Enhanced Spatially Explicit Modeling of Soil Particle Size and Texture Classification Using a Novel Two-Point Machine Learning Hybrid Framework
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Source
2.2.1. Soil Sample Data
2.2.2. Multidimensional Auxiliary Datasets
2.3. Model Development
2.3.1. Log-Ratio Transformations
2.3.2. Classic Models
OK Model
2.3.3. Machine Learning Models
RF Model
XGBoost Model
2.3.4. Hybrid Models
RFRK Model
TPML Model
TPML-C Model
2.4. Model Evaluation Metrics
2.5. Technical Route
3. Results and Analysis
3.1. Descriptive Statistics of Original Data and Transformed Data
3.2. Importance of Environment Variables
3.3. Evaluation of Model Performance Based on Mapping Accuracy
3.4. Performance Evaluation of Direct Classification Models
3.5. Evaluation of Model Accuracy in Predicting Soil Texture Types
3.6. Spatial Distribution Patterns of Sand Content Predicted by Various Models
3.7. Soil Texture Type Prediction Maps of Different Models
4. Discussion
4.1. Importance of Environment Variables
4.2. Comparison of Different Models for Soil PSFs Mapping
4.3. Comparative Analysis of Soil Texture Classification Methods
4.4. Shortcomings and Prospects of This Article
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HRB | Heihe river basin |
OK | ordinary kriging |
RF | random forest |
RFRK | random forest regression kriging |
XGBoost | extreme gradient boosting |
TPML | two-point machine learning |
TPML-C | two-point machine learning-classification |
ML | machine learning |
Geo | geomorphology |
Cur | curvature |
Thi | thickness |
Veg | vegetation |
ST | soil type |
Asp | aspect |
Slo | slope |
LUCC | land use and land cover |
Lon | longitude |
NDVI | normalized difference vegetation index |
Tem | temperature |
Pre | precipitation |
DEM | digital elevation model |
Lat | latitude |
SOC | soil organic carbon |
R-H | regression-based hybrid |
R-ML | regression-based machine Learning |
R-TG | regression-based traditional geostatistical |
C-H | classification-based hybrid |
C-ML | classification-based machine learning |
OA | overall accuracy |
AA | average accuracy |
RR | right ratio |
NCC | number of correctly identified types |
Kurt | kurtosis |
MAD | median absolute deviation |
References
- Azizi, K.; Garosi, Y.; Ayoubi, S.; Tajik, S. Integration of Sentinel-1/2 and Topographic Attributes to Predict the Spatial Dis-tribution of Soil Texture Fractions in Some Agricultural Soils of Western Iran. Soil Tillage Res. 2023, 229, 105681. [Google Scholar] [CrossRef]
- Delbari, M.; Afrasiab, P.; Loiskandl, W. Geostatistical Analysis of Soil Texture Fractions on the Field Scale. Soil Water Res. 2011, 6, 173–189. [Google Scholar] [CrossRef]
- Gupta, S.; Borrelli, P.; Panagos, P.; Alewell, C. An Advanced Global Soil Erodibility (K) Assessment Including the Effects of Saturated Hydraulic Conductivity. Sci. Total Environ. 2024, 908, 168249. [Google Scholar] [CrossRef]
- Huang, B.; Yuan, Z.; Li, D.; Zheng, M.; Nie, X.; Liao, Y. Effects of Soil Particle Size on the Adsorption, Distribution, and Migration Behaviors of Heavy Metal(Loid)s in Soil: A Review. Environ. Sci. Process. Impacts 2020, 22, 1596–1615. [Google Scholar] [CrossRef]
- Haverkamp, R.; Parlange, J.-Y. Predicting the water-retention curve from particle-size distribution: 1. sandy soils without organic matter: 1. Soil Sci. 1986, 142, 325–339. [Google Scholar] [CrossRef]
- Uddin, M.; Hassan, M.R. A Novel Feature Based Algorithm for Soil Type Classification. Complex Intell. Syst. 2022, 8, 3377–3393. [Google Scholar] [CrossRef]
