Path Tracking Control in Autonomous Agricultural Vehicles: A Systematic Survey of Models, Methods, and Challenges
Abstract
1. Introduction
2. Theoretical Framework and Application of AAV Path Tracking
2.1. Research in Different Application Scenarios
2.1.1. Dry Field AAV
2.1.2. Paddy Field AAV
2.1.3. Orchard AAV
2.1.4. Compact Specialized Agricultural Robots
2.2. Summary of Path Tracking Strategies in Different Scenarios
2.3. Construction of the Mathematical Model
2.3.1. Kinematic Model
2.3.2. Dynamic Model
2.4. Summary of Agriculture Vehicle Models
3. Classification of Methods for AAV Path Tracking
3.1. Linear Control
3.1.1. PID Control
3.1.2. LQR
3.1.3. Model Predictive Control
3.2. Nonlinear Control
3.2.1. Pure Pursuit
3.2.2. Stanley Control
3.2.3. Fuzzy Control
3.2.4. NNC
3.2.5. SMC
- (1)
- Conventional first-order SMC
- (2)
- Second-order SMC
- (3)
- Conventional super-twisting SMC
- (4)
- Continuous super-twisting SMC
- (5)
- Composite continuous super-twisting SMC
3.3. Summary of Methods for AAVs Path Tracking
4. Research on the Key Performance Improvement of AAV Path Tracking
4.1. Disturbance Rejection Capability Enhancement Under Complex Working Conditions
4.2. Stability Enhancement Under Loss of Heading
4.3. Tracking Accuracy Enhancement Under Sideslip Influence
4.4. Integrated Performance Enhancement Under Model Parameter Perturbations
4.5. Summary
5. Challenges and Future Trends
5.1. Challenges
5.1.1. Vehicle Model
5.1.2. Controller Design
5.1.3. Tracking Accuracy in Complex Environments
5.1.4. Adaptability of Algorithms to Different Scenarios
5.2. Summary of the Challenges
5.3. Future Trends
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shadrin, D.; Menshchikov, A.; Somov, A.; Bornemann, G.; Hauslage, J.; Fedorov, M. Enabling Precision Agriculture Through Embedded Sensing with Artificial Intelligence. IEEE Trans. Instrum. Meas. 2020, 69, 4103–4113. [Google Scholar] [CrossRef]
- Ji, W.; Pan, Y.; Xu, B.; Wang, J. A Real-Time Apple Targets Detection Method for Picking Robot Based on ShufflenetV2-YOLOX. Agriculture 2022, 12, 856. [Google Scholar] [CrossRef]
- Zhang, J.; Li, D. Research on Path Tracking Algorithm of Green Agricultural Machinery for Sustainable Development. Sustain. Energy Technol. Assess. 2023, 55, 102917. [Google Scholar] [CrossRef]
- Yuan, J.; Ji, W.; Feng, Q. Robots and Autonomous Machines for Sustainable Agriculture Production. Agriculture 2023, 13, 1340. [Google Scholar] [CrossRef]
- Hou, P.; Yuan, W.; Li, G.; Petropoulos, E.; Xue, L.; Feng, Y.; Xue, L.; Yang, L.; Ding, Y. Deep Fertilization with Controlled-Release Fertilizer for Higher Cereal Yield and N Utilization in Paddies: The Optimal Fertilization Depth. Agron. J. 2021, 113, 5027–5039. [Google Scholar] [CrossRef]
- Yang, N.; Chang, K.; Dong, S.; Tang, J.; Wang, A.; Huang, R.; Jia, Y. Rapid Image Detection and Recognition of Rice False Smut Based on Mobile Smart Devices with Anti-Light Features from Cloud Database. Biosyst. Eng. 2022, 218, 229–244. [Google Scholar] [CrossRef]
- Zhang, H.; Ji, W.; Xu, B.; Yu, X. Optimizing Contact Force on an Apple Picking Robot End-Effector. Agriculture 2024, 14, 996. [Google Scholar] [CrossRef]
- Wang, Q.; He, J.; Lu, C.; Wang, C.; Lin, H.; Yang, H.; Li, H.; Wu, Z. Modelling and Control Methods in Path Tracking Control for Autonomous Agricultural Vehicles: A Review of State of the Art and Challenges. Appl. Sci. 2023, 13, 7155. [Google Scholar] [CrossRef]
- Ding, Z.; Tang, Z.; Zhang, B.; Ding, Z. Vibration Response of Metal Plate and Shell Structure Under Multi-Source Excitation with Welding and Bolt Connection. Agriculture 2024, 14, 816. [Google Scholar] [CrossRef]
- Li, H.; Gao, F.; Zuo, G.C. Research on the Agricultural Machinery Path Tracking Method Based on Deep Reinforcement Learning. Sci. Program. 2022, 2022, 6385972. [Google Scholar] [CrossRef]
- Shen, Y.; Shen, Y.; Zhang, Y.; Huo, C.; Shen, Z.; Su, W.; Liu, H. Research Progress on Path Planning and Tracking Control Methods for Orchard Mobile Robots in Complex Scenarios. Agriculture 2025, 15, 1917. [Google Scholar] [CrossRef]
- Han, S.; Song, Y.; Kim, S.; Huh, K. A Path Tracking Controller for Heavy-Duty Buses Based on Robust Model Predictive Control with a Novel Enhanced Kinematic Model. IEEE Trans. Intell. Veh. 2025, 10, 1273–1288. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chen, C.L.; Wang, W.R.; Xu, X.X.; Shen, S.Y.; Liu, Y.L. Modeling and Test on Height Adjustment System of Electrically-Controlled Air Suspension for Agricultural Vehicles. Int. J. Agric. Biol. Eng. 2016, 9, 40–47. [Google Scholar]
- Fu, T.; Zhou, H.; Liu, Z. NMPC-Based Path Tracking Control Strategy for Autonomous Vehicles with Stable Limit Handling. IEEE Trans. Veh. Technol. 2022, 71, 12499–12510. [Google Scholar] [CrossRef]
- Gong, J.; Guo, S.; Shen, H.; Wei, W.; Long, Y. Path-Tracking Cascade Control of Hydraulic-Tracked Vehicles Based on Port-Controlled Hamiltonian Model. IEEE Trans. Intell. Veh. 2025, 10, 654–667. [Google Scholar] [CrossRef]
- Sun, C.; Sun, J.; Ding, S.; Liu, L. Optimal Control-Based Dynamic Obstacle Avoidance and Path Tracking for Unmanned Agricultural Vehicles. In Proceedings of the IEEE 4th International Conference on Digital Twins and Parallel Intelligence (DTPI), Wuhan, China, 18–20 October 2024; pp. 189–193. [Google Scholar]
- Liang, Z.; Wang, Z.; Zhao, J.; Wong, P.K.; Yang, Z.; Ding, Z. Fixed-Time Prescribed Performance Path-Following Control for Autonomous Vehicle with Complete Unknown Parameters. IEEE Trans. Ind. Electron. 2023, 70, 8426–8436. [Google Scholar] [CrossRef]
- Derrick, J.B.; Bevly, D.M. Adaptive Steering Control of a Farm Tractor with Varying Yaw Rate Properties. J. Field Robot. 2009, 26, 519–536. [Google Scholar] [CrossRef]
- Zhang, T.; Jiao, X.; Zhang, Y. Internal-Model-Principle-Based Fast Adaptive Iterative Learning Trajectory Tracking Control for Autonomous Farming Vehicle Under Alignment Condition and Input Constraint. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 3588–3599. [Google Scholar] [CrossRef]
- Liu, H.; Yan, S.; Shen, Y.; Li, C.; Zhang, Y.; Hussain, F. Model Predictive Control System Based on Direct Yaw Moment Control for 4WID Self-Steering Agriculture Vehicle. Int. J. Agric. Biol. Eng. 2021, 14, 175–181. [Google Scholar] [CrossRef]
- Yang, J.; Bao, H.; Ma, N.; Xuan, Z. An Algorithm of Curved Path Tracking with Prediction Model for Autonomous Vehicle. Proc. Int. Conf. Comput. Intell. Secur. 2017, 405–408. [Google Scholar]
- Xu, J.; Lai, J.; Guo, R.; Lu, X.; Xu, L. Efficiency-Oriented MPC Algorithm for Path Tracking in Autonomous Agricultural Machinery. Agronomy 2022, 12, 1662. [Google Scholar] [CrossRef]
- Bevly, D.M.; Gerdes, J.C.; Parkinson, B.W. A New Yaw Dynamic Model for Improved High Speed Control of a Farm Tractor. J. Dyn. Syst. 2002, 124, 659–667. [Google Scholar] [CrossRef]
