Techno-Economic Analysis of Innovative Phytogenic-Based Supplements for Ruminant Health and Productivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Farms
2.2. Experimental Design
2.3. Animal Health Assessment
2.4. Economic Assessment
- ➢
- The cost of producing 1 L of milk is equal to the quotient of the milk production costs divided by the total quantity produced.
- ➢
- The cost of producing 1 kg of lamb meat is equal to the quotient of the costs of producing lamb meat divided by the total quantity of lamb meat produced and sold.
- ➢
- Gross income* is the total value of sales of the agricultural production sector in a specific period, including potential subsidies.
- ➢
- Net profit* is calculated by subtracting all production costs from the gross income.
- ➢
- Gross profit* is calculated by subtracting the variable expenses from the gross income.
- ➢
- Agricultural family income* is the remainder of subtracting all apparent expenses (paid expenses + depreciation + self-insurance) from gross income [31].
- Classification of agricultural products into primary and secondary
- ➢
- The main product represents a significant percentage of the sector’s total production value (over 10%).
- ➢
- The secondary product represents a small part of the value of the industry’s total production (less than 10%) [31].
3. Results
- Group 1, name of the phytogenic-based supplement: Herb-AllTM LIVER (Life Circle Nutrition, Switzerland)
- Group 2, name of phytogenic-based supplement: Rotacol® (OLUS PLUS, The Netherlands)
- Group 3, name of phytogenic-based supplement: Herb-AllTM COCC-X (Life Circle Nutrition, Switzerland)
- Group 4, name of phytogenic-based supplement: Arethousa oregano
- Group 5, name of phytogenic-based supplement: Arethousa oregano
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muhammad, A.; Keithly, J.; Hagerman, A. Theme Issue Overview: Emerging Issues in Global Animal Product Trade, Agribusiness; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; Volume 30, pp. 1–4. [Google Scholar]
- Makkar, H.P.S. Review: Feed demand landscape and implications of food-not feed strategy for food security and climate change. Animal 2018, 12, 1744–1754. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Thornton, P.K. Livestock and global change: Emerging issues for sustainable food systems. Proc. Natl. Acad. Sci. USA 2013, 52, 20878–20881. [Google Scholar] [CrossRef] [PubMed]
- Cherian, T.; Ragavendran, C.; Vijayan, S.; Kurien, S.; Peijnenburg, W.J. A review on the fate, human health and environmental impacts, as well as regulation of antibiotics used in aquaculture. Environ. Adv. 2023, 13, 100411. [Google Scholar] [CrossRef]
- Hanamoto, S.; Minami, Υ.; Thet Hnin, S.; Yao, D. Localized pollution of veterinary antibiotics in watersheds receiving treated effluents from swine farms. Sci. Total Environ. 2023, 902, 166211. [Google Scholar] [CrossRef] [PubMed]
- Crawford, P.E.; Hamer, K.; Lovatt, F.; Behnke, M.C.; Robinson, P.A. Antibiotic use in the Northern Irish sheep flock: What lessons can be learnt from medicine records and farmer attitudes to improve stewardship of these essential medicines? Prev. Vet. Med. 2024, 226, 106169. [Google Scholar] [CrossRef] [PubMed]
