Projected Heat-Stress in Sheep and Cattle in Greece Under Future Climate Change Scenarios
Abstract
1. Introduction
2. Materials and Methods
2.1. Climatic Characterisation of the Study Area [11]
2.2. Production of Future Climate Projections
2.2.1. Model Set Up
2.2.2. Evaluation of Model’s Performance
2.3. Assessment of Livestock Heat-Stress
THI (Sheep) Class | Heat-Stress Category |
---|---|
THI (sheep) < 22.2 | absence of heat-stress |
22.2 ≤ THI (sheep) < 23.3 | moderate heat-stress |
23.3 ≤ THI (sheep) < 25.6 | severe heat-stress |
THI (sheep) ≥ 25.6 | extremely severe heat-stress |
THI (adj) (Cattle) Class | Heat-Stress Levels |
---|---|
THI (adj) (cattle) < 74 | normal heat-stress levels |
74 ≤ THI (adj) (cattle) < 79 | alert heat-stress levels |
79 ≤ THI (adj) (cattle) < 84 | danger heat-stress levels |
THI (adj) (cattle) ≥ 84 | emergency heat-stress levels |
2.4. Research Steps
3. Results
3.1. WRF Model Evaluation and Future Climate Projections
3.1.1. WRF Model Evaluation
3.1.2. WRF Model Future Climate Projections
3.2. Assessment of Future Heat-Stress of Sheep
3.3. Assessment of Future Heat-Stress of Cattle
3.4. Measures and Good Practices for Managing Potential Future Livestock Heat-Stress
- Breeding heat-tolerant livestock species: (i) Breeding livestock species and breeds that demonstrate adaptive physiological traits and superior thermotolerance and (ii) the incorporation of heat-resistance traits such as sweat gland efficiency, coat colour, and metabolic rate regulation into genetic selection programs [41].
- Microclimate management and environmental modifications: (i) Providing adequate natural (e.g., trees) or artificial (e.g., shelter) shade, natural or artificial ventilation, and cooling systems (e.g., sprinkler) and the use of insulating materials for the optimisation of air circulation and a reduction in heat build-up in barns; (ii) strategic grazing during early morning and late evening to avoid heat exposure; and (iii) seasonal modifications to animal stocking density and the avoidance of overcrowding to reduce heat build-up [42].
- Nutritional management: (i) Free access to fresh, cool water and electrolytes to prevent dehydration and support thermoregulation; (ii) a reduction in fibre content and an increase in concentrates in the diet to reduce heat production from rumen fermentation; and (iii) the supplementation of antioxidants, such as vitamin E and selenium, to mitigate heat-induced oxidative stress [43].
- Precision livestock farming technologies and evidence-based management practices: (i) Real-time monitoring systems of microenvironmental conditions and wearable sensors to track animal behaviour and heat-stress indicators like decreased mobility, increased body temperature, and respiration rate, dehydration, and reduced feed intake; (ii) automated phenotyping technologies; and (iii) proper veterinary care and nutritional and herd health management protocols to support immune system response and improve the health status of animals exposed to heat-stress conditions [44].
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization (FAO) of the United Nations, FAOSTAT 2023. Available online: https://www.fao.org/faostat/en/#home (accessed on 29 August 2025).