- Samuel, M.; Hussein, M.; Mohamad, M.B. A Review of Some Pure-Pursuit Based Path Tracking Techniques for Control of Autonomous Vehicle. Int. J. Comput. Appl. 2016, 135, 35–38. [Google Scholar] [CrossRef]
- Hu, C.; Ru, Y.; Li, X.; Fang, S.; Zhou, H.; Yan, X.; Liu, M.; Xie, R. Path Tracking Control for Brake-Steering Tracked Vehicles Based on an Improved Pure Pursuit Algorithm. Biosyst. Eng. 2024, 242, 1–15. [Google Scholar] [CrossRef]
- Yin, C.; Wang, S.; Gao, J.; Li, X. Trajectory Tracking for Agricultural Tractor Based on Improved Fuzzy Sliding Mode Control. PLoS ONE 2023, 18, e0283961. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Zhang, Z.; Zhao, Z.; Chen, B.; Hu, L.; Wu, X. Design of DGPS Navigation Control System for Dongfanghong X-804 Tractor. Trans. CSAE 2009, 25, 139–145. [Google Scholar]
- Shen, H.; Xing, M.; Yan, H.; Cao, J. Observer-Based l2-l∞ Control for Singularly Perturbed Semi-Markov Jump Systems with Improved Weighted TOD Protocol. Sci. China Inf. Sci. 2022, 65, 199204. [Google Scholar] [CrossRef]
- Sun, J.; Xia, J.; Ding, S.; Yu, X. Exact-Feedback-Linearization-Based Adaptive Second-Order Sliding Mode Control Design for DC-DC Boost Converters. IEEE Trans. Ind. Electron. 2025, 72, 5397–5407. [Google Scholar] [CrossRef]
- Zhu, L.; Sun, W.; Zhang, Q.; Lu, E.; Xue, J.; Sha, G. Tractor Path Tracking Control Method Based on Prescribed Performance and Sliding Mode Control. Agriculture 2025, 15, 1663. [Google Scholar] [CrossRef]
- Liu, W.; Guo, R.; Zhao, J. Adaptive Sliding Mode Predictive Control for Path Tracking of Wheeled Agricultural Vehicles. Machines 2025, 13, 157. [Google Scholar] [CrossRef]
- Sun, J.; Xu, S.; Ding, S.; Pu, Z.; Yi, J. Adaptive Conditional Disturbance Negation-Based Nonsmooth-Integral Control for PMSM Drive System. IEEE/ASME Trans. Mechatron. 2024, 29, 3602–3613. [Google Scholar] [CrossRef]
- Wu, H.; Wang, X.; Chen, X.; Zhang, Y.; Zhang, Y. Review on Key Technologies for Autonomous Navigation in Field Agricultural Machinery. Agriculture 2025, 15, 1297. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Shen, Y.; He, S.; Wang, H.; Shen, Y. A Systematic Review of Modeling and Control Approaches for Path Tracking in Unmanned Agricultural Ground Vehicles. Agronomy 2025, 15, 2274. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, L.; Li, D.; Jia, B.; Hu, Z.; Xie, S.; Fu, M. A Review of Trajectory Planning and Tracking Methods for the Tractor-Trailer System. IEEE Intell. Transp. Syst. Mag. 2025, 17, 67–92. [Google Scholar] [CrossRef]
- Stano, P.; Montanaro, U.; Tavernini, D.; Tufo, M.; Fiengo, G.; Novella, L.; Sorniotti, A. Model Predictive Path Tracking Control for Automated Road Vehicles: A Review. Annu. Rev. Control 2023, 55, 194–236. [Google Scholar] [CrossRef]
- Ruslan, N.A.I.; Amer, N.H.; Hudha, K.; Kadir, Z.A.; Ishak, S.A.F.M.; Dardin, S.M.F.S. Modelling and Control Strategies in Path Tracking Control for Autonomous Tracked Vehicles: A Review of State of the Art and Challenges. J. Terramech. 2023, 105, 67–79. [Google Scholar] [CrossRef]
- Ren, X.; Huang, B.; Yin, H. A Review of The Large-Scale Application of Autonomous Mobility of Agricultural Platform. Comput. Electron. Agr. 2023, 206, 107628. [Google Scholar] [CrossRef]
- Wang, T.; Chen, B.; Zhang, Z.; Li, H.; Zhang, M. Applications of Machine Vision in Agricultural Robot Navigation: A review. Comput. Electron. Agr. 2022, 198, 107085. [Google Scholar] [CrossRef]
- Zhang, M.; Ji, Y.; Li, S.; Cao, R.; Xu, H.; Zhang, Z. Research Progress of Agricultural Machinery Navigation Technology. Trans. CSAM 2020, 51, 1–18. [Google Scholar]
- Roy, R.; Islam, M.; Sadman, N.; Mahmud, M.A.P.; Gupta, K.D.; Ahsan, M.M. A Review on Comparative Remarks, Performance Evaluation and Improvement Strategies of Quadrotor Controllers. Technologies 2021, 9, 37. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, Z.; Gao, G. Fuzzy Comprehensive Evaluation for Grasping Prioritization of Stacked Fruit Clusters Based on Relative Hierarchy Factor Set. Agronomy 2022, 12, 663. [Google Scholar] [CrossRef]
- Sun, J.; Li, Y.; Ma, L.; Ding, S. An Efficient Trajectory Planning Approach for Tractor-Trailer Vehicles Using Convex Polygonal Corridor Construction in Narrow Environments. IEEE Trans. Veh. Technol. 2025. [Google Scholar] [CrossRef]
- Liao, J.; Luo, X.; Wang, P.; Zhou, Z.; O’Donnell, C.C.; Zang, Y.; Hewitt, A.J. Analysis of the Influence of Different Parameters on Droplet Characteristics and Droplet Size Classification Categories for Air Induction Nozzle. Agronomy 2020, 10, 256. [Google Scholar] [CrossRef]
- Zhou, B.; Su, X.; Yu, H.; Guo, W.; Zhang, Q. Research on Path Tracking of Articulated Steering Tractor Based on Modified Model Predictive Control. Agriculture 2023, 13, 871. [Google Scholar] [CrossRef]
- Fan, X.; Wang, J.; Wang, H.; Yang, L.; Xia, C. LQR Trajectory Tracking Control of Unmanned Wheeled Tractor Based on Improved Quantum Genetic Algorithm. Machines 2023, 11, 62. [Google Scholar] [CrossRef]
- Fue, K.; Porter, W.; Barnes, E.; Li, C.; Rains, G. Autonomous Navigation of a Center-Articulated and Hydrostatic Transmission Rover Using a Modified Pure Pursuit Algorithm in a Cotton Field. Sensors 2020, 20, 4412. [Google Scholar] [CrossRef]
- Cui, B.; Cui, X.; Wei, X.; Zhu, Y.; Ma, Z.; Zhao, Y.; Liu, Y. Design and Testing of a Tractor Automatic Navigation System Based on Dynamic Path Search and a Fuzzy Stanley Model. Agriculture 2024, 14, 2136. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, B.; Du, X.; Chen, H.; Zhu, T.; Wu, C. Self-Adjusting Look-Ahead Distance of Precision Path Tracking for High-Clearance Sprayers in Field Navigation. Agronomy 2025, 15, 1433. [Google Scholar] [CrossRef]
- Wang, N.; Zhao, Y.H.; Yu, J.G.; Xue, L.H.; Li, H.B.; Yang, L.Z. Roles of Bulk and Rhizosphere Denitrifying Bacteria in Denitrification From Paddy Soils Under Straw Return Condition. J. Soils Sediments 2021, 21, 2179–2191. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, X.; Liu, C.; Ge, J.; Cui, X.; Wang, F.; Chen, W. Adaptive Path Tracking and Control System for Unmanned Crawler Harvesters in Paddy Fields. Comput. Electron. Agric. 2025, 230, 109878. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Q.; Lin, Y.; Ma, Z.; Sun, L.; Yu, G. Path Tracking Control of Paddy Field Weeder Integrated with Satellite and Visual Methods. Comput. Electron. Agric. 2025, 234, 110257. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, L.; Zhou, X.; Yao, K.; Tian, Y.; Nirere, A. A Method of Information Fusion for Identification of Rice Seed Varieties Based on Hyperspectral Imaging Technology. J. Food Process Eng. 2021, 44, e13797. [Google Scholar] [CrossRef]
- Han, X.Z.; Kim, H.J.; Kim, J.Y.; Yi, S.Y.; Moon, H.C.; Kim, J.H.; Kim, Y.J. Path-Tracking Simulation and Field Tests for an Auto-Guidance Tillage Tractor for a Paddy Field. Comput. Electron. Agric. 2015, 112, 161–171. [Google Scholar] [CrossRef]