- Albarano, L.; Suarez, E.G.P.; Maggio, C.; Marca, A.; Iovine, R.; Lofrano, G.; Guida, Μ.; Vaiano, V.; Carotenuto, M.; Libralato, G. Assessment of ecological risks posed by veterinary antibiotics in European aquatic environments: A comprehensive review and analysis. Sci. Total Environ. 2024, 954, 176280. [Google Scholar] [CrossRef]
- Liao, X.; Deng, R.; Warriner, K.; Ding, T. Antibiotic resistance mechanism and diagnosis of common foodborne pathogens based on genotypic and phenotypic biomarkers. Compr. Rev. Food Sci. Food Saf. 2023, 22, 3212–3253. [Google Scholar] [CrossRef] [PubMed]
- Raka, R.N.; Zhang, L.; Chen, R.; Xue, X. Antibiotic Resistance Genes in Global Food Transformation System: Edible Insects vs. Livestock. Foods 2024, 13, 3257. [Google Scholar] [CrossRef]
- Ifedinezi, O.V.; Nnaji, N.D.; Anumudu, C.K.; Ekwueme, C.T.; Uhegwu, C.C.; Ihenetu, F.C.; Obioha, P.; Simon, B.O.; Ezechukwu, P.S.; Onyeaka, H. Environmental Antimicrobial Resistance: Implications for Food Safety and Public Health. Antibiotics 2024, 13, 1087. [Google Scholar] [CrossRef]
- Freeland, G.; Hettiarachchy, N.; Atungulu, G.G.; Apple, J.; Mukherjee, S. Strategies to Combat Antimicrobial Resistance from Farm to Table. Food Rev. Int. 2021, 39, 27–40. [Google Scholar] [CrossRef]
- Luke-Currier, A.; Moriarty, E.; Hodkinson, T. Communication of EU agricultural antibiotic use policies to farmers & implications for public health. Eur. J. Public Health 2024, 34, ckae144–1078. [Google Scholar] [CrossRef]
- Wang, J.; Deng, L.; Chen, M.; Che, Y.; Li, L.; Zhu, L.; Chen, G.; Feng, T. Phytogenic feed additives as natural antibiotic alternatives in animal health and production: A review of the literature of the last decade. Anim. Nutr. 2024, 17, 244–264. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Ahn, J.M.; Kim, I.H. Assessing the potential of phytogenic feed additives: A comprehensive review on their effectiveness as a potent dietary enhancement for nonruminant in swine and poultry. J. Anim. Physiol. Anim. Nutr. 2024, 108, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Rafeeq, M.; Bilal, R.M.; Alagawany, M.; Batool, F.; Yameen, K.; Farag, M.R.; El-Shall, N.A. The use of some herbal plants as effective alternatives to antibiotic growth enhancers in poultry nutrition. World’s Poult. Sci. J. 2022, 78, 1067–1085. [Google Scholar] [CrossRef]
- Karageorgou, A.; Tsafou, M.; Goliomytis, M.; Hager-Theodorides, A.; Politi, K.; Simitzis, P. Effect of Dietary Supplementation with a Mixture of Natural Antioxidants on Milk Yield, Composition, Oxidation Stability and Udder Health in Dairy Ewes. Antioxidants 2023, 12, 1571. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Cheng, Z.; Zhao, Y.; Wang, Y.; Wang, H.; Ren, Z. Influence of increasing levels of oregano essential oil on intestinal morphology, intestinal flora and performance of Sewa sheep. Ital. J. Anim. Sci. 2022, 21, 463–472. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, C.; Su, K.; Fan, T.; Chen, L.; Yang, Z.; Zhang, M.; Li, J.; Zhang, Y.; Liu, J. Oregano Essential Oil in Livestock and Veterinary Medicine. Animals 2024, 14, 1532. [Google Scholar] [CrossRef]
- Liang, Q.; Liu, Z.; Liang, Z.; Zhu, C.; Li, D.; Kong, Q.; Mou, H. Development strategies and application of antimicrobial peptides as future alternatives to in-feed antibiotics. Sci. Total Environ. 2024, 927, 172150. [Google Scholar] [CrossRef]
