Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (180)

Search Parameters:
Keywords = autonomous agricultural vehicle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7705 KiB  
Article
Implementation of SLAM-Based Online Mapping and Autonomous Trajectory Execution in Software and Hardware on the Research Platform Nimbulus-e
by Thomas Schmitz, Marcel Mayer, Theo Nonnenmacher and Matthias Schmitz
Sensors 2025, 25(15), 4830; https://doi.org/10.3390/s25154830 - 6 Aug 2025
Abstract
This paper presents the design and implementation of a SLAM-based online mapping and autonomous trajectory execution system for the Nimbulus-e, a concept vehicle designed for agile maneuvering in confined spaces. The Nimbulus-e uses individual steer-by-wire corner modules with in-wheel motors at all four [...] Read more.
This paper presents the design and implementation of a SLAM-based online mapping and autonomous trajectory execution system for the Nimbulus-e, a concept vehicle designed for agile maneuvering in confined spaces. The Nimbulus-e uses individual steer-by-wire corner modules with in-wheel motors at all four corners. The associated eight joint variables serve as control inputs, allowing precise trajectory following. These control inputs can be derived from the vehicle’s trajectory using nonholonomic constraints. A LiDAR sensor is used to map the environment and detect obstacles. The system processes LiDAR data in real time, continuously updating the environment map and enabling localization within the environment. The inclusion of vehicle odometry data significantly reduces computation time and improves accuracy compared to a purely visual approach. The A* and Hybrid A* algorithms are used for trajectory planning and optimization, ensuring smooth vehicle movement. The implementation is validated through both full vehicle simulations using an ADAMS Car—MATLABco-simulation and a scaled physical prototype, demonstrating the effectiveness of the system in navigating complex environments. This work contributes to the field of autonomous systems by demonstrating the potential of combining advanced sensor technologies with innovative control algorithms to achieve reliable and efficient navigation. Future developments will focus on improving the robustness of the system by implementing a robust closed-loop controller and exploring additional applications in dense urban traffic and agricultural operations. Full article
Show Figures

Figure 1

24 pages, 4519 KiB  
Article
Aerial Autonomy Under Adversity: Advances in Obstacle and Aircraft Detection Techniques for Unmanned Aerial Vehicles
by Cristian Randieri, Sai Venkata Ganesh, Rayappa David Amar Raj, Rama Muni Reddy Yanamala, Archana Pallakonda and Christian Napoli
Drones 2025, 9(8), 549; https://doi.org/10.3390/drones9080549 - 4 Aug 2025
Viewed by 164
Abstract
Unmanned Aerial Vehicles (UAVs) have rapidly grown into different essential applications, including surveillance, disaster response, agriculture, and urban monitoring. However, for UAVS to steer safely and autonomously, the ability to detect obstacles and nearby aircraft remains crucial, especially under hard environmental conditions. This [...] Read more.
Unmanned Aerial Vehicles (UAVs) have rapidly grown into different essential applications, including surveillance, disaster response, agriculture, and urban monitoring. However, for UAVS to steer safely and autonomously, the ability to detect obstacles and nearby aircraft remains crucial, especially under hard environmental conditions. This study comprehensively analyzes the recent landscape of obstacle and aircraft detection techniques tailored for UAVs acting in difficult scenarios such as fog, rain, smoke, low light, motion blur, and disorderly environments. It starts with a detailed discussion of key detection challenges and continues with an evaluation of different sensor types, from RGB and infrared cameras to LiDAR, radar, sonar, and event-based vision sensors. Both classical computer vision methods and deep learning-based detection techniques are examined in particular, highlighting their performance strengths and limitations under degraded sensing conditions. The paper additionally offers an overview of suitable UAV-specific datasets and the evaluation metrics generally used to evaluate detection systems. Finally, the paper examines open problems and coming research directions, emphasising the demand for lightweight, adaptive, and weather-resilient detection systems appropriate for real-time onboard processing. This study aims to guide students and engineers towards developing stronger and intelligent detection systems for next-generation UAV operations. Full article
Show Figures