- He, Y.; Zhou, J.; Sun, J.; Jia, H.; Liang, Z.; Awuah, E. An Adaptive Control System for Path Tracking of Crawler Combine Harvester Based on Paddy Ground Conditions Identification. Comput. Electron. Agric. 2023, 210, 107948. [Google Scholar] [CrossRef]
- Wang, L.; Zhai, Z.; Zhu, Z.; Mao, E. Path Tracking Control of an Autonomous Tractor Using Improved Stanley Controller Optimized with Multiple-Population Genetic Algorithm. Actuators 2022, 11, 22. [Google Scholar] [CrossRef]
- Li, J.; Shang, Z.; Li, R.; Cui, B. Adaptive Sliding Mode Path Tracking Control of Unmanned Rice Transplanter. Agriculture 2022, 12, 1225. [Google Scholar] [CrossRef]
- Zhu, D.; Shi, M.; Wang, Y.; Kang, X.; Liao, J.; Xiong, W.; Kuang, F.; Zhang, S. Path Tracking Control Method for Automatic Navigation Rice Transplanters Based on VUFC and Improved BAS Algorithm. Robotica 2023, 41, 3116–3136. [Google Scholar] [CrossRef]
- Xu, J.; Liu, H.; Shen, Y.; Zeng, X.; Zheng, X. Individual Nursery Trees Classification and Segmentation Using a Point Cloud-Based Neural Network with Dense Connection Pattern. Sci. Hortic. 2024, 328, 112945. [Google Scholar] [CrossRef]
- Ji, W.; He, G.; Xu, B.; Zhang, H.; Yu, X. A New Picking Pattern of a Flexible Three-Fingered End-Effector for Apple Harvesting Robot. Agriculture 2024, 14, 102. [Google Scholar] [CrossRef]
- Ji, W.; Zhang, T.; Xu, B.; He, G. Apple Recognition and Picking Sequence Planning for Harvesting Robot in a Complex Environment. J. Agric. Eng. 2024, 55. [Google Scholar] [CrossRef]
- Chen, Z.; Dou, H.; Gao, Y.; Changyuan, Z.; Xiu, W.; Wei, Z. Research on an Orchard Row Centreline Multipoint Autonomous Navigation Method Based on LiDAR. Artif. Intell. Agric. 2025, 15, 221–231. [Google Scholar] [CrossRef]
- Bayar, G. Long Distance Autonomous Trajectory Tracking for an Orchard Vehicle. Ind. Robot 2013, 40, 27–40. [Google Scholar] [CrossRef]
- Opiyo, S.; Okinda, C.; Zhou, J.; Mwanngi, E.; Makange, N. Medial Axis-Based Machine-Vision System for Orchard Robot Navigation. Comput. Electron. Agric. 2021, 185, 106153. [Google Scholar] [CrossRef]
- Syed, T.N.; Zhou, J.; Lakhiar, I.A.; Marinello, F.; Gemechu, T.T.; Rottok, L.T.; Jiang, Z. Enhancing Autonomous Orchard Navigation: A Real-Time Convolutional Neural Network-Based Obstacle Classification System for Distinguishing ‘Real’ and ‘Fake’ Obstacles in Agricultural Robotics. Agriculture 2025, 15, 827. [Google Scholar] [CrossRef]
- Thanpattranon, P.; Ahamed, T.; Takigawa, T. Navigation of Autonomous Tractor for Orchards and Plantations Using a Laser Range Finder: Automatic Control of Trailer Position with Tractor. Biosyst. Eng. 2016, 147, 90–103. [Google Scholar] [CrossRef]
- Xue, P.; Wu, Y.; Yin, G.; Liu, S.; Shi, Y. Path Tracking of Orchard Tractor Based on Linear Time-Varying Model Predictive Control. In Proceedings of the Chinese Control And Decision Conference (CCDC), Nanchang, China, 3–5 June 2019; pp. 5489–5494. [Google Scholar] [CrossRef]
- Ren, Z.; Liu, Z.; Yuan, M.; Liu, H.; Wang, W.; Qin, J.; Yang, F. Double-DQN-Based Path-Tracking Control Algorithm for Orchard Traction Spraying Robot. Agronomy 2022, 12, 2803. [Google Scholar] [CrossRef]
- Ou, J.; Fu, Q.; Tang, R.; Du, J.; Xu, L. Path Tracking Control of a Tractor on a Sloping Road with Steering Compensation. Agriculture 2023, 13, 2160. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, S.; Li, N.; Faheem, M.; Zhou, T.; Cai, W.; Zhao, M.; Zhu, X.; Li, P. Development and Field Test of an Autonomous Strawberry Plug Seeding Transplanter for Use in Elevated Cultivation. Appl. Eng. Agric. 2019, 35, 1067–1078. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, J.; Xu, Z.; Yuan, S.; Li, P.; Wang, J. Development Status and Trend of Agricultural Robot Technology. Int. J. Agric. Biol. Eng. 2021, 14, 1–19. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, B.; Xu, N.; Zhou, J.; Shi, J.; Diao, Z. Vision-Based Navigation and Guidance for Agricultural Autonomous Vehicles and Robots: A Review. Comput. Electron. Agr. 2023, 205, 107584. [Google Scholar] [CrossRef]
- Chen, C.; Liu, X.; Liu, C.; Pan, Q. Development of the Precision Feeding System for Sows Via a Rule-Based Expert System. Int. J. Agric. Biol. Eng. 2023, 16, 187–198. [Google Scholar]
- Zuo, X.; Chu, J.; Shen, J.; Sun, J. Multi-Granularity Feature Aggregation with Self-Attention and Spatial Reasoning for Fine-Grained Crop Disease Classification. Agriculture 2022, 12, 1499. [Google Scholar] [CrossRef]
- Urrea, C.; Muñoz, J. Path Tracking of Mobile Robot in Crops: Performance Evaluations of Position Control. J. Intell. Robot. Syst. 2015, 80, 193–205. [Google Scholar] [CrossRef]
- Gu, Y.; Li, Z.; Zhang, Z.; Li, J.; Chen, L. Path Tracking Control of Field Information-Collecting Robot Based on Improved Convolutional Neural Network Algorithm. Sensors 2020, 20, 797. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhou, J.; Liu, Y.; Zhang, T.; Meng, Y.; Chen, J.; Zhou, C.; Hu, J.; Chen, X. An Ultrasonic Ridge-Tracking Method Based on Limiter Sliding Window Filter and Fuzzy Pure Pursuit Control for Ridge Transplanter. Agriculture 2024, 14, 1713. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, W.; Liu, Y.; Pan, W.; Hou, X.; Liu, Z. Autonomous Trajectory Tracking Control Method for an Agricultural Robotic Vehicle. Int. J. Agric. Biol. Eng. 2024, 17, 215–224. [Google Scholar] [CrossRef]
- Azimi, A.; Shamshiri, R.R.; Ghasemzadeh, A. Adaptive Dynamic Programming for Robust Path Tracking in an Agricultural Robot Using Critic Neural Networks. Agric. Eng. 2025, 80, 1–15. [Google Scholar]
- Zhu, Z.; Chen, J.; Yoshida, T.; Torisu, R.; Song, Z.; Mao, E. Path Tracking Control of Autonomous Agricultural Mobile Robots. J. Zhejiang Univ. Sci. A 2007, 8, 1596–1603. [Google Scholar] [CrossRef]
- Li, J.; Wu, Z.; Li, M.; Shang, Z. Dynamic Measurement Method for Steering Wheel Angle of Autonomous Agricultural Vehicles. Agriculture 2024, 14, 1602. [Google Scholar] [CrossRef]
- Ding, C.; Ding, S.; Wei, X.; Mei, K. Composite SOSM Controller for Path Tracking Control of Agricultural Tractors Subject to Wheel Slip. ISA Trans. 2022, 130, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Huynh, V.T.; Katupitiya, J.; Kwok, N.M.; Eaton, R.P. Derivation of an Error Model for Tractor-Trailer Path Tracking. In Proceedings of the IEEE International Conference on Intelligent Systems and Knowledge Engineering, Hangzhou, China, 15–16 November2010; pp. 60–66. [Google Scholar]
- Hu, C.; Wang, R.; Yan, F. Integral Sliding Mode-Based Composite Nonlinear Feedback Control for Path Following of Four-Wheel Independently Actuated Autonomous Vehicles. IEEE Trans. Transp. Electrif. 2016, 2, 221–230. [Google Scholar] [CrossRef]