- Af Sandeberg, A.; Båge, R.; Nyman, A.K.; Agenäs, S.; Hansson, H. Review: Linking animal health measures in dairy cows to farm-level economic outcomes: A systematic literature mapping. Anim. Int. J. Anim. Biosci. 2023, 17, 100971. [Google Scholar] [CrossRef] [PubMed]
- Govaris, A.; Solomakos, N.; Pexara, A.; Chatzopoulou, P.S. The antimicrobial effect of oregano essential oil, nisin and their combination against Salmonella enteritidis in minced sheep meat during refrigerated storage. Int. J. Food Microbiol 2010, 137, 175–180. [Google Scholar] [CrossRef]
- Burt, S.A.; Reinders, R.D. Antibacterial Activity of Selected Plant Essential Oils Against Escherichia Coli O157:H7. Lett. Appl. Microbiol. 2003, 36, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Lv, F.; Liang, H.; Yuan, Q.; Li, C. In Vitro, Antimicrobial Effects and Mechanism of Action of Selected Plant Essential Oil Combinations Against Four Food Related Microorganisms. Food Res. Intl. 2011, 44, 3057–3064. [Google Scholar] [CrossRef]
- Hristov, A.N.; Lee, C.; Cassidy, T.; Heyler, K.; Tekippe, J.A.; Varga, G.A.; Corl, B.; Brandt, R.C. Effect of Origanum vulgare L. leaves on rumen fermentation, production, and milk fatty acid composition in lactating dairy cows. J. Dairy Sci. 2013, 96, 1189–1202. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.M.; Zhang, K.; Li, C.; Wu, J.P.; Davis, D.; Casper, D.P.; Jiang, H.; Wang, X.L.; Wang, J.F. Dietary supplementation with essential-oils-cobalt for improving growth performance, meat quality and skin cell capacity of goats. Sci. Rep. 2018, 8, 11634. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Wu, J.; Lang, J.X.; Liu, L.; Casper, D.P.; Wang, C.; Zhang, L.; Wei, S. Effect of oregano essential oil in vitro ruminal fermentation, methane production, and ruminal microbial community. J. Dairy Sci. 2020, 103, 2303–2314. [Google Scholar] [CrossRef]
- Tsiouni, M.; Gourdouvelis, D.; Konstantinidis, C.; Aggelopoulos, S. Techno-economic and financial index analysis for the improvement of entrepreneurship and competitiveness strategies of Greek goat enterprises. Front. Sustain. Food Syst. 2022, 6, 982307. [Google Scholar]
- Akrivouli, Z. Uniqueness of Quality Agri-Food Products Produced in the Region of Thessaly. Recording, Markets and Promotion Strategies, Small Business Institute, IME GSEVEE. 2022. Available online: https://imegsevee.gr/wp-content/uploads/2022/10/meleti_thessalia.pdf (accessed on 1 April 2025).
- Spathis, P.; Tsimpoukas, K. Business Economics. In With Applications to Food and Agriculture Businesses; Ellinoekdotiki Publishing: Athens, Greece, 2010. [Google Scholar]
- Sintori, A.; Tsiboukas, K.; Zervas, G. Evaluating Socio-Economic and Environmental Sustainability of the Sheep Farming Activity in Greece: A Whole-Farm Mathematical Programming Approach. In Marta-Costa Methods and Procedures for Building Sustainable Farming Systems, Application in the European Context; Silva, A.E., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 219–235. [Google Scholar] [CrossRef]
- Liagka, D.V.; Politis, A.P.; Spilioti, M.; Nellas, E.; Simitzis, P.; Tsiboukas, K. A Comparative Economic Analysis of Different Reproductive Management Strategies in Two Dairy Sheep Farms in Greece. Agriculture 2025, 15, 719. [Google Scholar] [CrossRef]
- European Commission. FADN Database. 2025. Available online: https://agridata.ec.europa.eu/extensions/FarmEconomyFocus/FADNDatabase.html (accessed on 1 April 2025).