- Sejian, V.; Naqvi, S.M.K.; Ezeji, T.; Lakritz, J.; Lal, R. Environmental Stress and Amelioration in Livestock Production; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Aggarwal, A.; Upadhyay, R. Heat Stress and Animal Productivity; Springer: Chennai, India, 2013. [Google Scholar] [CrossRef]
- Sevi, A.; Annicchiarico, G.; Albenzio, M.; Taibi, L.; Muscio, A.; Dell’Aquila, S. Effects of solar radiation and feeding time on behavior, immune response and production of lactating ewes under high ambient temperature. J. Dairy Sci. 2001, 84, 629–640. [Google Scholar] [CrossRef]
- Finocchiaro, R.; van Kaam, J.B.C.H.M.; Portolano, B.; Misztal, I. Effect of heat stress on production of Mediterranean dairy sheep. J. Dairy Sci. 2005, 88, 1855–1864. [Google Scholar] [CrossRef]
- Sevi, A.; Caroprese, M. Impact of heat stress on milk production, immunity and udder health in sheep. Small Rumin. Res. 2012, 107, 1–7. [Google Scholar] [CrossRef]
- Panagakis, P.; Chronopoulou, E. Preliminary evaluation of the apparent short term HS of dairy ewes reared under hot summer conditions. Appl. Eng. Agric. 2010, 26, 1035–1042. [Google Scholar] [CrossRef]
- Papanastasiou, D.; Bartzanas, T.; Panagakis, P.; Kittas, C. Assessment of a typical sheep barn based on potential seasonal HS of dairy ewes. Appl. Eng. Agric. 2014, 30, 953–959. [Google Scholar] [CrossRef]
- Marino, R.; Atzori, A.S.; D’Andrea, M.; Iovane, G.; Trabalza-Marinucci, M.; Rinaldi, L. Climate change: Production performance, health issues, greenhouse gas emissions and mitigation strategies in sheep and goat farming. Small Rumin. Res. 2016, 135, 50–59. [Google Scholar] [CrossRef]
- Sejian, V.; Bhatta, R.; Gaughan, J.; Kumar Malik, P.; Naqvi, S.M.K.; Lal, R. Sheep Production Adapting to Climate Change; Springer Nature: Singapore, 2017. [Google Scholar] [CrossRef]
- Hellenic National Meteorological Service. Available online: https://www.emy.gr/en/the-climate-of-greece (accessed on 7 October 2025).
- Skamarock, W.C.; Klemp, J.; Dudhia, J.; Gill, D.O.; Barker, D.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR/TN–475+STR; Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research: Boulder, CO, USA, 2008; pp. 3–27. [Google Scholar]
- Giorgi, F. Thirty years of regional climate modeling: Where are we and where are we going next? J. Geophys. Res. Atmos. 2019, 124, 5696–5723. [Google Scholar] [CrossRef]
- Giordano, C.; Vernin, J.; Vázquez Ramió, H.; Muñoz-Tuñón, C.; Varela, A.M.; Trinquet, H. Atmospheric and seeing forecast: WRF model validation with in situ measurements at ORM. Mon. Not. Royal Astronom. Soc. 2013, 430, 3102–3111. [Google Scholar] [CrossRef]
- Marta-Almeida, M.; Teixeira, J.C.; Carvalho, M.J.; Melo-Gonçalves, P.; Rocha, A.M. High resolution WRF climatic simulations for the Iberian Peninsula: Model validation. Phys. Chem. Earth 2016, 94, 94–105. [Google Scholar] [CrossRef]
- Giannaros, T.M.; Melas, D.; Ziomas, I. Performance evaluation of the Weather Research and Forecasting (WRF) model for assessing wind resource in Greece. Renew. Energy 2017, 102, 190–198. [Google Scholar] [CrossRef]
- Annor, T.; Lamptey, B.; Wagner, S.; Oguntunde, P.; Arnault, J.; Heinzeller, D.; Kunstmann, H. High-resolution long-term WRF climate simulations over Volta Basin. Part 1: Validation analysis for temperature and precipitation. Theor. Appl. Climatol. 2018, 133, 829–849. [Google Scholar] [CrossRef]
- Im, E.-S.; Ha, S.; Qiu, L.; Hur, J.; Jo, S.; Shim, K.-M. An evaluation of temperature-based agricultural indices over Korea from the high-resolution WRF simulation. Front. Earth Sci. 2021, 9, 656787. [Google Scholar] [CrossRef]