- Li, Z.; Chen, L.; Zheng, Q.; Dou, X.; Yang, L. Control of a Path Following Caterpillar Robot Based on a Sliding Mode Variable Structure Algorithm. Biosyst. Eng. 2019, 186, 293–306. [Google Scholar] [CrossRef]
- Ang, K.H.; Chong, G.; Li, Y. PID Control System Analysis, Design, and Technology. IEEE Trans. Control Syst. Technol. 2005, 13, 559–576. [Google Scholar]
- Liu, J.; Wu, X.; Quan, L.; Xu, H.; Hua, Y. Fuzzy Adaptive PID Control for Path Tracking of Field Intelligent Weeding Machine. AIP Adv. 2024, 14, 3. [Google Scholar] [CrossRef]
- Li, Y.; Ang, K.H.; Chong, G.C.Y. PID Control System Analysis and Design. IEEE Control Syst. Mag. 2006, 26, 32–41. [Google Scholar]
- Choi, H.H.; Yun, H.M.; Kim, Y. Implementation of Evolutionary Fuzzy PID Speed Controller for PM Synchronous Motor. IEEE Trans. Ind. Inform. 2015, 11, 540–547. [Google Scholar] [CrossRef]
- Upaphai, W.; Bunyawanichakul, P.; Janthong, M. Trajectory Tracking Control Design for an Autonomous Tractor Using Fuzzy PID Controller. J. Franklin Inst. 2017, 13, 501–519. [Google Scholar]
- Cheng, J.; Zhang, B.; Zhang, C.; Zhang, Y.; Shen, G. A Model-Free Adaptive Predictive Path-Tracking Controller with PID Terms for Tractors. Biosyst. Eng. 2024, 242, 38–49. [Google Scholar] [CrossRef]
- Qun, R. Intelligent Control Technology of Agricultural Greenhouse Operation Robot Based on Fuzzy PID Path Tracking Algorithm. INMATEH-Agric. Eng. 2020, 62, 3. [Google Scholar]
- Zhang, S.; Liu, Q.; Xu, H.; Yang, Z.; Hu, X.; Song, Q.; Wei, X. Path Tracking Control of a Large Rear-Wheel–Steered Combine Harvester Using Feedforward PID and Look-Ahead Ackermann Algorithms. Agriculture 2025, 15, 676. [Google Scholar] [CrossRef]
- Amertet, S.; Gebresenbet, G.; Alwan, H.M. Optimizing the Performance of a Wheeled Mobile Robots for Use in Agriculture Using a Linear-Quadratic Regulator. Robot. Auton. Syst. 2024, 174, 104642. [Google Scholar] [CrossRef]
- Ortiz, B.V.; Balkcom, K.; Duzy, L.; Van Santen, E.; Hartzog, D.L. Evaluation of Agronomic and Economic Benefits of Using RTK-GPS-Based Auto-Steer Guidance Systems for Peanut Digging Operations. Precis. Agric. 2013, 14, 357–375. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, Y.; Gu, Q.; Bai, G. LQR-GA Path Tracking Control of Articulated Vehicle Based on Predictive Information. Trans. CSAM 2018, 49, 375–384. [Google Scholar]
- Xu, S.; Peng, H. Design, Analysis, and Experiments of Preview Path Tracking Control for Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 2019, 21, 48–58. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, X.; Chen, H.; Hu, Y.; Wang, P.; Qu, T. Parallel Nonlinear Model Predictive Controller for Real-Time Path Tracking of Autonomous Vehicle. IEEE Trans. Ind. Electron. 2024, 71, 16503–16513. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, L.; Li, Y.; Li, D. Model Predictive Control and Its Application in Agriculture: A Review. Comput. Electron. Agric. 2018, 151, 104–117. [Google Scholar] [CrossRef]
- Plessen, M.M.G.; Bemporad, A. Reference Trajectory Planning Under Constraints and Path Tracking Using Linear Time-Varying Model Predictive Control for Agricultural Machines. Biosyst. Eng. 2017, 153, 28–41. [Google Scholar] [CrossRef]
- Kayacan, E.; Kayacan, E.; Ramon, H.; Saeys, W. Distributed Nonlinear Model Predictive Control of an Autonomous Tractor-Trailer System. Mechatronics 2014, 24, 926–933. [Google Scholar] [CrossRef]
- Backman, J.; Oksanen, T.; Visala, A. Navigation System for Agricultural Machines: Nonlinear Model Predictive Path Tracking. Comput. Electron. Agric. 2012, 82, 32–43. [Google Scholar] [CrossRef]
- Wang, M.; Niu, C.; Wang, Z.; Jiang, Y.; Jian, J.; Tang, X. Model and Parameter Adaptive MPC Path Tracking Control Study of Rear-Wheel-Steering Agricultural Machinery. Agriculture 2024, 14, 823. [Google Scholar] [CrossRef]
- Coulter, R.C. Implementation of the Pure Pursuit Path Tracking Algorithm; Carnegie Mellon University: Pittsburgh, PA, USA, 1992. [Google Scholar]
- Liu, L.; Liu, H.; Wang, X.; Li, J.; Wang, P.; Liu, S.; Zou, J.; Yang, X. Application of Path Planning and Tracking Control Technology in Mower Robots. Agronomy 2024, 14, 2473. [Google Scholar] [CrossRef]
- Zhou, J.; Wen, J.; Yao, L.; Yang, Z.; Xu, L.; Yao, L. Agricultural Machinery Path Tracking with Varying Curvatures Based on an Improved Pure-Pursuit Method. Agriculture 2025, 15, 266. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Wen, X.; Zhang, G.; Ma, Q.; Cheng, S.; Qi, J.; Xu, L.; Chen, L. An Optimal Goal Point Determination Algorithm for Automatic Navigation of Agricultural Machinery: Improving the Tracking Accuracy of the Pure Pursuit Algorithm. Comput. Electron. Agric. 2022, 194, 106760. [Google Scholar] [CrossRef]
- Ge, L.I.; Yu, W.; Guo, L.; Tong, J. Improved Pure Pursuit Algorithm for Rice Transplanter Path Tracking. Trans. Chin. Soc. Agric. Mach. 2018, 49, 5. [Google Scholar]
- AbdElmoniem, A.; Osama, A.; Abdelaziz, M.; Maged, S.A. A Path-Tracking Algorithm Using Predictive Stanley Lateral Controller. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420974852. [Google Scholar] [CrossRef]
- Fu, W.; Liu, Y.; Zhang, X. Research on Accurate Motion Trajectory Control Method of Four-Wheel Steering AGV Based on Stanley-PID Control. Sensors 2023, 23, 7219. [Google Scholar] [CrossRef]
- Cui, B.; Sun, Y.; Ji, F.; Wei, X.; Zhu, Y.; Zhang, S. Study on Whole Field Path Tracking of Agricultural Machinery Based on Fuzzy Stanley Model. Trans. CSAM 2022, 53, 43–48. [Google Scholar]
- Snider, J.M. Automatic Steering Methods for Autonomous Automobile Path Tracking; Carnegie Mellon University: Pittsburgh, PA, USA, 2009. [Google Scholar]
- Sun, Y.; Cui, B.; Ji, F.; Wei, X.; Zhu, Y. The Full-Field Path Tracking of Agricultural Machinery Based on PSO-Enhanced Fuzzy Stanley Model. Appl. Sci. 2022, 12, 7683. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, T.; Wu, B.; Zhou, H. Identification of Lambda-cyhalothrin Residues on Chinese Cabbage Using Fuzzy Uncorrelated Discriminant Vector Analysis and MIR Spectroscopy. Int. J. Agric. Biol. Eng. 2022, 15, 217–224. [Google Scholar] [CrossRef]
- Wu, X.; He, F.; Wu, B.; Zeng, S.; He, C. Accurate Classification of Chunmee Tea Grade Using NIR Spectroscopy and Fuzzy Maximum Uncertainty Linear Discriminant Analysis. Foods 2023, 12, 541. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Mei, K.; Ma, L.; Ding, S. Adaptive Interval Type-2 Fuzzy SOSM Control for Nonlinear Systems with Uncertainties. Int. J. Fuzzy Syst. 2025. [Google Scholar] [CrossRef]
- Feng, G. A Survey on Analysis and Design of Model-Based Fuzzy Control Systems. IEEE Trans. Fuzzy Syst. 2006, 14, 676–697. [Google Scholar] [CrossRef]
- Shen, H.; Zhao, W.; Cao, J.; Park, J.H.; Wang, J. Predefined-Time Event-Triggered Tracking Control for Nonlinear Servo Systems: A Fuzzy Weight-based Reinforcement Learning Scheme. IEEE Trans. Fuzzy Syst. 2024, 32, 4557–4569. [Google Scholar] [CrossRef]