- Skoufogianni, E.; Solomou, A.D.; Danalatos, N.G. Ecology, Cultivation and Utilization of the Aromatic Greek Oregano (Origanum vulgare L.): A Review. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 545–552. [Google Scholar] [CrossRef]
- Fimbres-García, J.O.; Flores-Sauceda, M.; Othon-Díaz, E.D.; García-Galaz, A.; Tapia-Rodríguez, M.R.; Silva-Espinoza, B.A.; Ayala-Zavala, J.F. Facing Resistant Bacteria with Plant Essential Oils: Reviewing the Oregano Case. Antibiotics 2022, 11, 1777. [Google Scholar] [CrossRef]
- Evangelista, A.G.; Corrêa, J.A.F.; Pinto, A.C.S.M.; Luciano, F.B. The impact of essential oils on antibiotic use in animal production regarding antimicrobial resistance—A review. Crit. Rev. Food Sci. Nutr. 2021, 62, 5267–5283. [Google Scholar] [CrossRef] [PubMed]
- Tamminen, L.M.; Emanuelson, U.; Blanco-Penedo, I. Systematic Review of Phytotherapeutic Treatments for Different Farm Animals Under European Conditions. Front. Vet. Sci 2018, 5, 140. [Google Scholar] [CrossRef] [PubMed]
- Betancourt López, L. Oregano Essential Oils as a Nutraceutical Additive in Poultry Diets; IntechOpen: London, UK, 2024. [Google Scholar]
- Cheng, G.; Hao, H.; Xie, S.; Wang, X.; Dai, M.; Huang, L.; Yuan, Z. Antibiotic alternatives: The substitution of antibiotics in animal husbandry? Front. Microbiology 2014, 5, 217. [Google Scholar] [CrossRef] [PubMed]
- Zaazaa, A.; Mudalal, S.; Alzuheir, I.; Samara, M.; Jalboush, N.; Fayyad, A.; Petracci, M. The Impact of Thyme and Oregano Essential Oils Dietary Supplementation on Broiler Health, Growth Performance, and Prevalence of Growth-Related Breast Muscle Abnormalities. Animals 2022, 12, 3065. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Wu, J.; Lei, Y.; Kong, F.; Zhang, R.; Sun, J.; Wang, L.; Li, Z.; Shi, J.; Wang, Y.; et al. Oregano Essential Oils Mediated Intestinal Microbiota and Metabolites and Improved Growth Performance and Intestinal Barrier Function in Sheep. Front. Immunol. 2022, 13, 908015. [Google Scholar] [CrossRef]
- Ministry of Rural Development and Food (2025), Common Agricultural Policy Strategic Plan 2023–2027. Available online: https://www.agrotikianaptixi.gr/metra-paa-pages/katartisi-symvoules-synergasies/metro-16-synergasia/ (accessed on 1 April 2025).
Group 1 → Intervention Animals: Ewes | ||
---|---|---|
Characterization of a Farm | Farm Capacity | Amount Administered and Name of Phytogenic-Based Supplement |
Control farm | 50 ewes & 48 lambs | None |
Intervention farm 1 | 50 ewes & 48 lambs | 1.5 kg of Herb-AllTM LIVER (Life Circle Nutrition, Switzerland, Wangen, Switzerland) per ton of feed |
Intervention farm 2 | 50 ewes & 48 lambs | 2.5 kg of Herb-AllTM LIVER (Life Circle Nutrition, Switzerland) per ton of feed |
Group 2 → Intervention Animals: Lambs | ||
Control farm | 21 ewes & 26 lambs | None |
Intervention farm 1 | 21 ewes & 26 lambs | 1st day of life at a dose of 1 mL Rotacol® (OLUS PLUS, Hasselt, The Netherlands)/kg body weight of lambs |
Intervention farm 2 | 21 ewes & 26 lambs | 1st day and 3rd day of life at a dose of 1 mL Rotacol® (OLUS PLUS, The Netherlands)/kg body weight |
Group 3 → Intervention Animals: Lambs | ||
Control farm | 26 ewes & 32 lambs | none |
