Estimating the Impact of Pesticide Use Reduction Policies on Irish Cereal Yields Using an Iterative Expert Panel Methodology
Abstract
1. Introduction
2. Materials and Methods
2.1. Expert Selection and Study Rationale
2.2. Survey Round 1
2.2.1. Yield Impacts
2.2.2. Development of Pesticide Resistance
2.2.3. Integrated Pest Management
2.2.4. General Impacts
2.3. Survey Round 2
2.4. Statistical Analysis
3. Results
3.1. Change in Predictions Between Rounds
3.2. Predicted Yield Impacts
3.2.1. Fungicides
3.2.2. Insecticides
3.2.3. Herbicides
3.3. Integrated Pest Management
3.3.1. IPM Techniques
3.3.2. Effect of IPM on Yield
3.4. Risk of Resistance Development
3.5. General Impacts
4. Discussion
4.1. Reliability of Findings
4.2. Comparison with Other Studies
4.3. Efficacy of Integrated Pest Management
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pimentel, D. Green revolution agriculture and chemical hazards. Sci. Total Environ. 1996, 188, S86–S98. [Google Scholar] [CrossRef]
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Wyckhuys, K.A.G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Mateo-Tomas, P.; Olea, P.P.; Minguez, E.; Mateo, R.; Vinuela, J. Direct evidence of poison-driven widespread population decline in a wild vertebrate. Proc. Natl. Acad. Sci. USA 2020, 117, 16418–16423. [Google Scholar] [CrossRef]
- Wyckhuys, K.A.G.; Aebi, A.; Bijleveld van Lexmond, M.; Bojaca, C.R.; Bonmatin, J.M.; Furlan, L.; Guerrero, J.A.; Mai, T.V.; Pham, H.V.; Sanchez-Bayo, F.; et al. Resolving the twin human and environmental health hazards of a plant-based diet. Environ. Int. 2020, 144, 106081. [Google Scholar] [CrossRef]
- Frank, E.G. The economic impacts of ecosystem disruptions: Costs from substituting biological pest control. Science 2024, 385, eadg0344. [Google Scholar] [CrossRef]
- Mansfield, B.; Werner, M.; Berndt, C.; Shattuck, A.; Galt, R.; Williams, B.; Argüelles, L.; Barri, F.R.; Ishii, M.; Kunin, J.; et al. A new critical social science research agenda on pesticides. Agric. Hum. Values 2023, 41, 395–412. [Google Scholar] [CrossRef]
- Lee, R.; den Uyl, R.; Runhaar, H. Assessment of policy instruments for pesticide use reduction in Europe; Learning from a systematic literature review. Crop Prot. 2019, 126, 104929. [Google Scholar] [CrossRef]
- European Commission. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Commission. Member States: Trends Trend in Use and Risk of Chemical Pesticides and the Use of More Hazardous Pesticides. 2024. Available online: https://food.ec.europa.eu/plants/pesticides/sustainable-use-pesticides/farm-fork-targets-progress/member-states-trends_en#Ireland (accessed on 3 September 2024).
- Department of Agriculture Food and Marine. Recently Withdrawn Plant Protection Products. 2024. Available online: https://www.pcs.agriculture.gov.ie/registers/plantprotectionproductsregisters/recentlywithdrawnplantprotectionproducts/ (accessed on 15 February 2024).
- Department of Agriculture Food and Marine. Public consultation on the EU Commissions proposal for a Sustainable Use of Pesticides Regulation. 2024. Available online: https://www.gov.ie/en/consultation/03fd8-public-consultation-on-the-eu-commissions-proposal-for-a-sustainable-use-of-pesticides-regulation/ (accessed on 16 August 2024).