- Antonelli, G.; Chiaverini, S.; Fusco, G. A Fuzzy-Logic-Based Approach for Mobile Robot Path Tracking. IEEE Trans. Fuzzy Syst. 2007, 15, 211–221. [Google Scholar] [CrossRef]
- Li, W.; Xie, Z.; Wong, P.K.; Zhang, X.; Zhao, J.; Zhao, J. Interval Type-2 Fuzzy Path Tracking Control for Autonomous Ground Vehicles Under Switched Triggered and Sensor Attacks. IEEE Trans. Intell. Transp. Syst. 2024, 25, 16024–16035. [Google Scholar] [CrossRef]
- Qi, Z.; Wu, X.; Yang, Y.; Wu, B.; Fu, H. Discrimination of the Red Jujube Varieties Using a Portable NIR Spectrometer and Fuzzy Improved Linear Discriminant Analysis. Foods 2022, 11, 763. [Google Scholar] [CrossRef] [PubMed]
- Loganathan, A.; Ahmad, N.S. A Systematic Review on Recent Advances in Autonomous Mobile Robot Navigation. Eng. Sci. Technol. 2023, 40, 101343. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, X.; He, C.; Wu, B.; Zhang, S.; Sun, J. Near-Infrared Spectroscopy Combined with Fuzzy Improved Direct Linear Discriminant Analysis for Nondestructive Discrimination of Chrysanthemum Tea Varieties. Foods 2024, 13, 1439. [Google Scholar] [CrossRef]
- Sun, C.; Mei, K.; Ma, L.; Ding, S.; Li, Y.; Ding, C. Adaptive Type-2 Fuzzy HOSM Control Design with Asymmetric Output Constraints. Nonlinear Dyn. 2025, 113, 27895–27911. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, G.; Zhao, C.; Li, L.; Li, C.; Chen, X. Research on 4WS Agricultural Machine Path Tracking Algorithm Based on Fuzzy Control Pure Tracking Model. Machines 2022, 10, 597. [Google Scholar] [CrossRef]
- Xue, J.; Zhang, L.; Grift, T.E. Variable Field-of-View Machine Vision Based Row Guidance of an Agricultural Robot. Comput. Electron. Agric. 2012, 84, 85–91. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Wang, X.; Xie, J.; Liu, H.; Li, J.; Wang, P.; Yang, X. Path Planning and Tracking Control of Tracked Agricultural Machinery Based on Improved A* and Fuzzy Control. Electronics 2024, 13, 188. [Google Scholar] [CrossRef]
- Huang, W.; Ji, X.; Wang, A.; Wang, Y.; Wei, X. Straight-Line Path Tracking Control of Agricultural Tractor-Trailer Based on Fuzzy Sliding Mode Control. Appl. Sci. 2023, 13, 872. [Google Scholar] [CrossRef]
- Park, J.-H.; Kim, S.-H.; Moon, C.-J. Adaptive Neural Control for Strict-Feedback Nonlinear Systems Without Backstepping. IEEE Trans. Neural Netw. 2009, 20, 1204–1209. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Sun, J.; Wang, S.; Shen, J.; Yang, K.; Zhou, X. Identifying Field Crop Diseases Using Transformer-Embedded Convolutional Neural Network. Agriculture 2022, 12, 1083. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, J.; Chen, Q.; Jiang, H. Near-Infrared Spectroscopy Based on Colorimetric Sensor Array Coupled with Convolutional Neural Network for Detecting Zearalenone in Wheat. Food Chem. X 2024, 22, 101322. [Google Scholar] [CrossRef]
- Antsaklis, P.J. Neural Networks for Control Systems. IEEE Trans. Neural Netw. 1990, 1, 242–244. [Google Scholar] [CrossRef]
- Eski, I.; Kus, Z.A. Control of Unmanned Agricultural Vehicles Using Neural Network-Based Control System. Neural Comput. Appl. 2019, 31, 583–595. [Google Scholar] [CrossRef]
- Su, L.; Mao, Y.; Zhang, F.; Lin, B.; Zhang, Y. Deviation Sequence Neural Network Control for Path Tracking of Autonomous Vehicles. Actuators 2024, 13, 101. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Liu, Y. Adaptive Neural Network-Based Path Tracking Control for Autonomous Combine Harvester with Input Saturation. Ind. Robot 2021, 48, 510–522. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Ren, Z.; Mao, W.; Yang, F. Crawler Tractor Navigation Path Tracking Control Algorithm Based on Virtual Radar Model. Trans. CSAM 2021, 52, 376–385. [Google Scholar]
- Mei, K.; Gong, Y.; Ma, L.; Ding, S.; Ding, C.; Yuan, Y. Design of Integral-Based HOSM Controller Under Perturbations of Unknown Magnitudes. IEEE Trans. Cybern. 2025, 55, 4103–4113. [Google Scholar] [CrossRef]
- Liu, L.; Hu, Y.; Ding, S. Anti-Peaking-ESO-Based Adaptive SOSM Controller Design for PMSM Speed Regulation. IEEE Trans. Transp. Electrif. 2025, 11, 13366–13375. [Google Scholar] [CrossRef]
- Sun, J.; Gao, Y.; Ding, S.; Wang, W.; Yu, X. Adaptive Second-Order Sliding Mode Control Design with Autonomous Agricultural Vehicle Application. IEEE Trans. Ind. Electron. 2025. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, J.; Zhang, W.; Zeng, J. Sliding Mode Control Algorithm for Path Tracking of Articulated Dump Truck. Trans. Chin. Soc. Agric. Eng. 2015, 31, 198–203. [Google Scholar]
- Mancini, M.; Trombetta, E.I.; Carminati, D.; Capello, E. Adaptive Sliding Mode Control with Artificial Potential Field for Ground Robots in Precision Agriculture. In Proceedings of the IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Pisa, Italy, 6–8 November 2023; pp. 325–330. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, M.; Ma, L.; Ding, S.; Yu, X. Estimator-Based Second-Order Sliding Mode Control Design for Nonlinear Systems with Unknown Input Delay. IEEE Trans. Cybern. 2025, 55, 5780–5790. [Google Scholar] [CrossRef]
- Ding, S.; Wang, J.; Zheng, W.X. Second-Order Sliding Mode Control for Nonlinear Uncertain Systems Bounded by Positive Functions. IEEE Trans. Ind. Electron. 2015, 62, 5899–5909. [Google Scholar] [CrossRef]
- Sun, J.; Li, Q.; Ding, S.; Xing, G.; Chen, L. Fixed-Time Generalized Super-Twisting Control for Path Tracking of Autonomous Agricultural Vehicles Considering Wheel Slipping. Comput. Electron. Agric. 2023, 213, 108231. [Google Scholar] [CrossRef]
- Yin, C.; Wang, S.; Li, X.; Yuan, G.; Jiang, C. Trajectory Tracking Based on Adaptive Sliding Mode Control for Agricultural Tractor. IEEE Access 2020, 8, 113021–113029. [Google Scholar] [CrossRef]
- Ji, X.; Wei, X.; Wang, A.; Cui, B.; Song, Q. A Novel Composite Adaptive Terminal Sliding Mode Controller for Farm Vehicles Lateral Path Tracking Control. Nonlinear Dyn. 2022, 110, 2415–2428. [Google Scholar] [CrossRef]
- Bin Salamah, Y. Sliding Mode Controller for Autonomous Tractor-Trailer Vehicle Reverse Path Tracking. Appl. Sci. 2023, 13, 11998. [Google Scholar] [CrossRef]
- Ji, X.; Ding, S.; Wei, X.; Mei, K.; Cui, B.; Sun, J. Path Tracking Control of Unmanned Agricultural Tractors via Modified Supertwisting Sliding Mode and Disturbance Observer. IEEE/ASME Trans. Mechatron. 2024, 29, 4051–4062. [Google Scholar] [CrossRef]
- Zhang, T.; Jiao, X.; Lin, Z. Finite Time Trajectory Tracking Control of Autonomous Agricultural Tractor Integrated Nonsingular Fast Terminal Sliding Mode and Disturbance Observer. Biosyst. Eng. 2022, 219, 153–164. [Google Scholar] [CrossRef]
- Tian, B.; Lin, T.; Zhang, C.; Li, Z.; Fu, S.; Chen, Q. Mixed Linear Quadratic Regulator Controller Design for Path Tracking Control of Autonomous Tracked Vehicles. In International Conference on Advances in Construction Machinery and Vehicle Engineering; Springer: Singapore, 2023; pp. 127–136. [Google Scholar]