Figure 1

25 pages, 4273 KiB  
Review
How Can Autonomous Truck Systems Transform North Dakota’s Agricultural Supply Chain Industry?
by Emmanuel Anu Thompson, Jeremy Mattson, Pan Lu, Evans Tetteh Akoto, Solomon Boadu, Herman Benjamin Atuobi, Kwabena Dadson and Denver Tolliver
Future Transp. 2025, 5(3), 100; https://doi.org/10.3390/futuretransp5030100 - 1 Aug 2025
Viewed by 165
Abstract
The swift advancements in autonomous vehicle systems have facilitated their implementation across various industries, including agriculture. However, studies primarily focus on passenger vehicles, with fewer examining autonomous trucks. Therefore, this study reviews autonomous truck systems implementation in North Dakota’s agricultural industry to develop [...] Read more.
The swift advancements in autonomous vehicle systems have facilitated their implementation across various industries, including agriculture. However, studies primarily focus on passenger vehicles, with fewer examining autonomous trucks. Therefore, this study reviews autonomous truck systems implementation in North Dakota’s agricultural industry to develop comprehensive technology readiness frameworks and strategic deployment approaches. The review integrates systematic literature review and event history analysis of 52 studies, categorized using Social–Ecological–Technological Systems framework across six dimensions: technological, economic, social change, legal, environmental, and implementation challenges. The Technology Readiness Level (TRL) analysis reveals 39.5% of technologies achieving commercial readiness (TRL 8–9), including GPS/RTK positioning and V2V communication demonstrated through Minn-Dak Farmers Cooperative deployments, while gaps exist in TRL 4–6 technologies, particularly cold-weather operations. Nonetheless, challenges remain, including legislative fragmentation, inadequate rural infrastructure, and barriers to public acceptance. The study provides evidence-based recommendations that support a strategic three-phase deployment approach for the adoption of autonomous trucks in agriculture. Full article
Show Figures

Figure 1

16 pages, 3001 KiB  
Article
Tractor Path Tracking Control Method Based on Prescribed Performance and Sliding Mode Control
by Liwei Zhu, Weiming Sun, Qian Zhang, En Lu, Jialin Xue and Guohui Sha
Agriculture 2025, 15(15), 1663; https://doi.org/10.3390/agriculture15151663 - 1 Aug 2025
Viewed by 215
Abstract
In addressing the challenges of low path tracking accuracy and poor robustness during tractor autonomous operation, this paper proposes a path tracking control method for tractors that integrates prescribed performance with sliding mode control (SMC). A key feature of this control method is [...] Read more.
In addressing the challenges of low path tracking accuracy and poor robustness during tractor autonomous operation, this paper proposes a path tracking control method for tractors that integrates prescribed performance with sliding mode control (SMC). A key feature of this control method is its inherent immunity to system parameter perturbations and external disturbances, while ensuring path tracking errors are constrained within a predefined range. First, the tractor is simplified into a two-wheeled vehicle model, and a path tracking error model is established based on the reference operation trajectory. By defining a prescribed performance function, the constrained tracking control problem is transformed into an unconstrained stability control problem, guaranteeing the boundedness of tracking errors. Then, by incorporating SMC theory, a prescribed performance sliding mode path tracking controller is designed to achieve robust path tracking and error constraint for the tractor. Finally, both simulation and field experiments are conducted to validate the method. The results demonstrate that compared with the traditional SMC method, the proposed method effectively mitigates the impact of complex farmland conditions, reducing path tracking errors while enforcing strict error constraints. Field experiment data shows the proposed method achieves an average absolute error of 0.02435 m and a standard deviation of 0.02795 m, confirming its effectiveness and superiority. This research lays a foundation for the intelligent development of agricultural machinery. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