- Bouma, J.; Bonfante, A.; Basile, A.; van Tol, J.; Hack-ten Broeke, M.J.D.; Mulder, M.; Heinen, M.; Rossiter, D.G.; Poggio, L.; Hirmas, D.R. How Can Pedology and Soil Classification Contribute towards Sustainable Development as a Data Source and Information Carrier? Geoderma 2022, 424, 115988. [Google Scholar] [CrossRef]
- McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On Digital Soil Mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.; Wu, X.; Zhao, L.; Wu, T.; Hu, G.; Zou, D.; Qiao, Y.; Fan, X.; Wang, X. Soil Texture Mapping in the Permafrost Region: A Case Study on the Eastern Qinghai–Tibet Plateau. Land 2024, 13, 1855. [Google Scholar] [CrossRef]
- Qi, F.; Zhang, R.; Liu, X.; Niu, Y.; Zhang, H.; Li, H.; Li, J.; Wang, B.; Zhang, G. Soil Particle Size Distribution Characteristics of Different Land-Use Types in the Funiu Mountainous Region. Soil Tillage Res. 2018, 184, 45–51. [Google Scholar] [CrossRef]
- Akpa, S.I.C.; Odeh, I.O.A.; Bishop, T.F.A.; Hartemink, A.E. Digital Mapping of Soil Particle-Size Fractions for Nigeria. Soil Sci. Soc. Am. J. 2014, 78, 1953–1966. [Google Scholar] [CrossRef]
- Hassink, J. The Capacity of Soils to Preserve Organic C and N by Their Association with Clay and Silt Particles. Plant Soil 1997, 191, 77–87. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, G.-L.; Song, X.; Li, D.; Zhao, Y.; Yang, J.; Wu, H.; Yang, F. High-Resolution and Three-Dimensional Mapping of Soil Texture of China. Geoderma 2020, 361, 114061. [Google Scholar] [CrossRef]
- He, W.; Xiao, Z.; Lu, Q.; Wei, L.; Liu, X. Digital Mapping of Soil Particle Size Fractions in the Loess Plateau, China, Using Environmental Variables and Multivariate Random Forest. Remote Sens. 2024, 16, 785. [Google Scholar] [CrossRef]
- Baltensweiler, A.; Walthert, L.; Hanewinkel, M.; Zimmermann, S.; Nussbaum, M. Machine Learning Based Soil Maps for a Wide Range of Soil Properties for the Forested Area of Switzerland. Geoderma Reg. 2021, 27, e00437. [Google Scholar] [CrossRef]
- Suneetha, C.; Kumar, L.; Sreenivas, K.; Mitran, T. Deep Learning-Driven Soil Texture Classifier Using Landsat 8 Images. Remote Sens. Appl. Soc. Environ. 2025, 38, 101568. [Google Scholar] [CrossRef]
- Wu, W.; Li, A.; He, X.; Ma, R.; Liu, H.; Lv, J. A Comparison of Support Vector Machines, Artificial Neural Network and Classification Tree for Identifying Soil Texture Classes in Southwest China. Comput. Electron. Agric. 2018, 144, 86–93. [Google Scholar] [CrossRef]
- Hengl, T.; Nussbaum, M.; Wright, M.N.; Heuvelink, G.B.M.; Gräler, B. Random Forest as a Generic Framework for Predictive Modeling of Spatial and Spatio-Temporal Variables. PeerJ Prepr. 2018, 6, e26693v3. [Google Scholar] [CrossRef]
- Gao, B.; Stein, A.; Wang, J. A Two-Point Machine Learning Method for the Spatial Prediction of Soil Pollution. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102742. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, K.; Gao, B.; Feng, A.; Tian, J.; Jiang, C.; Yang, J. Prediction of the Spatial Distribution of Soil Organic Matter Based on Two-Point Machine Learning Method. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2022, 38, 65–73. [Google Scholar] [CrossRef]
- Qin, L.; Wang, Z.; Zhang, X.; Liang, B.; Wang, J. Optimization of Soil Particle Size Mapping Incorporating Spatial Autocorrelation and Attribute Similarity. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 21044–21064. [Google Scholar] [CrossRef]
- Staff, S.S. Soil Survey Manual; U.S. Department of Agriculture, Handbook 18: Washington, DC, USA, 2017; ISBN 978-0160942855. [Google Scholar]
- Wikipedia Contributors Soil Texture. Available online: https://en.wikipedia.org/wiki/Soil_texture (accessed on 2 August 2025).