- Zhou, J.; He, Y. Research Progress on Navigation Path Planning of Agricultural Machinery. Trans. CSAM 2021, 52, 1–14. [Google Scholar]
- Dai, D.; Chen, D.; Wang, S.; Li, S.; Mao, X.; Zhang, B. Compilation and Extrapolation of Load Spectrum of Tractor Ground Vibration Load Based on CEEMDAN-POT Model. Agriculture 2023, 13, 125. [Google Scholar] [CrossRef]
- Duan, J.; Cao, P.; Shu, T.; Zhou, B.; Xue, L.; Yang, L. Effects of Cellulosic Carbon Addition on Nitrogen Removal from Simulated Dry Land Drainage and Its Environmental Effects. Agronomy 2023, 13, 3044. [Google Scholar] [CrossRef]
- Matveev, A.S.; Hoy, M.; Katupitiya, J.; Savkin, A.V. Nonlinear Sliding Mode Control of an Unmanned Agricultural Tractor in the Presence of Sliding and Control Saturation. Robot. Auton. Syst. 2013, 61, 973–987. [Google Scholar] [CrossRef]
- Taghia, J.; Wang, X.; Lam, S.; Katupitiya, J. A Sliding Mode Controller with a Nonlinear Disturbance Observer for a Farm Vehicle Operating in the Presence of Wheel Slip. Auton. Robot. 2017, 41, 71–88. [Google Scholar] [CrossRef]
- Liu, Z.; Zheng, W.; Wang, N.; Lyu, Z.; Zhang, W. Trajectory Tracking Control of Agricultural Vehicles Based on Disturbance Test. Int. J. Agric. Biol. Eng. 2020, 13, 138–145. [Google Scholar] [CrossRef]
- Ding, C.; Ding, S.; Wei, X.; Ji, X.; Sun, J.; Mei, K. Disturbance-Observer-Based Barrier Function Adaptive Sliding Mode Control for Path Tracking of Autonomous Agricultural Vehicles with Matched-Mismatched Disturbances. IEEE Trans. Transp. Electrif. 2024, 10, 6748–6760. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Z.; Ding, S.; Xia, J.; Xing, G. Adaptive Disturbance Observer-Based Fixed Time Nonsingular Terminal Sliding Mode Control for Path-Tracking of Unmanned Agricultural Tractors. Biosyst. Eng. 2024, 246, 96–109. [Google Scholar] [CrossRef]
- Lee, K.; Choi, H.; Kim, J. Development of Path Generation and Algorithm for Autonomous Combine Harvester Using Dual GPS Antenna. Sensors 2023, 23, 4944. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, G.; Lv, Y.; Qin, C.; Liu, L.; Gong, J. Agricultural Machinery Automatic Navigation Control System Based on Improved Pure Tracking Model. Trans. Chin. Soc. Agric. Mach. 2020, 51, 18–25. [Google Scholar]
- Zhang, J.; Chen, D.; Wang, S.; Yu, Z.; Wei, L.; Jia, Q. Research of INS/GNSS Heading Information Fusion Method for Agricultural Machinery Automatic Navigation System. Trans. Chin. Soc. Agric. Mach. 2015, 46, 1–7. [Google Scholar]
- Hu, C.; Jing, H.; Wang, R.; Yan, F.; Chadli, M. Robust H∞ Output-Feedback Control for Path Following of Autonomous Ground Vehicles. Mech. Syst. Signal Process. 2016, 70, 414–427. [Google Scholar] [CrossRef]
- Wang, J.; Dai, M.; Yin, G.; Chen, N. Output-Feedback Robust Control for Vehicle Path Tracking Considering Different Human Drivers’ Characteristics. Mechatronics 2018, 50, 402–412. [Google Scholar] [CrossRef]
- Meléndez-Useros, M.; Viadero-Monasterio, F.; Jiménez-Salas, M.; López-Boada, M.J. Static Output-Feedback Path-Tracking Controller Tolerant to Steering Actuator Faults for Distributed Driven Electric Vehicles. World Electr. Veh. J. 2025, 16, 40. [Google Scholar] [CrossRef]
- Ding, C.; Ding, S.; Wei, X.; Mei, K. Output Feedback Sliding Mode Control for Path-Tracking of Autonomous Agricultural Vehicles. Nonlinear Dyn. 2022, 110, 2429–2445. [Google Scholar] [CrossRef]
- Wang, X. Model Predictive Control for UAGV Path Tracking in the Presence of Wheel Slip. Ph.D. Thesis, UNSW Sydney, Sydney, Australia, 2017. [Google Scholar]
- Ding, S.; Dou, W.; Liu, J.; Sun, J.; Yang, J. Event-Triggered Adaptive Super-Twisting-Like Fractional Control for Path-Tracking of Unmanned Agricultural Vehicles. IEEE/ASME Trans. Mechatron. 2025. [Google Scholar] [CrossRef]
- Lenain, R.; Thuilot, B.; Cariou, C.; Martinet, P. High Accuracy Path Tracking for Vehicles in Presence of Sliding: Application to Farm Vehicle Automatic Guidance for Agricultural Tasks. Auton. Robots 2006, 21, 79–97. [Google Scholar] [CrossRef]
- Han, X.; Kim, H.J.; Jeon, C.W.; Moon, H.C.; Kin, J.H.; Yi, S.Y. Application of a 3D Tractor-Driving Simulator for Slip Estimation-Based Path-Tracking Control of Auto-Guided Tillage Operation. Biosyst. Eng. 2019, 178, 70–85. [Google Scholar] [CrossRef]
- Bayar, G.; Bergerman, M.; Koku, A.B. Improving the Trajectory Tracking Performance of Autonomous Orchard Vehicles Using Wheel Slip Compensation. Biosyst. Eng. 2016, 146, 149–164. [Google Scholar] [CrossRef]
- Lenain, R.; Deremetz, M.; Braconnier, J.B.; Thuilot, B.; Rousseau, V. Robust Sideslip Angles Observer for Accurate Off-Road Path Tracking Control. Adv. Robot. 2017, 31, 453–467. [Google Scholar] [CrossRef]
- Amer, N.H.; Zamzuri, H.; Hudha, K.; Kadir, Z.A. Modelling and Control Strategies in Path Tracking Control for Autonomous Ground Vehicles: A Review of State of the Art and Challenges. J. Intell. Robot. Syst. 2017, 86, 225–254. [Google Scholar] [CrossRef]
- Thuilot, B.; Cariou, C.; Martinet, P.; Berducat, M. Automatic Guidance of a Farm Tractor Relying on a Single CP-DGPS. Auton. Robot. 2002, 13, 53–71. [Google Scholar] [CrossRef]
- Shen, H.; Peng, C.; Yan, H.; Xu, S. Data-Driven Near Optimization for Fast Sampling Singularly Perturbed Systems. IEEE Trans. Autom. Control 2024, 69, 4689–4694. [Google Scholar] [CrossRef]
- Lu, E.; Xue, J.; Chen, T.; Jiang, S. Robust Trajectory Tracking Control of an Autonomous Tractor-Trailer Considering Model Parameter Uncertainties and Disturbances. Agriculture 2023, 13, 869. [Google Scholar] [CrossRef]
- Aguiar, A.P.; Hespanha, J.P. Trajectory-Tracking and Path-Following of Underactuated Autonomous Vehicles with Parametric Modeling Uncertainty. IEEE Trans. Autom. Control 2007, 52, 1362–1379. [Google Scholar] [CrossRef]
- Zheng, D.D.; Xie, W.F.; Chai, T.; Fu, Z. Identification and Trajectory Tracking Control of Nonlinear Singularly Perturbed Systems. IEEE Trans. Ind. Electron. 2016, 64, 3737–3747. [Google Scholar] [CrossRef]
- Cheng, S.; Li, L.; Chen, X.; Wu, J.; Wang, H.D. Model-Predictive-Control-Based Path Tracking Controller of Autonomous Vehicle Considering Parametric Uncertainties and Velocity-Varying. IEEE Trans. Ind. Electron. 2020, 68, 8698–8707. [Google Scholar] [CrossRef]
- Liu, Q.; Zen, D.; Ren, Y. Output-Feedback H∞ Path Tracking Control for Autonomous Vehicle Considering Model Uncertainty and Parameter Perturbation. SAE Tech. Pap. 2023. [Google Scholar] [CrossRef]
- Ge, Z.; Man, Z.; Wang, Z.; Bai, X.; Wang, X.; Xiong, F.; Li, D. Robust Adaptive Sliding Mode Control for Path Tracking of Unmanned Agricultural Vehicles. Comput. Electr. Eng. 2023, 108, 108693. [Google Scholar] [CrossRef]