Intervention farm 1 | 26 ewes & 32 lambs | 2 kg of Herb-AllTM COCC-X (Life Circle Nutrition, Switzerland) per ton from 15 days of age |
Intervention farm 2 | 26 ewes & 32 lambs | 3 kg of Herb-AllTM COCC-X (Life Circle Nutrition, Switzerland) per ton from 15 days of age |
Group 4 → Intervention Animals: Ewes | ||
Control farm | 50 ewes & 48 lambs | None |
Intervention farm 1 | 50 ewes & 48 lambs | 250 g of oregano food supplement per ton of food |
Intervention farm 2 | 50 ewes & 48 lambs | 500 g of oregano food supplement per ton of feed |
Group 5 → Intervention Animals: Lambs | ||
Control farm | 26 ewes & 32 lambs | None |
Intervention farm 1 | 26 ewes & 32 lambs | 250 g of oregano food supplement per ton of food from the age of 15 days |
Intervention farm 2 | 26 ewes & 32 lambs | 500 g of oregano food supplement per ton of food from the age of 15 days |
Groups | Farms | ||
---|---|---|---|
Group 1 | Control farm | Intervention farm 1 | Intervention farm 2 |
Mastitis incidence rate (%) | 13.8 | 9.5 | 7.8 |
Diarrhea incidence rate (%) | 6.3 | 3.8 | 2.9 |
Percentage increase in milk production (%) | - | 4.07 | 10.45 |
Group 2 | Control farm | Intervention farm 1 | Intervention farm 2 |
Reduction in mortality rate (%) | 7.2 | 4.3 | 2.7 |
Reducing the incidence of diarrhea (%) | 42.3 | 17.6 | 8.4 |
Group 3 | Control farm | Intervention farm 1 | Intervention farm 2 |
Reduction in mortality rate (%) | 8.2 | 4.8 | 2.3 |
Reducing the incidence of diarrhea (%) | 27.6 | 12.7 | 7.2 |
Group 4 | Control farm | Intervention farm 1 | Intervention farm 2 |
Mastitis incidence rate (%) | 11.4 | 9.5 | 8.8 |
Diarrhea incidence rate (%) | 6.6 | 6.2 | 5.9 |
Percentage increase in milk production (%) | - | +1.9 | +2.6 |
Group 5 | Control farm | Intervention farm 1 | Intervention farm 2 |
Reduction in mortality rate (%) | 7.85 | 54 | 4.6 |
Reducing the incidence of diarrhea (%) | 35.8 | 28.8 | 22.6 |
Livestock | Number of Animals (n) | Average Value (Euro Per Animal) | Total Value (Euro) |
---|---|---|---|
Ewes | 50 | 250 | 12,500 |
Replacement lamb ewes | 10 | 150 | 1500 |
Rams | 3 | 300 | 900 |
Buildings/Equipment | Reconstruction Cost (Euro) | Useful Life (Years) | Years of Function | Depreciation |
---|---|---|---|---|
Stable | 9000.00 | 25 | 10 | 360.00 |
Feed store | 2500.00 | 25 | 10 | 100.00 |
Milking parlor | 1600.00 | 25 | 10 | 64.00 |
Farm equipment | 400.00 | 10 | 8 | 40.00 |
Milking machine | 5800.00 | 15 | 10 | 387.00 |
Parameters | Control Farm | Intervention Farm 1 | Intervention Farm 2 |
---|---|---|---|
Milk | |||
Yield per ewe (liters) | 302.30 | 314.60 | 333.89 |
Annual yield (liters) | 15,115.00 | 15,729.80 | 16,694.39 |
Price (Euro per liter) | 1.60 | 1.60 | 1.60 |
Lamb | |||
Lambs sold (number of animals) | 48 | 48 | 48 |
Lamb meat for sale (kg) | 433.13 | 433.13 | 433.13 |
Carcass selling price (euro/kg) | 8.00 | 8.00 | 8.00 |
Elderly/barren ewes (number of animals) | 10 | 10 | 10 |
Selling meat from elderly/barren ewes (kg) | 350.00 | 350.00 | 350.00 |
Selling price of sheep carcass (euro/kg) | 4.00 | 4.00 | 4.00 |
Value of sheep wool (euro) | 60.00 | 60.00 | 60.00 |
Total used amount of Herb-AllTM LIVER (kg) | - | 18.38 | 36.34 |
Herb-AllTM LIVER expense | - | 228.97 | 381.61 |