- Li, J.; Wan, H.; Shang, S. Comparison of Interpolation Methods for Mapping Layered Soil Particle-Size Fractions and Texture in an Arid Oasis. CATENA 2020, 190, 104514. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, L.; Fang, H.; Wang, L.; Xing, Z.; Zou, D.; Hu, G.; Wu, X.; Zhao, Y.; Sheng, Y.; et al. Mapping Surficial Soil Particle Size Fractions in Alpine Permafrost Regions of the Qinghai-Tibet Plateau. Remote Sens. 2021, 13, 1392. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, W.; Ma, Y.; Ge, Y. Mapping Soil Particle-Size Fractions Based on Compositional Balances. CATENA 2024, 234, 107643. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, W.; Zhou, W.; Li, X.; Yue, T. Comparison of Additive and Isometric Log-Ratio Transformations Combined with Machine Learning and Regression Kriging Models for Mapping Soil Particle Size Fractions. Geoderma 2020, 365, 114214. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.; Ge, Y.; Li, H.; Han, F.; Hu, X.; Tian, W.; Tian, Y.; Pan, X.; Nian, Y.; et al. Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Endorheic Basins. J. Geophys. Res. Atmos. 2018, 123, 890–914. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, Q.; Shao, Y.; Sun, S.; Xiao, L.; Guo, J. Ecological Environment Assessment Based on Land Use Simulation: A Case Study in the Heihe River Basin. Sci. Total. Environ. 2019, 697, 133928. [Google Scholar] [CrossRef]
- Huo, L.; Xie, Q.; Sun, L.; Song, L.; Tao, S.; Liu, S.; Wang, Z.; Li, Y. Estimation of Agricultural Flood Irrigation Water Consumption in the Heihe River Basin, China, Using Satellite Based Daily Land Surface Evapotranspiration and Soil Moisture. J. Hydrol. Reg. Stud. 2025, 60, 102524. [Google Scholar] [CrossRef]
- Song, X.; Xu, Z. Table of Value Input-Output of 42 Departments in Gansu Lingao Region in the Middle Reaches of Heihe River (2012); National Tibetan Plateau Data Center: Beijing, China, 2015. [Google Scholar]
- Jiang, Y.; Xu, X.; Huang, Q.; Huo, Z.; Huang, G. Assessment of Irrigation Performance and Water Productivity in Irrigated Areas of the Middle Heihe River Basin Using a Distributed Agro-Hydrological Model. Agric. Water Manag. 2015, 147, 67–81. [Google Scholar] [CrossRef]
- Ma, M.; Wang, X.; Wang, H.; Yu, W. HiWATER: Dataset of Soil Parameters in the Midstream of the Heihe River Basin (2012); National Tibetan Plateau Data Center: Beijing, China, 2013. [Google Scholar]
- Song, X.-D.; Brus, D.J.; Liu, F.; Li, D.-C.; Zhao, Y.-G.; Yang, J.-L.; Zhang, G.-L. Mapping Soil Organic Carbon Content by Geographically Weighted Regression: A Case Study in the Heihe River Basin, China. Geoderma 2016, 261, 11–22. [Google Scholar] [CrossRef]
- Pan, J.; Zhao, S. WATER: Dateset of Soil Texture Measurements in the Biandukou and A″rou Foci Experimental Area on 9 October 2008; National Tibetan Plateau Data Center: Beijing, China, 2014. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, W. Robust Variogram Estimation Combined with Isometric Log-Ratio Transformation for Improved Accuracy of Soil Particle-Size Fraction Mapping. Geoderma 2018, 324, 56–66. [Google Scholar] [CrossRef]
- Environmental Systems Research Institute. Esri ArcGIS Desktop: Release 10.8; Environmental Systems Research Institute: Redlands, CA, USA, 2020. [Google Scholar]