- Beckman, J.; Ivanic, M.; Jelliffe, J.L.; Baquedano, F.G.; Scott, S.G. Economic and Food Security Impacts of Agricultural Input Reduction Under the European Union Green Deal’s Farm to Fork and Biodiversity Strategies; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2020. [Google Scholar]
- Bremmer, J.; Gonzalez-Martinez, A.; Jongeneel, R.; Huiting, H.; Stokkers, R. Impact Assessment Study on EC 2030 Green Deal Targets for Sustainable Food Production. Effects of Farm to Fork and Biodiversity Strategy 2030 at Farm, National and EU Level; WeCR for CROPLIFE Europe: Etterbeek, Belgium, 2020. [Google Scholar]
- Barreiro-Hurle, J.; Bogonos, M.; Himics, M.; Hristov, J.; Pérez-Domiguez, I.; Sahoo, A.; Salputra, G.; Weiss, F.; Baldoni, E.; Elleby, C. Modelling Environmental and Climate Ambition in the Agricultural Sector with the CAPRI Model. Exploring the Potential Effects of Selected Farm to Fork and Biodiversity Strategies Targets in the Framework of the 2030 Climate Targets and the Post 2020 Common Agricultural Policy; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Jess, S.; Matthews, D.I.; Murchie, A.K.; Lavery, M.K. Pesticide Use in Northern Ireland’s Arable Crops from 1992–2016 and Implications for Future Policy Development. Agriculture 2018, 8, 123. [Google Scholar] [CrossRef]
- Barzman, M.; Bàrberi, P.; Birch, A.N.E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.E.; Kiss, J.; Kudsk, P.; et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [Google Scholar] [CrossRef]
- Department of Agriculture Food and Marine. Irish National Action Plan for the Sustainable Use of Pesticides (Plant Protection Products); Department of Agriculture Food and Marine: Dublin, Ireland, 2013. [Google Scholar]
- Zhou, W.; Arcot, Y.; Medina, R.F.; Bernal, J.; Cisneros-Zevallos, L.; Akbulut, M.E.S. Integrated Pest Management: An Update on the Sustainability Approach to Crop Protection. ACS Omega 2024, 9, 41130–41147. [Google Scholar] [CrossRef]
- Forristal, P.D.; Grant, J. The impact of break-crop and cereal rotations on crop performance and profit margins. Asp. App. Biol. 2011, 113, 29–36. [Google Scholar]
- McNamara, L.; Lacey, S.; Kildea, S.; Schughart, M.; Walsh, L.; Doyle, D.; Gaffney, M.T. Barley yellow dwarf virus in winter barley: Control in light of resistance issues and loss of neonicotinoid insecticides. Ann. Appl. Biol. 2024, 186, 132–142. [Google Scholar] [CrossRef]
- Burke, J.J.; Dunne, B. Field testing of six decision support systems for scheduling fungicide applications to control Mycosphaerella graminicola on winter wheat crops in Ireland. J. Agric. Sci. 2008, 146, 415–428. [Google Scholar] [CrossRef]
- Burke, J.J.; Dunne, B. Investigating the effectiveness of the Thies Clima “Septoria Timer” to schedule fungicide applications to control Mycosphaerella graminicola on winter wheat in Ireland. Crop Prot. 2008, 27, 710–718. [Google Scholar] [CrossRef]
- Earl, R.; Jackson, G.; Ohuallachain, D.; Cole, L.; Evans, A.; McNamara, L. Contributions to biodiversity and integrated pest management from arable margins in Ireland evaluated through carabid populations. In Proceedings of the Landscape Management for Functional Biodiversity: IOBC-WPRS Proceedings of the 9th Meeting, Milan, Italy, 10 June 2022. [Google Scholar]
- Byrne, R.; Spink, J.; Freckleton, R.; Neve, P.; Barth, S. A critical review of integrated grass weed management in Ireland. Ir. J. Agric. Food Res. 2018, 57, 15–28. [Google Scholar] [CrossRef]
- Devaney, L.; Henchion, M. Who is a Delphi ‘expert’? Reflections on a bioeconomy expert selection procedure from Ireland. Futures 2018, 99, 45–55. [Google Scholar] [CrossRef]
- Rowe, G.; Wright, G. The Delphi technique as a forecasting tool: Issues and analysis. Int. J. Forecast. 1999, 15, 353–375. [Google Scholar] [CrossRef]