Annual Production Expenses | Control Farm | Intervention Farm 1 | Intervention Farm 2 |
---|---|---|---|
Land | 189.00 | 189.00 | 189.00 |
Labor | 10,455.86 | 10,455.86 | 10,455.86 |
Expenses of variable capital | 13,180.33 | 13,759.69 | 14,512.08 |
Expenses of fixed capital | 2625.37 | 2625.37 | 2625.37 |
Total production expenses | 26,450.55 | 27,029.92 | 27,782.31 |
Fixed Capital Expenses | Control Farm | Intervention Farm 1 | Intervention Farm 2 |
Depreciation | 950.67 | 950.67 | 950.67 |
Interest | 1466.72 | 1466.72 | 1466.72 |
Maintenance of structures and equipment | 129.98 | 129.98 | 129.98 |
Construction and equipment insurance | 78.00 | 78.00 | 78.00 |
Total (euro) | 2625.37 | 2625.37 | 2625.37 |
Variable Capital Expenses | Control Farm | Intervention Farm 1 | Intervention Farm 2 |
Consumables (i.e., feed expenses, fuel expenses, dietary supplement expenses) | 11,506.30 | 12,102.05 | 12,837.76 |
Insurance for livestock (ELGA) | 56.70 | 56.70 | 56.70 |
Provision of services by third parties (veterinary expenses, electricity and water expenses) | 955 | 915 | 901 |
Interest of variable capital | 537.33 | 560.95 | 591.62 |
Other expenses | 125.00 | 125.00 | 125.00 |
Total | 13,180.33 | 13,759.69 | 14,512.08 |
Products | Price | Revenue | Output of Production | Product Categorization | Gross Income of Primary Products | Gross Income of Primary Products (%) |
---|---|---|---|---|---|---|
Control farm | ||||||
Milk | 1.60 euro/kg | 24,184.00 | 83% | Primary | 24,184.00 (1) | 87% |
Lamb meat | 8.00 euro/kg | 3465.00 | 12% | Primary | 3465.00 (2) | 13% |
Meat from elderly/barren ewes | 4.00 euro/kg | 1400.00 | 5% | Secondary | 27,649.00 (1) + (2) | 100% |
Sheep wool | 60 euros in total quantity | 60.00 | 0% | Secondary | ||
Total | 29,109.00 | 100% | ||||
Intervention farm 1 | ||||||
Milk | 1.60 euro/kg | 25,167.68 | 84% | Primary | 25,167.68 (1) | 88% |
Lamb meat | 8.00 euro/kg | 3465.00 | 12% | Primary | 3465.00 (2) | 12% |
Meat from elderly/barren ewes | 4.00 euro/kg | 1400.00 | 5% | Secondary | 28,632.68 (1+2) | 100% |
Sheep wool | 60 euros in total quantity | 60.00 | 0% | Secondary | ||
Total | 30,092.68 | |||||
Intervention farm 2 | ||||||
Milk | 1.60 euro/kg | 26,711.02 | 84% | Primary | 26,711.02 (1) | 89% |
Lamb meat | 8.00 euro/kg | 3465.00 | 11% | Primary | 3465.00 (2) | 11% |
Meat from elderly/barren ewes | 4.00 euro/kg | 1400.00 | 4% | Secondary | 30,176.02 (1) + (2) | 100% |
Sheep wool | 60 euros in total quantity | 60.00 | 0% | Secondary | ||
Total | 31,636.02 |
Group | Supplement | Farm Type | Milk Cost (€/kg) | Lamb Meat Cost (€/kg) |
---|---|---|---|---|
Group 1 | Herb-All™ LIVER | Control | 1.53 | 7.65 |
Intervention 1 | 1.51 | 7.55 | ||
Intervention 2 | 1.47 | 7.37 | ||
Group 2 | Rotacol® | Control | 1.68 | 8.39 |
Intervention 1 | 1.66 | 8.32 | ||
Intervention 2 | 1.66 | 8.29 | ||
Group 3 | Herb-All™ COCC-X | Control | 1.7 | 8.52 |
Intervention 1 | 1.71 | 8.55 | ||
Intervention 2 | 1.71 | 8.56 | ||
Group 4 | Arethousa oregano (ewes) | Control | 1.5 | 7.49 |
Intervention 1 | 1.48 | 7.42 | ||
Intervention 2 | 1.46 | 7.29 | ||
Group 5 | Arethousa oregano (lambs) | Control | 1.71 | 8.53 |
Intervention 1 | 1.7 | 8.49 | ||
Intervention 2 | 1.7 | 8.48 |