- Reuter, H.I.; Nelson, A. Chapter 11 Geomorphometry in ESRI Packages. In Developments in Soil Science; Hengl, T., Reuter, H.I., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 33, pp. 269–291. ISBN 0166-2481. [Google Scholar]
- Yang, R.-M.; Zhang, G.-L.; Liu, F.; Lu, Y.-Y.; Yang, F.; Yang, F.; Yang, M.; Zhao, Y.-G.; Li, D.-C. Comparison of Boosted Regression Tree and Random Forest Models for Mapping Topsoil Organic Carbon Concentration in an Alpine Ecosystem. Ecol. Indic. 2016, 60, 870–878. [Google Scholar] [CrossRef]
- Walvoort, D.J.J.; de Gruijter, J.J. Compositional Kriging: A Spatial Interpolation Method for Compositional Data. Math. Geol. 2001, 33, 951–966. [Google Scholar] [CrossRef]
- Muzzamal, M.; Huang, J.; Nielson, R.; Sefton, M.; Triantafilis, J. Mapping Soil Particle-Size Fractions Using Additive Log-Ratio (ALR) and Isometric Log-Ratio (ILR) Transformations and Proximally Sensed Ancillary Data. Clays Clay Miner. 2018, 66, 9–27. [Google Scholar] [CrossRef]
- Niang, M.; Nolin, M.; Jégo, G.; Perron, I. Digital Mapping of Soil Texture Using RADARSAT-2 Polarimetric Synthetic Aperture Radar Data. Soil Sci. Soc. Am. J. 2014, 78, 673–684. [Google Scholar] [CrossRef]
- Webster, R. Is Soil Variation Random? Geoderma 2000, 97, 149–163. [Google Scholar] [CrossRef]
- Pebesma, E.J. Multivariable Geostatistics in S: The Gstat Package. Comput. Geosci. 2004, 30, 683–691. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Fan, J.; Wang, X.; Wu, L.; Zhou, H.; Zhang, F.; Yu, X.; Lu, X.; Xiang, Y. Comparison of Support Vector Machine and Extreme Gradient Boosting for Predicting Daily Global Solar Radiation Using Temperature and Precipitation in Humid Subtropical Climates: A Case Study in China. Energy Convers. Manag. 2018, 164, 102–111. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, S.; Chen, X.; Zeng, X.; Kong, Y.; Chen, J.; Guo, Y.; Wang, T. Short-Term Load Forecasting of Industrial Customers Based on SVMD and XGBoost. Int. J. Electr. Power Energy Syst. 2021, 129, 106830. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, W.; Zhai, Y.; Liang, Y.; Zhao, Y. Identify DNA-Binding Proteins Through the Extreme Gradient Boosting Algorithm. Front. Genet. 2022, 12, 821996. [Google Scholar] [CrossRef]
- Wright, M.N.; Ziegler, A. Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. J. Stat. Softw. 2017, 77, 1–17. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, W. Mapping Soil Particle-Size Fractions: A Comparison of Compositional Kriging and Log-Ratio Kriging. J. Hydrol. 2017, 546, 526–541. [Google Scholar] [CrossRef]
- Moeys, J.; Shangguan, W.; Petzold, R.; Minasny, B.; Rosca, B.; Jelinski, N.; Zelazny, W.; Souza, R.M.S.; Safanelli, J.L.; ten Caten, A. Comprehensive R Archive Network (CRAN). Soiltexture: Functions for Soil Texture Plot, Classification and Transformation; R Foundation: Vienna, Austria, 2024. [Google Scholar] [CrossRef]
- Filzmoser, P.; Hron, K.; Reimann, C. Univariate Statistical Analysis of Environmental (Compositional) Data: Problems and Possibilities. Sci. Total Environ. 2009, 407, 6100–6108. [Google Scholar] [CrossRef] [PubMed]
- Pawlowsky-Glahn, V.; Egozcue, J.J.; Tolosana Delgado, R. Lecture Notes on Compositional Data Analysis; Universitat de Girona: Catalonia, Spain, 2007; Available online: http://hdl.handle.net/10256/297 (accessed on 8 September 2025).