- Belton, I.; Wright, G.; Sissons, A.; Bolger, F.; Crawford, M.M.; Hamlin, I.; Taylor Browne Lūka, C.; Vasilichi, A. Delphi with feedback of rationales: How large can a Delphi group be such that participants are not overloaded, de-motivated, or disengaged? Technol. Forecast. Soc. Change 2021, 170, 120897. [Google Scholar] [CrossRef]
- Gordan, T.J.; Helmer, O. Report on a Long Range Forecasting Study; The Rand Corporation: Santa Monica, CA, USA, 1964. [Google Scholar]
- Mukherjee, N.; Hugé, J.; Sutherland, W.J.; McNeill, J.; Van Opstal, M.; Dahdouh-Guebas, F.; Koedam, N.; Anderson, B. The Delphi technique in ecology and biological conservation: Applications and guidelines. Methods Ecol. Evol. 2015, 6, 1097–1109. [Google Scholar] [CrossRef]
- Creissen, H.E.; Jones, P.J.; Tranter, R.B.; Girling, R.D.; Jess, S.; Burnett, F.J.; Gaffney, M.; Thorne, F.S.; Kildea, S. Identifying the drivers and constraints to adoption of IPM among arable farmers in the UK and Ireland. Pest. Manag. Sci. 2021, 77, 4148–4158. [Google Scholar] [CrossRef] [PubMed]
- Knutson, R.D.; Hall, C.; Smith, E.G.; Cotner, S.; Miller, J.W. Yield and cost impacts of reduced pesticide use on fruits and vegetables. Choices 1994, 1, 14–18. [Google Scholar]
- Mack, G.; Finger, R.; Ammann, J.; El Benni, N. Modelling policies towards pesticide-free agricultural production systems. Agric. Syst. 2023, 207, 103642. [Google Scholar] [CrossRef]
- Department of Agriculture Food and Marine. Pesticide Use In Ireland; Department of Agriculture Food and Marine: Celbridge, Ireland, 2016. [Google Scholar]
- Central Statistics Office. Area, Yield and Production of Crops 2023; Central Statistics Office: Cork, Ireland, 2024. [Google Scholar]
- Birko, S.; Dove, E.S.; Ozdemir, V. Evaluation of Nine Consensus Indices in Delphi Foresight Research and Their Dependency on Delphi Survey Characteristics: A Simulation Study and Debate on Delphi Design and Interpretation. PLoS ONE 2015, 10, e0135162. [Google Scholar]
- Teagasc. Weeds. Available online: https://www.teagasc.ie/crops/crops/cereal-crops/winter-cereals/weeds/ (accessed on 12 July 2024).
- Menallad, F.D.; Gross, K.L.; Hammond, M. Weed Aboveground and Seedbank Community Responses to Agricultural Management Systems. Ecol. Appl. 2001, 11, 1586–1601. [Google Scholar] [CrossRef]
- Braun, V.; Clarke, V. Using thematic analysis in psychology. Qual. Res. Psych. 2006, 3, 77–101. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Dillon, E.; Donnelan, T.; Moran, B.; Lennon, J. Teagasc National Farm Survey 2023; Teagasc: Athenry, Ireland, 2023. [Google Scholar]
- Parente, R.; Anderson-Parente, J. A case study of long-term Delphi accuracy. Technol. Forecast. Soc. Change 2011, 78, 1705–1711. [Google Scholar]
- Hallowell, M.R.; Gambtese, J.A. Qualitative Research: Application of the Delphi Method to CEM Research. J. Contr. Engin. Manage. 2010, 135, 99–107. [Google Scholar]
- Beiderbeck, D.; Frevel, N.; von der Gracht, H.A.; Schmidt, S.L.; Schweitzer, V.M. Preparing, conducting, and analyzing Delphi surveys: Cross-disciplinary practices, new directions, and advancements. MethodsX 2021, 8, 101401. [Google Scholar] [CrossRef]
- Johnson, K.B.; Radcliffe, E.B.; Teng, P.S. Effects of interacting populations of Alternaria solani, Verticillium dahliae, and the potato leafhopper(Empoasca fabae) on potato yield. Phytopathology 1986, 76, 1046–1052. [Google Scholar] [CrossRef]
- Fournier, V.; Rosenheim, J.A.; Brodeur, J.; Diez, J.M.; Johnson, M.W. Multiple Plant Exploiters on a Shared Host: Testing for Nonadditive Effects on Plant Performance. Ecol. App. 2006, 16, 2382–2398. [Google Scholar] [CrossRef]
- Webster, J.P.G.; Bowels, R.G.; Williams, N.T. Estimating the economic benefits of alternative pesticide usage scenarios: Wheat production in the United Kingdom. Crop Prot. 1999, 18, 83–89. [Google Scholar] [CrossRef]