- Bell, T. Automatic Tractor Guidance Using Carrier-Phase Differential GPS. Comput. Electron. Agr. 2000, 25, 53–66. [Google Scholar]
- Jing, Y.; Liu, G.; Luo, C. Path Tracking Control with Slip Compensation of a Global Navigation Satellite System Based Tractor-Scraper Land Leveling System. Biosyst. Eng. 2021, 212, 360–377. [Google Scholar] [CrossRef]
- Liu, J.; Liu, H.; Wang, J.; Gu, H. Coordinated Lateral Stability Control of Autonomous Vehicles Based on State Estimation and Path Tracking. Machines 2023, 11, 328. [Google Scholar] [CrossRef]
- He, J.; Hu, L.; Wang, P.; Liu, Y.; Man, Z.; Tu, T.; Yang, L.; Li, Y.; Yi, Y.; Li, W.; et al. Path Tracking Control Method and Performance Test Based on Agricultural Machinery Pose Correction. Comput. Electron. Agric. 2022, 200, 107185. [Google Scholar] [CrossRef]
- Jiang, H.; Deng, J.; Chen, Q. Olfactory Sensor Combined with Chemometrics Analysis to Determine Fatty Acid in Stored Wheat. Food Control 2023, 153, 109942. [Google Scholar] [CrossRef]
- Blok, P.M.; van Boheemen, K.; van Evert, F.K.; IJsselmuiden, J.; Kim, G.H. Robot Navigation in Orchards with Localization Based on Particle Filter and Kalman Filter. Comput. Electron. Agric. 2019, 157, 261–269. [Google Scholar] [CrossRef]
- Li, Y.; Wu, T.; Xiao, Y.; Gong, L.; Liu, C. Path Planning in Continuous Adjacent Farmlands and Robust Path-Tracking Control of a Rice-Seeding Robot in Paddy Field. Comput. Electron. Agric. 2023, 210, 107900. [Google Scholar]
- Yang, N.; Yu, J.; Wang, A.; Tang, J.; Zhang, R.; Xie, L.; Shu, F.; Kwabena, O.P. A Rapid Rice Blast Detection and Identification Method Based on Crop Disease Spores’ Diffraction Fingerprint Texture. J. Sci. Food Agric. 2020, 100, 3608–3621. [Google Scholar] [CrossRef]
- Shen, H.; Li, F.; Xu, S.; Sreeram, V. Slow State Variables Feedback Stabilization for Semi-Markov Jump Systems with Singular Perturbations. IEEE Trans. Autom. Control 2018, 63, 2709–2714. [Google Scholar]
- Gökçe, B.; Koca, Y.B.; Aslan, Y.; Gökçe, C.O. Particle Swarm Optimization-Based Optimal PID Control of an Agricultural Mobile Robot. C. R. Acad. Bulg. Sci. 2021, 74, 568–575. [Google Scholar]
- Zhang, L.; Zhang, R.; Zhang, D.; Yi, T.; Ding, C.; Chen, L. Path Curvature Incorporated Reinforcement Learning Method for Accurate Path Tracking of Agricultural Vehicles. Comput. Electron. Agric. 2025, 234, 110243. [Google Scholar] [CrossRef]
- Dang, F.; Chen, D.; Chen, J.; Li, Z. Event-Triggered Model Predictive Control with Deep Reinforcement Learning for Autonomous Driving. IEEE Trans. Intell. Veh. 2024, 9, 459–468. [Google Scholar]
- Shen, H.; Wu, J.; Wang, J.; Wu, Z. Adversarial Dynamic Games for Markov Jump Systems: A Policy Iteration Q-Learning Method. Automatica 2026, 183, 112591. [Google Scholar]
- Han, Z.; Chen, P.; Zhou, B.; Yu, G. Hybrid Path Tracking Control for Autonomous Trucks: Integrating Pure Pursuit and Deep Reinforcement Learning with Adaptive Look-Ahead Mechanism. IEEE Trans. Intell. Transp. Syst. 2025, 26, 7098–7112. [Google Scholar] [CrossRef]
- Zhao, J.; Fan, S.; Zhang, B.; Wang, A.; Zhang, L.; Zhu, Q. Research Status and Development Trends of Deep Reinforcement Learning in the Intelligent Transformation of Agricultural Machinery. Agriculture 2025, 15, 1223. [Google Scholar] [CrossRef]
- Yang, H.; Qin, Z.; Xia, Y.; Cheng, F. Digital Twin-Based Autonomous Navigation and Control of Omnidirectional Mobile Robots. IEEE Trans. Veh. Technol. 2025, 74, 5687–5697. [Google Scholar]
- Lv, J.; Mao, S.; Qiang, L.; Hou, Y.; Song, D. Tokamak O&M Robot Dynamic Control by Using Optimized FABRIK and Spatial Partition Strategies in Digital Twin System. IEEE Trans. Ind. Inform. 2025, 21, 1595–1604. [Google Scholar]
- Hung, N.T.; Rego, F.F.C.; Pascoal, A.M. Cooperative Distributed Estimation and Control of Multiple Autonomous Vehicles for Range-Based Underwater Target Localization and Pursuit. IEEE Trans. Control Syst. Technol. 2022, 30, 1433–1447. [Google Scholar]
- Li, Y.; Cai, Y.; Sun, X.; Chen, L.; Lian, Y. Distributed Cooperative Control of Autonomous Vehicle Chassis Based on Multiagent Theory. IEEE Trans. Transp. Electrif. 2025, 11, 5324–5336. [Google Scholar]


























| Authors | Research Object | Research Content | Control Methods | Working Scenario |
|---|---|---|---|---|
| Shen et al., 2025 [11] | Orchard mobile robots | Path planning and tracking control methods for AAV | Tradition and intelligent control methods | Orchard |
| Wu et al., 2025 [33] | Agricultural machinery | Key technologies for autonomous navigation | Based on geometric, kinematic and dynamic model | – |
| Zhang et al., 2025 [34] | Agricultural ground vehicles | Modeling and control approaches for path tracking | Kinematic and dynamic model | Dry field, paddy field, orchard, and greenhouse |
| Yang et al., 2025 [35] | Tractor-trailer | Trajectory planning and tracking methods | Based on kinematic and dynamic model | – |
| Wang et al., 2023 [8] | AAVs | Modelling and control methods in path tracking control | Kinematic and dynamic model | Dry field, paddy field, orchard, and greenhouse |
| Stano et al., 2023 [36] | Automated road vehicle | MPC for automated vehicle path tracking | Various MPC methods | – |
| Ruslan et al., 2023 [37] | Autonomous tracked vehicle | Path tracking control for AAVs through modeling and methods | Kinematic-based controllers and adaptive intelligent controllers | – |
| Ren et al., 2023 [38] | Autonomous mobility of agricultural platform | Autonomous navigation of the agricultural platform | Navigation algorithm for agricultural mobile platform | Scenes of horticultural facilities and field environment |
| Wang et al., 2022 [39] | Agricultural robots | Utilization of machine vision in agricultural robot navigation | Image partitioning algorithm, target identification algorithm | Dry field, paddy field, orchard, and greenhouse |
| Zhang et al., 2020 [40] | Agricultural machinery | Navigation technology of agricultural machinery | Integration algorithms, and navigation control strategies | – |
| Ours | AAVs | Modeling and control methods for AAV path tracking | Path tracking control method | Dry field, paddy field, orchard, and greenhouse, etc. |
| Scenarios | Platforms | Control Methods | Practical Difficulties | References |
|---|---|---|---|---|
| Dry field |
|
|
| [45,46,47,48,49] |
| Paddy field |
|
|
| [51,52,54,55,56,57,58] |
| Orchard |
|
|
| [63,64,66,67,68,69] |
| Compact specialized agriculture robots |
|
|
| [75,76,77,78] |
| Vehicle Models | Key Advantages | Main Limitations | Applicable Scenarios |
|---|---|---|---|
| Kinematic model | Simple model structure; high computational efficiency; minimal parameter requirements | Neglects tire dynamics; cannot characterize inertial effects; large errors in high-speed scenarios | Structured flat terrain; low-speed operations; gentle path curvature |