- Xia, J.; Zhang, G.; Ma, S.; Pan, Y. Spatial Heterogeneity of Driving Factors in Multi-Vegetation Indices RSEI Based on the XGBoost-SHAP Model: A Case Study of the Jinsha River Basin, Yunnan. Land 2025, 14, 925. [Google Scholar] [CrossRef]
- Deliboran, A. Carbon and Nitrogen Stocks of Olive Orchard Soils in Izmir Province. J. Tekirdag Agric. Fac. Tekirdag Ziraat Fak. Derg. 2024, 21, 111–124. [Google Scholar] [CrossRef]
- Braskerud, B.C. The Influence of Vegetation on Sedimentation and Resuspension of Soil Particles in Small Constructed Wetlands. J. Environ. Qual. 2001, 30, 1447–1457. [Google Scholar] [CrossRef]
- Fanfarillo, E.; Petit, S.; Dessaint, F.; Rosati, L.; Abbate, G. Species Composition, Richness, and Diversity of Weed Communities of Winter Arable Land in Relation to Geo-Environmental Factors: A Gradient Analysis in Mainland Italy. Botany 2020, 98, 381–392. [Google Scholar] [CrossRef]
- Jena, R.K.; Moharana, P.C.; Dharumarajan, S.; Sharma, G.K.; Ray, P.; Deb Roy, P.; Ghosh, D.; Das, B.; Alsuhaibani, A.M.; Gaber, A.; et al. Spatial Prediction of Soil Particle-Size Fractions Using Digital Soil Mapping in the North Eastern Region of India. Land 2023, 12, 1295. [Google Scholar] [CrossRef]
- Sun, C.; Hou, H.; Chen, W. Effects of Vegetation Cover and Slope on Soil Erosion in the Eastern Chinese Loess Plateau under Different Rainfall Regimes. PeerJ 2021, 9, e11226. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, H.; Li, X.; Xie, Y. Effects of Sedimentation on Soil Physical and Chemical Properties and Vegetation Characteristics in Sand Dunes at the Southern Dongting Lake Region, China. Sci. Rep. 2016, 6, 36300. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, F.; Ruan, H.; Hu, H.; Liu, Y.; Zhong, K.; Jing, W.; Yang, J.; Liu, X. Hybrid Modelling of Random Forests and Kriging with Sentinel-2A Multispectral Imagery to Determine Urban Brightness Temperatures with High Resolution. Int. J. Remote Sens. 2021, 42, 2174–2202. [Google Scholar] [CrossRef]
- Ho, V.H.; Morita, H.; Bachofer, F.; Ho, T.H. Random Forest Regression Kriging Modeling for Soil Organic Carbon Density Estimation Using Multi-Source Environmental Data in Central Vietnamese Forests. Model. Earth Syst. Environ. 2024, 10, 7137–7158. [Google Scholar] [CrossRef]