- Li, J.; Mahalov, A.; Hyde, P. Impacts of agricultural irrigation on ozone concentrations in the Central Valley of California and in the contiguous United States based on WRF-Chem simulations. Agric. For. Meteorol. 2016, 221, 34–49. [Google Scholar] [CrossRef]
- Hong, M.; Lee, S.-H.; Lee, S.-J.; Choi, J.-Y. Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small scale farmlands based on soil moisture deficit. Agric. Water Manag. 2021, 243, 106494. [Google Scholar] [CrossRef]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 2017, 42, 153–168. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Lim, J.-O.J. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Atmos. Sci. 2006, 42, 129–151. [Google Scholar]
- Kain, J.S. The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteor. Climatol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Hong, S.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A Revised Scheme for the WRF Surface Layer Formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and verification of the unified NOAH land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 11–15 January 2004. [Google Scholar]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, 2–9. [Google Scholar] [CrossRef]
- Giannaros, C.; Melas, D.; Giannaros, T.M. On the short-term simulation of heat waves in the Southeast Mediterranean: Sensitivity of the WRF model to various physics schemes. Atmos. Res. 2019, 218, 99–116. [Google Scholar] [CrossRef]
- Politi, N.; Nastos, P.T.; Sfetsos, A.; Vlachogiannis, D.; Dalezios, N.R. Evaluation of the AWR-WRF model configuration at high resolution over the domain of Greece. Atmos. Res. 2018, 208, 229–245. [Google Scholar] [CrossRef]
- Tateishi, R.; Thanh Hoan, N.; Kobayashi, T.; Alsaaideh, B.; Tana, G.; Xuan Phong, D. Production of Global Land Cover Data-GLCNMO2008. J. Geogr. Geol. 2014, 6, 99–122. [Google Scholar] [CrossRef]
- Xu, Z.; Han, Y.; Tam, C.-Y.; Yang, Z.-L.; Fu, C. Bias-corrected CMIP6 global dataset for dynamical downscaling of the historical and future climate (1979–2100). Sci. Data 2021, 8, 293. [Google Scholar] [CrossRef]
- Xu, Z.F.; Han, Y.; Zhang, M.-Z.; Tam, C.Y.; Yang, Z.-L.; El Kenawy, A.; Fu, C.B. Assessing the performance of a dynamical downscaling simulation driven by a bias-corrected CMIP6 dataset for Asian climate. Adv. Atmos. Sci. 2024, 41, 974–988. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- McManus, C.; Bianchini, E.; Paim, T.D.P.; De Lima, F.G.; Neto, J.B.; Castanheira, M.; Esteves, G.I.F.; Cardoso, C.C.; Dalcin, V.C. Infrared Thermography to Evaluate Heat Tolerance in Different Genetic Groups of Lambs. Sensors 2015, 15, 17258–17273. [Google Scholar] [CrossRef]
- Panagakis, P. Potential seasonal HS of sheep: Assessment of four husbandry areas in Greece. Appl. Eng. Agric. 2016, 32, 125–129. [Google Scholar] [CrossRef]
- Marai, I.F.M.; El-Darawany, A.A.; Fadiel, A.; Abdel-Hafez, M.A.M. Physiological traits as affected by heat stress in sheep-A review. Small Rumin. Res. 2007, 71, 1–12. [Google Scholar] [CrossRef]
- Mader, T.L.; Davis, M.S.; Brown-Brandl, T. Environmental factors influencing heat stress in feedlot cattle. J. Anim. Sci. 2006, 84, 712–719. [Google Scholar] [CrossRef]
- Skliris, N.; Marsh, R.; Breedon, M.; Josey, S.A. Accelerated Warming and Salinification of the Mediterranean Sea: Implications for Dense Water Formation. J. Mar. Sci. Eng. 2025, 13, 25. [Google Scholar] [CrossRef]