| Dynamic model | High physical fidelity; models terrain mechanics; significantly improves control accuracy on rugged terrain | High modeling complexity; relies on accurate tire-terrain parameters; poor real-time performance | Unstructured complex terrain; high-speed operations; high precision tracking requirements |
| Control Methods | Conventional Super-twisting | Continuous Super-twisting | Composite Continuous Super-twisting |
| Principle | Designs a rapidly switching control law to achieve system stability. | Designs a continuous control law to mitigate chattering issues. | Utilizes a continuous super-twisting controller integrated with a disturbance observer. |
| Advantages | Strong robustness and capability for finite-time convergence. | Eliminates chattering issues arising from high-frequency switching. | Enhances anti-interference capability through disturbance observation. |
| Limitations | Switching control may cause high-frequency chattering in the controller. | Demanding parameter tuning and limited anti-interference ability. | High complexity and certain requirements on hardware performance. |
| Applicable Scenarios | Working conditions requiring high control precision and stability. | Scenarios where control accuracy is critical and chattering must be minimized. | Intricate settings with unforeseen disturbances and high precision control requirements. |
| Classification of Control Methods | Control Methods | Applicable Scenarios | References |
|---|---|---|---|
| Model-free Control |
|
| [125,126,127,128,135,136] |
| Model-based Control: Based on the Geometry Model |
|
| [107,108,112,113] |
| Model-based Control: Based on the Kinematic Model |
|
| [43,101,102,103,144,145,146,147,148] |
| Model-based Control: Based on the Dynamic Model |
|
| [18,19,23,149] |
| Control Methods | Governing Equations | Key Assumptions |
|---|---|---|
| PID control | System error is measurable; performance is heavily dependent on empirical parameter tuning. | |
| Pure pursuit | Based on geometric model; effective at low speeds. | |
| Stanley control | The reference path is sufficiently smooth; combines feedforward and feedback. | |
| LQR | The system can be accurately linearized; full state observability is required. | |
| MPC | An accurate predictive model is available; the prediction horizon N is finite. | |
| SMC | First-order SMC: | Scenarios where control accuracy is critical and chattering must be minimized. |
| Second-order SMC: | ||
| Conventional super-twisting SMC: | ||
| Continuous super-twisting SMC: | ||
| Composite continuous super-twisting SMC: |
| Control Methods | Key Advantages | Main Limitations | Lateral Error | References |
|---|---|---|---|---|
| PID control | Simple structure, easy implementation, good stability | Parameter tuning relies on experience, poor adaptability to nonlinear/time-varying systems | 5–15 cm | [90,91,92,93] |
| Fuzzy control | No precise model needed, excels at handling uncertainty and nonlinearity | Rule base design is contingent on expert experience, potentially limiting real-time performance | 4–12 cm | [125,126,127,128] |
| NNC | Strong self-learning ability, can approximate complex nonlinear dynamics | Requires large training data, large computational overhead, risks of overfitting | 3–10 cm | [129,132,133,134,135,136] |
| Pure pursuit | Straightforward concept, limited easy-to-tune parameters, smooth path | Unstable during sharp turns with fixed lookahead distance, poor speed adaptability | 5–20 cm | [106,107,108] |
| Stanley control | Considers heading offset, high tracking accuracy at low speeds | May oscillate at high speeds, parameters sensitive to road adhesion coefficients | 4–13 cm | [110,111,112,113] |
| LQR | Theoretically optimal solution, guarantees closed loop stability, suitable for linear systems | Limited to linear models, performance declines in highly nonlinear scenarios | 4–10 cm | [95,96,97,150] |
| MPC | Explicitly handles constraints, optimizes future states, strong robustness with rolling optimization | High online computational load, demands high model accuracy | 3–9 cm | [100,101,102,103] |
| SMC | Highly resilient to parameter variations and external disturbances, rapid convergence | Prone to high frequency chattering, control inputs may be discontinuous | 3–8 cm | [145,146,147,148] |
| Key Performance | Main Issues | Improvement Solutions | Platforms | References |
|---|---|---|---|---|
| Disturbance Rejection Capability Enhancement Under Complex Working Conditions | Underestimation of disturbances; robustness incurs computational load and chattering |
|
| [154,155,156,157,158] |
| Stability Enhancement Under Loss of Heading | GNSS outages and IMU drift compromise heading accuracy; output feedback lacks steady state retention |
|
| [162,163,164,165] |
| Tracking Accuracy Enhancement Under Sideslip Influence | Complex terrain hampers modeling; anti-slip efficacy degrades under extreme conditions |
|
| [168,169,170,171] |
| Integrated Performance Enhancement Under Model Parameter Perturbations | Tire parameters and vehicle speeds that change over time hinder real-time global convergence |
|
| [176,177,178,179,180] |
| Challenge Type | Main Difficulties | Possible Solutions |
|---|---|---|
| Vehicle Model |
|
|
| Controller Design |
|
|
| Tracking Accuracy in Complex Environments |
|
|
| Adaptability of Algorithms |
|
|
| Technical Direction | Current Assessment of TRL | Hardware Requirements | Software Requirements |
|---|---|---|---|
| Deep Reinforcement Learning | TRL 4 (Laboratory Validation) |
|
|
| Digital Twin Technology | TRL 5 (Component-Level Validation) |
|
|
| Distributed Control Architectures | TRL 6 (Field Prototype Testing) |
|
|
| Established Technologies (MPC/SMC) | TRL 6–7 (Field Application) |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Sun, J.; Ding, S.; Li, Q.; Ma, L. Path Tracking Control in Autonomous Agricultural Vehicles: A Systematic Survey of Models, Methods, and Challenges. Agriculture 2025, 15, 2522. https://doi.org/10.3390/agriculture15232522
Sun C, Sun J, Ding S, Li Q, Ma L. Path Tracking Control in Autonomous Agricultural Vehicles: A Systematic Survey of Models, Methods, and Challenges. Agriculture. 2025; 15(23):2522. https://doi.org/10.3390/agriculture15232522
Chicago/Turabian StyleSun, Chuanhao, Jinlin Sun, Shihong Ding, Qiushi Li, and Li Ma. 2025. "Path Tracking Control in Autonomous Agricultural Vehicles: A Systematic Survey of Models, Methods, and Challenges" Agriculture 15, no. 23: 2522. https://doi.org/10.3390/agriculture15232522
APA StyleSun, C., Sun, J., Ding, S., Li, Q., & Ma, L. (2025). Path Tracking Control in Autonomous Agricultural Vehicles: A Systematic Survey of Models, Methods, and Challenges. Agriculture, 15(23), 2522. https://doi.org/10.3390/agriculture15232522