- Ho, V.H.; Morita, H.; Ho, T.H.; Bachofer, F.; Nguyen, T.T. Comparison of Geostatistics, Machine Learning Algorithms, and Their Hybrid Approaches for Modeling Soil Organic Carbon Density in Tropical Forests. J. Soils Sediments 2025, 25, 1554–1577. [Google Scholar] [CrossRef]
- Canero, F.M.; Rodriguez-Galiano, V.; Aragones, D. Machine Learning and Feature Selection for Soil Spectroscopy. An Evaluation of Random Forest Wrappers to Predict Soil Organic Matter, Clay, and Carbonates. Heliyon 2024, 10, e30228. [Google Scholar] [CrossRef] [PubMed]
- Sakhaee, A.; Gebauer, A.; Liess, M.; Don, A. Spatial Prediction of Organic Carbon in German Agricultural Topsoil Using Machine Learning Algorithms. Soil 2022, 8, 587–604. [Google Scholar] [CrossRef]
- Qin, F.; Guo, C.; Liu, D.; Xu, S.; Wang, S. A Comparison of Ordinary Kriging, Regression Kriging and REML-EBLUP for Mapping Soil Organic Matter on a Regional Scale. Arab. J. Geosci. 2022, 15, 1120. [Google Scholar] [CrossRef]
- John, K.; Bouslihim, Y.; Isong, I.A.; Hssaini, L.; Razouk, R.; Kebonye, N.M.; Agyeman, P.C.; Penížek, V.; Zádorová, T. Mapping Soil Nutrients via Different Covariates Combinations: Theory and an Example from Morocco. Ecol. Process. 2022, 11, 23. [Google Scholar] [CrossRef]
Component | Partial Sill | Range (km) | Nugget | Variogram Model |
---|---|---|---|---|
Silt | 139.09 | 19.00 | 118.27 | Exp |
Clay | 57.89 | 44.46 | 37.85 | Sph |
Sand | 259.70 | 79.99 | 169.06 | Gau |
ALR_sand | 2.08 | 48.01 | 0.92 | Exp |
ALR_silt | 1.31 | 30.49 | 0.13 | Sph |
ILR_sand | 0.78 | 154.87 | 0.41 | Gau |
ILR_silt | 0.83 | 32.47 | 0.21 | Sph |
Component | Partial Sill | Range (km) | Nugget | Variogram Model |
---|---|---|---|---|
Silt | 8.33 | 20.44 | 21.17 | Sph |
Clay | 1.55 | 9.34 | 6.98 | Exp |
Sand | 14.38 | 162.33 | 28.32 | Sph |
ALR_sand | 0.16 | 7.39 | 0.15 | Gau |
ALR_silt | 0.15 | 21.14 | 0.04 | Sph |
ILR_sand | 0.79 | 154.86 | 0.41 | Gau |
ILR_silt | 0.08 | 22.81 | 0.04 | Sph |
Component | Mean | Skew | Kurt | Median | MAD |
---|---|---|---|---|---|
Silt | 55.82 | −0.94 | 0.88 | 59.47 | 9.25 |
Clay | 13.69 | 0.46 | −0.27 | 13.84 | 7.12 |
Sand | 30.49 | 1.26 | 1.11 | 24.97 | 11.73 |
ALR_sand | 28.60 | 0.77 | 1.20 | — | 1.03 |
ALR_silt | 60.55 | 1.29 | 1.67 | — | 0.39 |
ILR_sand | 28.62 | −1.21 | 3.74 | — | 0.44 |
ILR_silt | 60.56 | −0.98 | 1.13 | — | 0.57 |
Type | Model | MAE | RMSE | R2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Silt | Clay | Sand | Silt | Clay | Sand | Silt | Clay | Sand | ||