25 pages, 6462 KiB  
Article
Phenotypic Trait Acquisition Method for Tomato Plants Based on RGB-D SLAM
by Penggang Wang, Yuejun He, Jiguang Zhang, Jiandong Liu, Ran Chen and Xiang Zhuang
Agriculture 2025, 15(15), 1574; https://doi.org/10.3390/agriculture15151574 - 22 Jul 2025
Viewed by 215
Abstract
The acquisition of plant phenotypic traits is essential for selecting superior varieties, improving crop yield, and supporting precision agriculture and agricultural decision-making. Therefore, it plays a significant role in modern agriculture and plant science research. Traditional manual measurements of phenotypic traits are labor-intensive [...] Read more.
The acquisition of plant phenotypic traits is essential for selecting superior varieties, improving crop yield, and supporting precision agriculture and agricultural decision-making. Therefore, it plays a significant role in modern agriculture and plant science research. Traditional manual measurements of phenotypic traits are labor-intensive and inefficient. In contrast, combining 3D reconstruction technologies with autonomous vehicles enables more intuitive and efficient trait acquisition. This study proposes a 3D semantic reconstruction system based on an improved ORB-SLAM3 framework, which is mounted on an unmanned vehicle to acquire phenotypic traits in tomato cultivation scenarios. The vehicle is also equipped with the A * algorithm for autonomous navigation. To enhance the semantic representation of the point cloud map, we integrate the BiSeNetV2 network into the ORB-SLAM3 system as a semantic segmentation module. Furthermore, a two-stage filtering strategy is employed to remove outliers and improve the map accuracy, and OctoMap is adopted to store the point cloud data, significantly reducing the memory consumption. A spherical fitting method is applied to estimate the number of tomato fruits. The experimental results demonstrate that BiSeNetV2 achieves a mean intersection over union (mIoU) of 95.37% and a frame rate of 61.98 FPS on the tomato dataset, enabling real-time segmentation. The use of OctoMap reduces the memory consumption by an average of 96.70%. The relative errors when predicting the plant height, canopy width, and volume are 3.86%, 14.34%, and 27.14%, respectively, while the errors concerning the fruit count and fruit volume are 14.36% and 14.25%. Localization experiments on a field dataset show that the proposed system achieves a mean absolute trajectory error (mATE) of 0.16 m and a root mean square error (RMSE) of 0.21 m, indicating high localization accuracy. Therefore, the proposed system can accurately acquire the phenotypic traits of tomato plants, providing data support for precision agriculture and agricultural decision-making. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

23 pages, 5173 KiB  
Article
Improvement of Cooperative Localization for Heterogeneous Mobile Robots
by Efe Oğuzhan Karcı, Ahmet Mustafa Kangal and Sinan Öncü
Drones 2025, 9(7), 507; https://doi.org/10.3390/drones9070507 - 19 Jul 2025
Viewed by 366
Abstract
This research focuses on enhancing cooperative localization for heterogeneous mobile robots composed of a quadcopter and an unmanned ground vehicle. The study employs sensor fusion techniques, particularly the Extended Kalman Filter, to fuse data from various sensors, including GPSs, IMUs, and cameras. By [...] Read more.
This research focuses on enhancing cooperative localization for heterogeneous mobile robots composed of a quadcopter and an unmanned ground vehicle. The study employs sensor fusion techniques, particularly the Extended Kalman Filter, to fuse data from various sensors, including GPSs, IMUs, and cameras. By integrating these sensors and optimizing fusion strategies, the research aims to improve the precision and reliability of cooperative localization in complex and dynamic environments. The primary objective is to develop a practical framework for cooperative localization that addresses the challenges posed by the differences in mobility and sensing capabilities among heterogeneous robots. Sensor fusion is used to compensate for the limitations of individual sensors, providing more accurate and robust localization results. Moreover, a comparative analysis of different sensor combinations and fusion strategies helps to identify the optimal configuration for each robot. This research focuses on the improvement of cooperative localization, path planning, and collaborative tasks for heterogeneous robots. The findings have broad applications in fields such as autonomous transportation, agricultural operation, and disaster response, where the cooperation of diverse robotic platforms is crucial for mission success. Full article
Show Figures

Figure 1

33 pages, 3235 KiB  
Article
Intelligent Assurance of Resilient UAV Navigation Under Visual Data Deficiency for Sustainable Development of Smart Regions
by Serhii Semenov, Magdalena Krupska-Klimczak, Olga Wasiuta, Beata Krzaczek, Patryk Mieczkowski, Leszek Głowacki, Jian Yu, Jiang He and Olena Chernykh
Sustainability 2025, 17(13), 6030; https://doi.org/10.3390/su17136030 - 1 Jul 2025
Viewed by 402
Abstract
Ensuring the resilient navigation of unmanned aerial vehicles (UAVs) under conditions of limited or unstable sensor information is one of the key challenges of modern autonomous mobility within smart infrastructure and sustainable development. This article proposes an intelligent autonomous UAV control method based [...] Read more.
Ensuring the resilient navigation of unmanned aerial vehicles (UAVs) under conditions of limited or unstable sensor information is one of the key challenges of modern autonomous mobility within smart infrastructure and sustainable development. This article proposes an intelligent autonomous UAV control method based on the integration of geometric trajectory modeling, neural network-based sensor data filtering, and reinforcement learning. The geometric model, constructed using path coordinates, allows the trajectory tracking problem to be formalized as an affine control system, which ensures motion stability even in cases of partial data loss. To process noisy or fragmented GPS and IMU signals, an LSTM-based recurrent neural network filter is implemented. This significantly reduces positioning errors and maintains trajectory stability under environmental disturbances. In addition, the navigation system includes a reinforcement learning module that performs real-time obstacle prediction, path correction, and speed adaptation. The method has been tested in a simulated environment with limited sensor availability, variable velocity profiles, and dynamic obstacles. The results confirm the functionality and effectiveness of the proposed navigation system under sensor-deficient conditions. The approach is applicable to environmental monitoring, autonomous delivery, precision agriculture, and emergency response missions within smart regions. Its implementation contributes to achieving the Sustainable Development Goals (SDG 9, SDG 11, and SDG 13) by enhancing autonomy, energy efficiency, and the safety of flight operations. Full article
Show Figures