- European Commision. Questions and Answers on Candidates for Substitution; European Commision Food, Farming and Fisheries: Brussel, Belgium, 2015. [Google Scholar]
- He, B.; Hu, Y.; Wang, W.; Yan, W.; Ye, Y. The Progress towards Novel Herbicide Modes of Action and Targeted Herbicide Development. Agronomy 2022, 12, 2792. [Google Scholar] [CrossRef]
- Cabrera-Pérez, C.; Royo-Esnal, A.; Recasens, J. Herbicidal Effect of Different Alternative Compounds to Control Conyza bonariensis in Vineyards. Agronomy 2022, 12, 960. [Google Scholar] [CrossRef]
- Young, S.L. Natural Product Herbicides for Control of Annual Vegetation along Roadsides. Weed Technol. 2004, 18, 580–587. [Google Scholar] [CrossRef]
- Jørgensen, L.N.; Matzen, N.; Leitzke, R.; Thomas, J.E.; O’Driscoll, A.; Klocke, B.; Maumene, C.; Lindell, I.; Wahlquist, K.; Zemeca, L.; et al. Management of Rust in Wheat Using IPM Principles and Alternative Products. Agriculture 2024, 14, 821. [Google Scholar] [CrossRef]
- Durham, T.C.; Mizik, T. Comparative Economics of Conventional, Organic, and Alternative Agricultural Production Systems. Economies 2021, 9, 64. [Google Scholar] [CrossRef]
- Mohring, N.; Ingold, K.; Kudsk, P.; Martin-Laurent, F.; Niggli, U.; Siegrist, M.; Studer, B.; Walter, A.; Finger, R. Pathways for advancing pesticide policies. Nat. Food 2020, 1, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Wyckhuys, K.A.G.; Gu, B.; Ben Fekih, I.; Finger, R.; Kenis, M.; Lu, Y.; Subramanian, S.; Tang, F.H.M.; Weber, D.C.; Zhang, W.; et al. Restoring functional integrity of the global production ecosystem through biological control. J. Environ. Manag. 2024, 370, 122446. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, C.; Yesmin, S.; Islam, M.A.; Sarkar, A. Bibliometric Analysis of Integrated Pest Management Practices. Horticulturae 2023, 9, 852. [Google Scholar] [CrossRef]
- Schneider, K.; Barreiro-Hurle, J.; Rodriguez-Cerezo, E. Pesticide reduction amidst food and feed security concerns in Europe. Nat. Food 2023, 4, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Lázaro, E.; Makowski, D.; Vicent, A. Decision support systems halve fungicide use compared to calendar-based strategies without increasing disease risk. Commun. Earth Environ. 2021, 2, 224. [Google Scholar] [CrossRef]
- Beckie, H.J.; Busi, R.; Lopez-Ruiz, F.J.; Umina, P.A. Herbicide resistance management strategies: How do they compare with those for insecticides, fungicides and antibiotics? Pest Manag. Sci. 2021, 77, 3049–3056. [Google Scholar] [CrossRef]
- Taylor, N.P.; Cunniffe, N.J. Modelling quantitative fungicide resistance and breakdown of resistant cultivars: Designing integrated disease management strategies for Septoria of winter wheat. PLoS Comput. Biol. 2023, 19, e1010969. [Google Scholar] [CrossRef]
- Carolan, K.; Helps, J.; van den Berg, F.; Bain, R.; Paveley, N.; van den Bosch, F. Extending the durability of cultivar resistance by limiting epidemic growth rates. Proc. Biol. Sci. 2017, 284, 20170828. [Google Scholar]
Pesticide Type | Active Ingredients |
---|---|
Fungicides | Benzovindiflupyr, Cyprodinil, Difenoconazole, Fludioxonil, Fluopicolide, Metalaxyl, Metconazole, Paclobutrazol, Tebuconazole |
Insecticides | Cypermethrin, Esfenvalerate, Gamma-Cyhalothrin, Lambda-Cyhalothrin |
Herbicides | Diflufenican, Flufenacet, Metribuzin, Pendimethalin, Propyzamide, Tri-allate |
Fungicides, Standard Management | Insecticide, Standard Management | Fungicide, Additional IPM | Insecticide, Additional IPM | |
---|---|---|---|---|
Yield Loss (t/Ha) | Yield Loss (t/Ha) | Yield Loss (t/Ha) | Yield Loss (t/Ha) | |
Wheat | 1.20 | 0.80 | 0.80 | 0.50 |
Barley | 0.77 | 1.54 | 0.46 | 0.77 |
Oats | 0.99 | 0.66 | 0.66 | 0.33 |
Herbicide, Short Term, Standard Management | Herbicide, Long Term, Standard Management | Herbicide, Short Term, Additional IPM | Herbicide, Long Term, Additional IPM | |