R-H | TPML | 9.80 | 5.14 | 9.55 | 12.83 | 6.37 | 13.15 | 0.55 | 0.58 | 0.64 |
TPML_ALR | 12.43 | 5.67 | 11.11 | 15.91 | 7.18 | 15.13 | 0.40 | 0.52 | 0.56 | |
TPML_ILR | 10.42 | 5.62 | 9.89 | 13.95 | 7.05 | 14.22 | 0.50 | 0.54 | 0.60 | |
RFRK | 9.38 | 5.21 | 9.41 | 12.65 | 6.41 | 13.37 | 0.57 | 0.58 | 0.63 | |
RFRK_ALR | 10.09 | 5.16 | 10.37 | 13.87 | 6.37 | 14.95 | 0.52 | 0.61 | 0.59 | |
RFRK_ILR | 9.97 | 5.19 | 10.20 | 13.65 | 6.45 | 14.70 | 0.53 | 0.60 | 0.60 | |
R-ML | RF | 9.67 | 5.28 | 9.59 | 12.72 | 6.49 | 13.43 | 0.56 | 0.57 | 0.62 |
RF_ALR | 10.31 | 5.15 | 10.34 | 14.10 | 6.34 | 15.15 | 0.50 | 0.61 | 0.57 | |
RF_ILR | 10.00 | 5.21 | 10.19 | 13.65 | 6.41 | 14.59 | 0.52 | 0.60 | 0.60 | |
XGBoost | 9.52 | 5.27 | 10.27 | 12.90 | 6.49 | 14.78 | 0.55 | 0.57 | 0.56 | |
XGBoost_ALR | 11.34 | 5.57 | 11.34 | 15.21 | 7.05 | 15.28 | 0.42 | 0.50 | 0.54 | |
XGBoost_ILR | 11.46 | 6.18 | 10.68 | 14.65 | 7.70 | 14.73 | 0.43 | 0.49 | 0.56 | |
R-TG | OK | 10.98 | 5.13 | 10.63 | 14.34 | 6.45 | 14.60 | 0.45 | 0.58 | 0.56 |
OK_ALR | 11.06 | 5.13 | 11.15 | 14.82 | 6.52 | 15.09 | 0.44 | 0.58 | 0.55 | |
OK_ILR | 11.32 | 5.39 | 10.46 | 14.79 | 6.86 | 14.86 | 0.42 | 0.55 | 0.55 |
Model | OA | Kappa | AA |
---|---|---|---|
TPML-C | 59.69 | 21.35 | 30.83 |
RF | 62.19 | 25.35 | 33.75 |
XGBoost | 60.94 | 24.94 | 33.65 |
Model | Class | ClLo | Lo | LoSa | Sa | SaClLo | SaLo | Si | SiCl | SiClLo | SiLo |
---|---|---|---|---|---|---|---|---|---|---|---|
TPML-C | Sen | 0.13 | 0.07 | 0.00 | 0.23 | 0.00 | 0.26 | 0.13 | 0.00 | 0.26 | 0.89 |
Spe | 0.99 | 0.98 | 0.99 | 0.96 | 1.00 | 0.97 | 0.99 | 1.00 | 0.96 | 0.37 | |
BA | 0.56 | 0.52 | 0.50 | 0.60 | 0.50 | 0.61 | 0.56 | 0.50 | 0.61 | 0.63 | |
RF | Sen | 0.00 | 0.03 | 0.04 | 0.12 | 0.00 | 0.36 | 0.09 | 0.00 | 0.35 | 0.92 |
Spe | 0.99 | 0.97 | 1.00 | 0.98 | 1.00 | 0.95 | 1.00 | 1.00 | 0.96 | 0.40 | |
BA | 0.50 | 0.50 | 0.52 | 0.55 | 0.50 | 0.66 | 0.55 | 0.50 | 0.66 | 0.66 | |
XGBoost | Sen | 0.06 | 0.08 | 0.09 | 0.23 | 0.00 | 0.29 | 0.09 | 0.00 | 0.35 | 0.89 |
Spe | 1.00 | 0.96 | 0.99 | 0.97 | 1.00 | 0.96 | 1.00 | 1.00 | 0.97 | 0.42 | |
BA | 0.53 | 0.52 | 0.54 | 0.60 | 0.50 | 0.62 | 0.54 | 0.50 | 0.66 | 0.65 |
Type | Model | ClLo | Lo | LoSa | Sa | SaLo | Si | SiClLo | SiLo | SiCl | SaClLo | Sum | RR (%) | NCC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R-H | TPML | 3 | 5 | 5 | 0 | 27 | 2 | 13 | 336 | 0 | 0 | 391 | 61.09 | 25 |
TPML_ALR | 1 | 3 | 4 | 2 | 19 | 8 | 15 | 305 | 0 | 0 | 357 | 55.78 | 26 | |