Figure 1

18 pages, 2421 KiB  
Article
Self-Adjusting Look-Ahead Distance of Precision Path Tracking for High-Clearance Sprayers in Field Navigation
by Xu Wang, Bo Zhang, Xintong Du, Huailin Chen, Tianwen Zhu and Chundu Wu
Agronomy 2025, 15(6), 1433; https://doi.org/10.3390/agronomy15061433 - 12 Jun 2025
Viewed by 618
Abstract
As a core component of agricultural machinery autonomous navigation, path tracking control holds significant research value. The pure pursuit algorithm has become a prevalent method for agricultural vehicle navigation due to its effectiveness at low speeds, yet its performance critically depends on the [...] Read more.
As a core component of agricultural machinery autonomous navigation, path tracking control holds significant research value. The pure pursuit algorithm has become a prevalent method for agricultural vehicle navigation due to its effectiveness at low speeds, yet its performance critically depends on the selection of the look-ahead distance. The conventional approaches require extensive parameter tuning due to the complex influencing factors, while fixed look-ahead distances struggle to balance the tracking accuracy and adaptability. Considerable effort is required to fine-tune the system to achieve optimal performance, which directly affects the accuracy of the path tracking and the results in the cumbersome task of selecting an appropriate goal point for the tracking path. To address these challenges, this paper introduces a pure pursuit algorithm for high-clearance sprayers in agricultural machinery, utilizing a self-adjusting look-ahead distance. By developing a kinematic model of the pure pursuit algorithm for agricultural machinery, an evaluation function is then employed to estimate the pose of the machinery and identify the corresponding optimal look-ahead distance within the designated area. This is done based on the principle of minimizing the overall error, enabling the dynamic and adaptive optimization of the look-ahead distance within the pure pursuit algorithm. Finally, this algorithm was verified in simulations and bumpy field tests under various different conditions, with the average value of the lateral error reduced by more than 0.06 m and the tuning steps also significantly reduced compared to the fixed look-ahead distance in field tests. The tracking accuracy has been improved and the applicability of the algorithm for rapid deployment has been enhanced. Full article
(This article belongs to the Special Issue Robotics and Automation in Farming)
Show Figures

Figure 1

31 pages, 7861 KiB  
Article
Improving Sustainable Viticulture in Developing Countries: A Case Study
by Zandra Betzabe Rivera Chavez, Alessia Porcaro, Marco Claudio De Simone and Domenico Guida
Sustainability 2025, 17(12), 5338; https://doi.org/10.3390/su17125338 - 9 Jun 2025
Viewed by 798
Abstract
This paper presents the identification of the functional requirements and development of a preliminary concept of the AgriRover, a low-cost, modular autonomous vehicle intended to support sustainable practices in traditional vineyards in developing countries, focusing on the Ica region of Peru. Viticulture in [...] Read more.
This paper presents the identification of the functional requirements and development of a preliminary concept of the AgriRover, a low-cost, modular autonomous vehicle intended to support sustainable practices in traditional vineyards in developing countries, focusing on the Ica region of Peru. Viticulture in this region faces acute challenges such as soil salinity, climate variability, labour shortages, and low technological readiness. Rather than offering a ready-made technological integration, this study adopts a step-by-step design approach grounded in the realities of smallholder farmers. The authors mapped the phenological stages of grapevines using the BBCH scale and systematically reviewed available sensing and monitoring technologies to determine the most context-appropriate solutions. Virtual modelling and preliminary analysis validate AgriRover’s geometric configuration and path-following capabilities within narrow vineyard rows. The proposed platform is meant to be adaptable, scalable, and maintainable using locally available material and human resources. AgriRover offers a practical and affordable foundation for precision agriculture in resource-constrained settings by aligning viticultural challenges with sensor deployment strategies and sustainability criteria. The sustainability analysis of the initial AgriRover concept was evaluated using the CML methodology, accounting for local waste processing rates and energy mixes to reflect environmental realities in Peru. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

