804–3814. [Google Scholar] [CrossRef]
- Zhai, Y.J.; Fan, D.P.; Yang, J.F.; Borji, A.; Shao, L.; Han, J.W.; Wang, L. Bifurcated Backbone Strategy for RGB-D Salient Object Detection. IEEE Trans. Image Process. 2021, 30, 8727–8742. [Google Scholar] [CrossRef]
- Chen, G.J.; Chen, H.Z.; Cui, T.; Li, H.H. SFMRNet: Specific Feature Fusion and Multibranch Feature Refinement Network for Land Use Classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2024, 17, 16206–16221. [Google Scholar] [CrossRef]
- Naboureh, A.; Li, A.N.; Bian, J.H.; Lei, G.B.; Amani, M. A Hybrid Data Balancing Method for Classification of Imbalanced Training Data within Google Earth Engine: Case Studies from Mountainous Regions. Remote Sens. 2020, 12, 3301. [Google Scholar] [CrossRef]
- Zhang, J.C.; He, Y.H.; Yuan, L.; Liu, P.; Zhou, X.F.; Huang, Y.B. Machine Learning-Based Spectral Library for Crop Classification and Status Monitoring. Agronomy 2019, 9, 496. [Google Scholar] [CrossRef]
- Longchamps, L.; Philpot, W. Full-Season Crop Phenology Monitoring Using Two-Dimensional Normalized Difference Pairs. Remote Sens. 2023, 15, 5565. [Google Scholar] [CrossRef]
Method | OA | IoU | F1 |
---|---|---|---|
UNet | 85.69 | 74.84 | 85.72 |
PSPNet | 87.26 | 76.41 | 86.56 |
DeepLabV3+ | 87.27 | 76.50 | 86.61 |
Our | 92.33 | 82.51 | 91.77 |
Method | Improvement | OA | IoU | F1 | ||
---|---|---|---|---|---|---|
SRM | SAM | RM | ||||
Baseline | 87.27 | 76.50 | 86.61 | |||
D1 | ✔ | 88.54 | 78.03 | 87.89 | ||
D2 | ✔ | ✔ | 89.21 | 78.95 | 88.71 | |
Ours | ✔ | ✔ | ✔ | 92.33 | 82.51 | 91.77 |
UNet | PSPNet | DeepLabV3+ | Our | |
---|---|---|---|---|
Param (M) | 28.99 | 65.58 | 60.19 | 129.26 |
SRM | SAM | RM | |
---|---|---|---|
Param (M) | 0.89 | 0.05 | 33.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Wang, R.; Dai, A.; Yuan, W.; Yang, G.; Xie, L.; Zhao, W.; Zhao, L. Cascade DeepLab Net: A Method for Accurate Extraction of Fragmented Cultivated Land in Mountainous Areas Based on a Cascaded Network. Agriculture 2025, 15, 348. https://doi.org/10.3390/agriculture15030348
Li M, Wang R, Dai A, Yuan W, Yang G, Xie L, Zhao W, Zhao L. Cascade DeepLab Net: A Method for Accurate Extraction of Fragmented Cultivated Land in Mountainous Areas Based on a Cascaded Network. Agriculture. 2025; 15(3):348. https://doi.org/10.3390/agriculture15030348
Chicago/Turabian StyleLi, Man, Renru Wang, Ana Dai, Weitao Yuan, Guangbin Yang, Lijun Xie, Weili Zhao, and Linglin Zhao. 2025. "Cascade DeepLab Net: A Method for Accurate Extraction of Fragmented Cultivated Land in Mountainous Areas Based on a Cascaded Network" Agriculture 15, no. 3: 348. https://doi.org/10.3390/agriculture15030348
APA StyleLi, M., Wang, R., Dai, A., Yuan, W., Yang, G., Xie, L., Zhao, W., & Zhao, L. (2025). Cascade DeepLab Net: A Method for Accurate Extraction of Fragmented Cultivated Land in Mountainous Areas Based on a Cascaded Network. Agriculture, 15(3), 348. https://doi.org/10.3390/agriculture15030348