Yield Loss (t/Ha) | Yield Loss (t/Ha) | Yield Loss (t/Ha) | Yield Loss (t/Ha) | |
Winter Wheat | 1.45 | 2.90 | 0.97 | 1.93 |
Winter Barley | 1.30 | 2.59 | 0.86 | 1.73 |
Spring Barley | 0.34 | 0.37 | 0.34 | 0.37 |
Winter Oats | 0.68 | 1.13 | 0.47 | 0.76 |
Spring Oats | 0.28 | 0.41 | 0.20 | 0.28 |
Fungicides | Insecticides | Herbicides | |||
---|---|---|---|---|---|
Technique | Mean Importance | Technique | Mean Importance | Technique | Mean Importance |
Resistant/tolerant cultivars | 4.65 | Resistant/tolerant cultivars | 4.82 | Changes in crop rotation | 4.67 |
Changes in sowing dates | 3.18 | Changes in sowing dates | 4.32 | Decision support services/monitoring | 4.13 |
Changes in crop rotation | 3.12 | Decision support services/monitoring | 3.56 | Changes in sowing dates | 4.03 |
Seed health (enhanced testing for seed-borne diseases) | 2.78 | Reducing green bridge | 3.4 | Change in cropping season (winter vs. spring) | 3.94 |
Decision support services/monitoring | 2.65 | Economic threshold-based control | 3.04 | Improved hygiene practices to prevent weed entry | 3.75 |
Improved soil health and residue management | 2.37 | Changes in crop rotation | 2.85 | Stale seed bed | 3.6 |
Cultivar mixes | 2.31 | Avoiding susceptible crops, e.g., winter barley | 2.4 | Stubble cultivation | 3.4 |
Nutrient management | 2.26 | Field margins (natural enemy conservation) | 2.12 | Changes in crop establishment system | 3.38 |
Alternative chemicals, including biologicals | 1.68 | Change in establishment practices | 2 | Harvest weed seed control | 3.21 |
Heat/steam treatment of seeds | 1.64 | Strategic stubble cultivation | 1.93 | Pre-sowing glyphosate | 3.17 |
Change in establishment practices | 1.62 | Introducing biocontrol agents | 1.53 | Resistance testing of weeds | 2.87 |
Spot spraying | 1.41 | Alternative chemicals, including biologicals | 1.19 | Mechanical weeding | 2.69 |
Physical barriers (e.g., netting) | 1.12 | Seeding rate increase | 2.43 | ||
Spot spraying | 1.12 | Companion crops | 2.2 | ||
Improved hygiene practices to prevent insect entry to farms | 1.03 | Cover crops | 2.14 | ||
Nutrient management | 1.63 | ||||
Thermal weeding | 1.44 | ||||
Alternative chemicals, including biologicals (please list) | 1.2 | ||||
Irrigation management | 1 |
Standard Management | Additional IPM | Test Statistics (Standard Management vs. Additional IPM Scenarios) | |
---|---|---|---|
Fungicide | 4.09 ab | 3.65 a | W = 185.5, p = 0.140 |
Insecticide | 3.59 a | 2.59 b | W = 188, p = 0.058 |
Herbicide | 4.56 b | 4.03 a | W = 209, p = 0.017 |
Test Statistics (Difference between pesticide types) | χ2 = 7.39, p = 0.025 | χ2 = 9.68, p = 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McDougall, R.; England, M.; Thorne, F.; Forristal, D.; Mullins, E.; Kildea, S. Estimating the Impact of Pesticide Use Reduction Policies on Irish Cereal Yields Using an Iterative Expert Panel Methodology. Agriculture 2025, 15, 2010. https://doi.org/10.3390/agriculture15192010
McDougall R, England M, Thorne F, Forristal D, Mullins E, Kildea S. Estimating the Impact of Pesticide Use Reduction Policies on Irish Cereal Yields Using an Iterative Expert Panel Methodology. Agriculture. 2025; 15(19):2010. https://doi.org/10.3390/agriculture15192010
Chicago/Turabian StyleMcDougall, Robert, Meghan England, Fiona Thorne, Dermot Forristal, Ewen Mullins, and Steven Kildea. 2025. "Estimating the Impact of Pesticide Use Reduction Policies on Irish Cereal Yields Using an Iterative Expert Panel Methodology" Agriculture 15, no. 19: 2010. https://doi.org/10.3390/agriculture15192010
APA StyleMcDougall, R., England, M., Thorne, F., Forristal, D., Mullins, E., & Kildea, S. (2025). Estimating the Impact of Pesticide Use Reduction Policies on Irish Cereal Yields Using an Iterative Expert Panel Methodology. Agriculture, 15(19), 2010. https://doi.org/10.3390/agriculture15192010