17 pages, 8639 KiB  
Article
Route Optimization for UGVs: A Systematic Analysis of Applications, Algorithms and Challenges
by Dario Fernando Yépez-Ponce, William Montalvo, Ximena Alexandra Guamán-Gavilanes and Mauricio David Echeverría-Cadena
Appl. Sci. 2025, 15(12), 6477; https://doi.org/10.3390/app15126477 - 9 Jun 2025
Viewed by 649
Abstract
This research focuses on route optimization for autonomous ground vehicles, with key applications in precision agriculture, logistics and surveillance. Its goal is to create planning techniques that increase productivity and flexibility in changing settings. To achieve this, a PRISMA-based systematic literature review was [...] Read more.
This research focuses on route optimization for autonomous ground vehicles, with key applications in precision agriculture, logistics and surveillance. Its goal is to create planning techniques that increase productivity and flexibility in changing settings. To achieve this, a PRISMA-based systematic literature review was carried out, encompassing works published during the last five years in databases like IEEE Xplore, ScienceDirect and Scopus. The search focused on topics related to route optimization, unmanned ground vehicles and heuristic algorithms. From the analysis of 56 selected articles, trends, technologies and challenges in real-time route planning were identified. Fifty-seven percent of the recent studies focus on UGV optimization, with prominent applications in agriculture, aiming to maximize efficiency and reduce costs. Heuristic algorithms, such as Humpback Whale Optimization, Firefly Search and Particle Swarm Optimization, are commonly employed to solve complex search problems. The findings underscore the need for more flexible planning techniques that integrate spatiotemporal and curvature constraints, allowing systems to respond effectively to unforeseen changes. By increasing their effectiveness and adaptability in practical situations, our research helps to provide more reliable autonomous navigation solutions for crucial applications. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

30 pages, 16390 KiB  
Article
Model-Based RL Decision-Making for UAVs Operating in GNSS-Denied, Degraded Visibility Conditions with Limited Sensor Capabilities
by Sebastien Boiteau, Fernando Vanegas, Julian Galvez-Serna and Felipe Gonzalez
Drones 2025, 9(6), 410; https://doi.org/10.3390/drones9060410 - 4 Jun 2025
Viewed by 1683
Abstract
Autonomy in Unmanned Aerial Vehicle (UAV) navigation has enabled applications in diverse fields such as mining, precision agriculture, and planetary exploration. However, challenging applications in complex environments complicate the interaction between the agent and its surroundings. Conditions such as the absence of a [...] Read more.
Autonomy in Unmanned Aerial Vehicle (UAV) navigation has enabled applications in diverse fields such as mining, precision agriculture, and planetary exploration. However, challenging applications in complex environments complicate the interaction between the agent and its surroundings. Conditions such as the absence of a Global Navigation Satellite System (GNSS), low visibility, and cluttered environments significantly increase uncertainty levels and cause partial observability. These challenges grow when compact, low-cost, entry-level sensors are employed. This study proposes a model-based reinforcement learning (RL) approach to enable UAVs to navigate and make decisions autonomously in environments where the GNSS is unavailable and visibility is limited. Designed for search and rescue operations, the system enables UAVs to navigate cluttered indoor environments, detect targets, and avoid obstacles under low-visibility conditions. The architecture integrates onboard sensors, including a thermal camera to detect a collapsed person (target), a 2D LiDAR and an IMU for localization. The decision-making module employs the ABT solver for real-time policy computation. The framework presented in this work relies on low-cost, entry-level sensors, making it suitable for lightweight UAV platforms. Experimental results demonstrate high success rates in target detection and robust performance in obstacle avoidance and navigation despite uncertainties in pose estimation and detection. The framework was first assessed in simulation, compared with a baseline algorithm, and then through real-life testing across several scenarios. The proposed system represents a step forward in UAV autonomy for critical applications, with potential extensions to unknown and fully stochastic environments. Full article
Show Figures