- Gimeno-Sotelo, L.; Fernández-Alvarez, J.C.; Nieto, R.; Vicente-Serrano, S.M.; Gimeno, L. The increasing influence of atmospheric moisture transport on hydrometeorological extremes in the Euromediterranean region with global warming. Commun. Earth Environ. 2024, 5, 604. [Google Scholar] [CrossRef]
- Carabaño, M.J.; Ramón, M.; Menéndez-Buxadera, A.; Molina, A.; Díaz, C. Selecting for heat tolerance. Anim. Front. 2019, 9, 62–68. [Google Scholar] [CrossRef]
- Havelka, Z.; Kunes, R.; Kononets, Y.; Stokes, J.E.; Smutny, L.; Olsan, P.; Kresan, J.; Stehlik, R.; Bartos, P.; Xiao, M.; et al. Technology of Microclimate Regulation in Organic and Energy-Sustainable Livestock Production. Agriculture 2022, 12, 1563. [Google Scholar] [CrossRef]
- Kausar, R.; Imran, S. Heat Stress Mitigation through Feeding and Nutritional Interventions in Ruminants. In Latest Scientific Findings in Ruminant Nutrition—Research for Practical Implementation; Babinszky, L., Ed.; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Koltes, J.E.; Koltes, D.A.; Mote, B.E.; Tucker, J.; Hubbell, D.S. Automated collection of heat stress data in livestock: New technologies and opportunities. Transl. Anim. Sci. 2018, 2, 319–323. [Google Scholar] [CrossRef] [PubMed]
Heat-Stress Category | Results |
---|---|
Absence of heat-stress | Reduction of up to 10.5% (SSP2-4.5) and 12.8% (SSP5-8.5) |
Moderate heat-stress | Increase of up to 40% in 78% (SSP2-4.5) and 84% (SSP5-8.5) of cases |
Severe heat-stress | Increase of up to 100% in 97% (SSP2-4.5) and 99% (SSP5-8.5) of cases |
Extremely severe heat-stress | Increase of up to 100% in 70% (SSP2-4.5) and 84% (SSP5-8.5) of cases The rest of the cases correspond to a higher increase for both scenarios |
Heat-Stress Levels | Results |
---|---|
Normal heat-stress levels | Reduction of up to 7% (SSP2-4.5) and 8% (SSP5-8.5) |
Alert heat-stress levels | Increase of up to 50% in 90% (SSP2-4.5 and SSP5-8.5) of cases |
Danger heat-stress levels | Increase of up to 100% in 80% (SSP2-4.5) and 82% (SSP5-8.5) of cases |
Emergency heat-stress levels | Increase of up to 400% in 82% (SSP2-4.5) and 80% (SSP5-8.5) of cases The rest of the cases correspond to a higher increase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papanastasiou, D.K.; Gelasakis, A.I.; Papadopoulos, G.; Melas, D.; Douvis, K.; Faraslis, I.; Keppas, S.; Stergiou, I.; Poupkou, A.; Voloudakis, D.; et al. Projected Heat-Stress in Sheep and Cattle in Greece Under Future Climate Change Scenarios. Agriculture 2025, 15, 2141. https://doi.org/10.3390/agriculture15202141
Papanastasiou DK, Gelasakis AI, Papadopoulos G, Melas D, Douvis K, Faraslis I, Keppas S, Stergiou I, Poupkou A, Voloudakis D, et al. Projected Heat-Stress in Sheep and Cattle in Greece Under Future Climate Change Scenarios. Agriculture. 2025; 15(20):2141. https://doi.org/10.3390/agriculture15202141
Chicago/Turabian StylePapanastasiou, Dimitris K., Athanasios I. Gelasakis, Georgios Papadopoulos, Dimitrios Melas, Kostas Douvis, Ioannis Faraslis, Stavros Keppas, Ioannis Stergiou, Anastasia Poupkou, Dimitris Voloudakis, and et al. 2025. "Projected Heat-Stress in Sheep and Cattle in Greece Under Future Climate Change Scenarios" Agriculture 15, no. 20: 2141. https://doi.org/10.3390/agriculture15202141
APA StylePapanastasiou, D. K., Gelasakis, A. I., Papadopoulos, G., Melas, D., Douvis, K., Faraslis, I., Keppas, S., Stergiou, I., Poupkou, A., Voloudakis, D., Progiou, A., Kapsomenakis, J., & Katsoulas, N. (2025). Projected Heat-Stress in Sheep and Cattle in Greece Under Future Climate Change Scenarios. Agriculture, 15(20), 2141. https://doi.org/10.3390/agriculture15202141