Group 1, Name of Phytogenic-Based Supplement: Herb-AllTM LIVER (Life Circle Nutrition, Switzerland) | |||
---|---|---|---|
Financial Results | Control Farm | Intervention Farm 1 | Intervention Farm 2 |
Gross income per ewe | 618.02 | 637.69 | 668.56 |
Net profit per ewe | 89.01 | 97.10 | 112.91 |
Gross profit per ewe | 354.41 | 362.50 | 378.32 |
Agricultural farm income per ewe | 309.59 | 318.15 | 334.58 |
Group 4, Name of Phytogenic-Based Supplement: Arethousa Oregano | |||
Financial Results | Control Farm | Intervention Farm 1 | Intervention Farm 2 |
Gross income per ewe | 630.66 | 640.07 | 653.22 |
Net profit per ewe | 101.44 | 106.80 | 117.18 |
Gross profit per ewe | 366.84 | 372.20 | 382.58 |
Agricultural farm income per ewe | 322.03 | 327.55 | 338.04 |
Group 2, Name of Phytogenic-Based Supplement: Rotacol® (OLUS PLUS, The Netherlands) | |||
Financial Results | Control Farm | Intervention Farm 1 | Intervention Farm 2 |
Gross income per ewe | 619.47 | 622.08 | 623.52 |
Net profit per ewe | 39.39 | 44.63 | 46.48 |
Gross profit per ewe | 352.38 | 357.63 | 359.48 |
Agricultural farm income per ewe | 262.96 | 268.09 | 269.92 |
Group 3, Name of Phytogenic-Based Supplement: Herb-AllTM COCC-X (Life Circle Nutrition, Switzerland) | |||
Financial Results | Control Farm | Intervention Farm 1 | Intervention Farm 2 |
Gross income per ewe | 618.05 | 621.11 | 623.36 |
Net profit per ewe | 30.32 | 28.04 | 27.28 |
Gross profit per ewe | 350.95 | 348.67 | 347.90 |
Agricultural farm income per ewe | 276.36 | 274.30 | 273.65 |
Group 5, Name of Phytogenic-Based Supplement: Arethousa Oregano | |||
Financial Results | Control Farm | Intervention Farm 1 | Intervention Farm 2 |
Gross income per ewe | 618.37 | 620.57 | 621.29 |
Net profit per ewe | 29.61 | 32.49 | 33.15 |
Gross profit per ewe | 350.24 | 353.11 | 353.78 |
Agricultural farm income per ewe | 275.69 | 278.54 | 279.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spilioti, M.; Tousis, K.; Papakonstantinou, G.; Meletis, E.; Manouras, A.; Nellas, E.; Economou, G.; Papatsiros, V.G.; Tsiboukas, K. Techno-Economic Analysis of Innovative Phytogenic-Based Supplements for Ruminant Health and Productivity. Agriculture 2025, 15, 1090. https://doi.org/10.3390/agriculture15101090
Spilioti M, Tousis K, Papakonstantinou G, Meletis E, Manouras A, Nellas E, Economou G, Papatsiros VG, Tsiboukas K. Techno-Economic Analysis of Innovative Phytogenic-Based Supplements for Ruminant Health and Productivity. Agriculture. 2025; 15(10):1090. https://doi.org/10.3390/agriculture15101090
Chicago/Turabian StyleSpilioti, Maria, Konstantinos Tousis, Georgios Papakonstantinou, Eleftherios Meletis, Alexis Manouras, Eleftherios Nellas, Garyfalia Economou, Vasileios G. Papatsiros, and Konstantinos Tsiboukas. 2025. "Techno-Economic Analysis of Innovative Phytogenic-Based Supplements for Ruminant Health and Productivity" Agriculture 15, no. 10: 1090. https://doi.org/10.3390/agriculture15101090
APA StyleSpilioti, M., Tousis, K., Papakonstantinou, G., Meletis, E., Manouras, A., Nellas, E., Economou, G., Papatsiros, V. G., & Tsiboukas, K. (2025). Techno-Economic Analysis of Innovative Phytogenic-Based Supplements for Ruminant Health and Productivity. Agriculture, 15(10), 1090. https://doi.org/10.3390/agriculture15101090