Figure 1

25 pages, 1595 KiB  
Review
Research Status and Development Trends of Deep Reinforcement Learning in the Intelligent Transformation of Agricultural Machinery
by Jiamuyang Zhao, Shuxiang Fan, Baohua Zhang, Aichen Wang, Liyuan Zhang and Qingzhen Zhu
Agriculture 2025, 15(11), 1223; https://doi.org/10.3390/agriculture15111223 - 4 Jun 2025
Viewed by 1256
Abstract
With the acceleration of agricultural intelligent transformation, deep reinforcement learning (DRL), leveraging its adaptive perception and decision-making capabilities in complex environments, has emerged as a pivotal technology in advancing the intelligent upgrade of agricultural machinery and equipment. For example, in UAV path optimization, [...] Read more.
With the acceleration of agricultural intelligent transformation, deep reinforcement learning (DRL), leveraging its adaptive perception and decision-making capabilities in complex environments, has emerged as a pivotal technology in advancing the intelligent upgrade of agricultural machinery and equipment. For example, in UAV path optimization, DRL can help UAVs plan more efficient flight paths to cover more areas in less time. To enhance the systematicity and credibility of this review, this paper systematically examines the application status, key issues, and development trends of DRL in agricultural scenarios, based on the research literature from mainstream Chinese and English databases spanning from 2018 to 2024. From the perspective of algorithm–hardware synergy, the article provides an in-depth analysis of DRL’s specific applications in agricultural ground platform navigation, path planning for intelligent agricultural end-effectors, and autonomous operations of low-altitude unmanned aerial vehicles. It highlights the technical advantages of DRL by integrating typical experimental outcomes, such as improved path-tracking accuracy and optimized spraying coverage. Meanwhile, this paper identifies three major challenges facing DRL in agricultural contexts: the difficulty of dynamic path planning in unstructured environments, constraints imposed by edge computing resources on algorithmic real-time performance, and risks to policy reliability and safety under human–machine collaboration conditions. Looking forward, the DRL-driven smart transformation of agricultural machinery will focus on three key aspects: (1) The first aspect is developing a hybrid decision-making architecture based on model predictive control (MPC). This aims to enhance the strategic stability and decision-making interpretability of agricultural machinery (like unmanned tractors, harvesters, and drones) in complex and dynamic field environments. This is essential for ensuring the safe and reliable autonomous operation of machinery. (2) The second aspect is designing lightweight models that support edge-cloud collaborative deployment. This can meet the requirements of low-latency responses and low-power operation in edge computing scenarios during field operations, providing computational power for the real-time intelligent decision-making of machinery. (3) The third aspect is integrating meta-learning with self-supervised mechanisms. This helps improve the algorithm’s fast generalization ability across different crop types, climates, and geographical regions, ensuring the smart agricultural machinery system has broad adaptability and robustness and accelerating its application in various agricultural settings. This paper proposes research directions from three key dimensions-“algorithm capability enhancement, deployment architecture optimization, and generalization ability improvement”-offering theoretical references and practical pathways for the continuous evolution of intelligent agricultural equipment. Full article
Show Figures

Figure 1

20 pages, 10201 KiB  
Article
On First-Principle Robot Building in Undergraduate Robotics Education in the Robotic System Levels Model
by Bryan Van Scoy, Peter Jamieson and Veena Chidurala
Robotics 2025, 14(6), 70; https://doi.org/10.3390/robotics14060070 - 27 May 2025
Cited by 1 | Viewed by 1094
Abstract
Robotics has widespread applications throughout industrial automation, autonomous vehicles, agriculture, and more. For these reasons, undergraduate education has begun to focus on preparing engineering students to directly contribute to the design and use of such systems. However, robotics is inherently multi-disciplinary and requires [...] Read more.
Robotics has widespread applications throughout industrial automation, autonomous vehicles, agriculture, and more. For these reasons, undergraduate education has begun to focus on preparing engineering students to directly contribute to the design and use of such systems. However, robotics is inherently multi-disciplinary and requires knowledge of controls and automation, embedded systems, sensors, signal processing, algorithms, and artificial intelligence. This makes training the future robotics workforce a challenge. In this paper, we evaluate our experiences with project-based learning approaches to teaching robotics at the undergraduate level at Miami University. Specifically, we analyze three consecutive years of capstone design projects on increasingly complex robotics design problems for multi-robot systems. We also evaluate the laboratories taught in our course “ECE 314: Elements of Robotics”. We have chosen these four experiences since they focus on the use of “cheap” first-principled robots, meaning that these robots sit on the fringe of embedded system design in that much of the student time is spent on working with a micro-controller interfacing with simple and cheap actuators and sensors. To contextualize our results, we propose the Robotic System Levels (RSL) model as a structured way to understand the levels of abstraction in robotic systems. Our main conclusion from these case studies is that, in each experience, students are exposed primarily to a subset of levels in the RSL model. Therefore, the curriculum should be designed to emphasize levels that align with educational objectives and the skills required by local industries. Full article
(This article belongs to the Section Educational Robotics)
Show Figures