TPML_ILR | 3 | 3 | 3 | 3 | 24 | 6 | 14 | 328 | 0 | 0 | 384 | 60.00 | 27 | |
RFRK | 2 | 8 | 1 | 0 | 36 | 0 | 8 | 336 | 0 | 0 | 391 | 61.09 | 22 | |
RFRK_ALR | 2 | 4 | 7 | 0 | 28 | 6 | 12 | 326 | 0 | 0 | 374 | 58.44 | 28 | |
RFRK_ILR | 2 | 5 | 7 | 0 | 28 | 8 | 13 | 342 | 0 | 0 | 405 | 63.28 | 29 | |
R-ML | RF | 2 | 7 | 0 | 0 | 35 | 0 | 6 | 337 | 0 | 0 | 387 | 60.47 | 21 |
RF_ALR | 2 | 4 | 6 | 0 | 27 | 5 | 9 | 328 | 0 | 0 | 381 | 59.53 | 26 | |
RF_ILR | 1 | 3 | 6 | 0 | 25 | 2 | 12 | 342 | 0 | 0 | 391 | 61.09 | 24 | |
XGBoost | 1 | 1 | 1 | 0 | 28 | 0 | 9 | 343 | 0 | 0 | 383 | 59.84 | 21 | |
XGBoost_ALR | 2 | 2 | 4 | 0 | 31 | 2 | 10 | 332 | 0 | 0 | 383 | 59.84 | 23 | |
XGBoost_ILR | 1 | 1 | 5 | 0 | 31 | 5 | 14 | 321 | 0 | 0 | 378 | 59.06 | 24 | |
R-TG | OK | 0 | 9 | 0 | 0 | 34 | 0 | 12 | 333 | 0 | 0 | 388 | 60.63 | 19 |
OK_ALR | 0 | 6 | 3 | 0 | 36 | 5 | 13 | 318 | 0 | 0 | 381 | 59.53 | 23 | |
OK_ILR | 0 | 2 | 1 | 0 | 38 | 1 | 12 | 331 | 0 | 0 | 385 | 60.16 | 20 | |
C-H | TPML-C | 2 | 4 | 0 | 6 | 15 | 4 | 9 | 342 | 0 | 0 | 382 | 59.69 | 26 |
C-ML | RF | 0 | 2 | 1 | 3 | 21 | 3 | 15 | 356 | 0 | 0 | 401 | 62.66 | 22 |
XGBoost | 1 | 5 | 2 | 6 | 17 | 3 | 12 | 344 | 0 | 0 | 390 | 60.94 | 29 | |
Original | 16 | 61 | 23 | 26 | 58 | 32 | 34 | 386 | 2 | 2 | 640 | 43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, L.; Wang, Z.; Zhang, X. Enhanced Spatially Explicit Modeling of Soil Particle Size and Texture Classification Using a Novel Two-Point Machine Learning Hybrid Framework. Agriculture 2025, 15, 2008. https://doi.org/10.3390/agriculture15192008
Qin L, Wang Z, Zhang X. Enhanced Spatially Explicit Modeling of Soil Particle Size and Texture Classification Using a Novel Two-Point Machine Learning Hybrid Framework. Agriculture. 2025; 15(19):2008. https://doi.org/10.3390/agriculture15192008
Chicago/Turabian StyleQin, Liya, Zong Wang, and Xiaoyuan Zhang. 2025. "Enhanced Spatially Explicit Modeling of Soil Particle Size and Texture Classification Using a Novel Two-Point Machine Learning Hybrid Framework" Agriculture 15, no. 19: 2008. https://doi.org/10.3390/agriculture15192008
APA StyleQin, L., Wang, Z., & Zhang, X. (2025). Enhanced Spatially Explicit Modeling of Soil Particle Size and Texture Classification Using a Novel Two-Point Machine Learning Hybrid Framework. Agriculture, 15(19), 2008. https://doi.org/10.3390/agriculture15192008