Figure 1

19 pages, 5206 KiB  
Article
Automation of Rice Transplanter Using Agricultural Navigation
by Zhidong Zhong, Yifan Yao, Jianyu Zhu, Yufei Liu, Juan Du and Xiang Yin
Agriculture 2025, 15(11), 1125; https://doi.org/10.3390/agriculture15111125 - 23 May 2025
Viewed by 519
Abstract
Rice is the predominant grain crop in China, with its consumption showing a steady annual increase. Due to the diminishing labor force, China’s rice cultivation industry faces significant challenges and has an urgent requirement for automated rice transplanters. This study developed an agricultural [...] Read more.
Rice is the predominant grain crop in China, with its consumption showing a steady annual increase. Due to the diminishing labor force, China’s rice cultivation industry faces significant challenges and has an urgent requirement for automated rice transplanters. This study developed an agricultural navigation system integrating mechatronic-hydraulic control with navigation technologies to automate the rice transplanter’s driving and operational processes. The designed automation devices enable precise control over functions such as steering and working clutch. A path planning methodology was proposed to generate straight-line reference paths by giving target points and to determine the headland turning pattern based on the working width and turning radius of the rice transplanter. Additionally, an operational control strategy based on the finite state machine (FSM) was developed, enabling effective switching of the rice transplanter’s operational states through the designation of key points. The test results showed that the maximum lateral error of the rice transplanter along straight-line paths was 4.83 cm on the cement pavement and 6.30 cm in the field, with the maximum error in determining key points being 7.22 cm in the field. These results indicate that the agricultural navigation system developed in this study can achieve the automation of rice transplanters and provide certain inspiration for the research of autonomous agricultural vehicles. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

49 pages, 1114 KiB  
Review
A Survey on the Main Techniques Adopted in Indoor and Outdoor Localization
by Massimo Stefanoni, Imre Kovács, Peter Sarcevic and Ákos Odry
Electronics 2025, 14(10), 2069; https://doi.org/10.3390/electronics14102069 - 20 May 2025
Viewed by 800
Abstract
In modern engineering applications, localization and orientation play an increasingly crucial role in ensuring the successful execution of assigned tasks. Industrial robots, smart home systems, healthcare environments, nuclear facilities, agriculture, and autonomous vehicles are just a few examples of fields where localization technologies [...] Read more.
In modern engineering applications, localization and orientation play an increasingly crucial role in ensuring the successful execution of assigned tasks. Industrial robots, smart home systems, healthcare environments, nuclear facilities, agriculture, and autonomous vehicles are just a few examples of fields where localization technologies are applied. Over the years, these technologies have evolved significantly, with numerous methods being developed, proposed, and refined. This paper aims to provide a comprehensive review of the primary localization and orientation technologies available in the literature, detailing the fundamental principles on which they are based and the key algorithms used to implement them. To achieve accurate and reliable localization, fusion-based approaches are often necessary, integrating data from multiple sensors and systems or estimating hidden states. For this purpose, algorithms such as Kalman Filters, Particle Filters, or Neural Networks are usually adopted. The first part of this article presents an extensive review of localization technologies, including radio frequency, RFID, laser-based systems, vision-based techniques, light-based positioning, IMU-based methods, odometry, and ultrasound-based solutions. The second part focuses on the most widely used algorithms for localization. Finally, summary tables provide an overview of the best and most consistent accuracies reported in the literature for the investigated technologies and systems. Full article
Show Figures

Figure 1

Back to TopTop