A Comparative Study of the Influence of Communication on the Adoption of Digital Agriculture in the United States and Brazil †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Survey Instrument
2.3. Data Collection
2.4. Data Analysis
- n = number of elements in the sample;
- p = probability of finding the phenomenon studied in the population;
- q = probability of not finding the phenomenon studied in the population; and
- E = margin of error.
2.5. Sample Characteristics
3. Results and Discussion
3.1. Technology Adoption, Decisions, and Benefits
3.2. Level of Influence from Mass Media, Social Media, and Interpersonal Meetings
3.3. Relationship between the Adoption of Technologies and Communication Channels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sonka, S. Big data and the ag sector: More than lots of numbers. Int. Food Agribus. Manag. Rev. 2014, 17, 1–20. [Google Scholar] [CrossRef]
- Sridhar, A.; Balakrishnan, A.; Jacob, M.M.; Sillanpää, M.; Dayanandan, N. Global impact of COVID-19 on agriculture: Role of sustainable agriculture and digital farming. Environ. Sci. Pollut. Res. 2023, 30, 42509–42525. [Google Scholar] [CrossRef] [PubMed]
- Mao, R.; Shanoyan, A.; Brooks, K. Special issue: Agri-food systems transformation: Sustainability, resilience, and the role of technology. Int. Food Agribus. Manag. Rev. 2023, 26, 373–377. [Google Scholar] [CrossRef]
- Coble, K.H.; Mishra, A.K.; Ferrell, S.; Griffin, T. Big data in agriculture: A challenge for the future. Appl. Econ. Perspect. Policy 2018, 40, 79–96. [Google Scholar] [CrossRef]
- Thompson, N.M.; Bir, C.; Widmar, D.A.; Mintert, J.R. Farmer perceptions of precision agriculture technology benefits. J. Agric. Appl. Econ. 2019, 51, 142–163. [Google Scholar] [CrossRef]
- Boehlje, M.; Langemeier, M. The Role of Information in Today’s Uncertain Business Climate. Farmdoc Dly. 2021, 11, 41. Available online: https://farmdocdaily.illinois.edu/2021/03/the-role-of-information-in-todays-uncertain-business-climate.html (accessed on 18 December 2022).
- Faulkner, A.; Cebul, K.; McHenry, G. Agriculture Gets Smart: The Rise of Data and Robotics; Cleantech Agriculture Report; Cleantech Group: San Francisco, CA, USA, 2014. [Google Scholar]
- Bolfe, É.L.; Jorge, L.A.D.C.; Sanches, I.D.A.; Luchiari Júnior, A.; da Costa, C.C.; Victoria, D.D.C.; Inamasu, R.Y.; Grego, C.R.; Ferreira, V.R.; Ramirez, A.R. Precision and digital agriculture: Adoption of technologies and perception of Brazilian farmers. Agriculture 2020, 10, 653. [Google Scholar] [CrossRef]
- Gelb, E.; Voet, H. ICT Adoption Trends in Agriculture: A summary of the EFITA ICT Adoption Questionnaires (1999–2009). Letzter Zugriff 2010, 20, 1–11. Available online: http://departments.agri.huji.ac.il/economics/voet-gelb.pdf (accessed on 10 May 2023).
- Pivoto, D.; Barham, B.; Waquil, P.D.; Foguesatto, C.R.; Corte VF, D.; Zhang, D.; Talamini, E. Factors influencing the adoption of smart farming by Brazilian grain farmers. Int. Food Agribus. Manag. Rev. 2019, 22, 571–588. [Google Scholar] [CrossRef]
- Lambert, D.M.; English, B.C.; Harper, D.C.; Larkin, S.L.; Larson, J.A.; Mooney, D.F.; Roberts, R.K.; Velandia, M.; Reeves, J.M. Adoption and frequency of precision soil testing in cotton production. J. Agric. Resour. Econ. 2014, 39, 106–123. [Google Scholar]
- Roberts, R.K.; English, B.C.; Larson, J.A.; Cochran, R.L.; Goodman, W.R.; Larkin, S.L.; Marra, M.C.; Martin, S.W.; Shurley, W.D.; Reeves, J.M. Adoption of site-specific information and variable-rate technologies in cotton precision farming. J. Agric. Appl. Econ. 2004, 36, 143–158. [Google Scholar] [CrossRef]
- Hundal, G.S.; Laux, C.M.; Buckmaster, D.; Sutton, M.J.; Langemeier, M. Exploring barriers to the adoption of internet of things-based precision agriculture practices. Agriculture 2023, 13, 163. [Google Scholar] [CrossRef]
- Dilleen, G.; Claffey, E.; Foley, A.; Doolin, K. Investigating knowledge dissemination and social media use in the farming network to build trust in smart farming technology adoption. J. Bus. Ind. Mark. 2023, 38, 1754–1765. [Google Scholar] [CrossRef]
- Rogers, E.M.; Singhal, A.; Quinlan, M.M. Diffusion of innovations. In An integrated Approach to Communication Theory and Research; Routledge: London, UK, 2014; pp. 432–448. [Google Scholar]
- Bawden, D.; Robinson, L. Information overload: An overview. In Oxford Encyclopedia of Political Decision Making; Oxford University Press: Oxford, UK, 2020. [Google Scholar] [CrossRef]
- Colussi, J.; Morgan, E.L.; Schnitkey, G.D.; Padula, A.D. How Communication Affects the Adoption of Digital Technologies in Soybean Production: A Survey in Brazil. Agriculture 2022, 12, 611. [Google Scholar] [CrossRef]
- US Department of Agriculture, Foreign Agricultural Service. U.S. Soybean Meal Exports Forecast at Consecutive Records in 2022/23 and 2023/24. Oilseeds: World Mark. Trade 2024. Available online: https://fas.usda.gov/data/oilseeds-world-markets-and-trade (accessed on 15 March 2024).
- Cattelan, A.J.; Dall’Agnol, A. The rapid soybean growth in Brazil. EDP Sci. 2018, 25, D102. Available online: https://www.alice.cnptia.embrapa.br/bitstream/doc/1091243/1/2018Therapidocl170039.pdf (accessed on 12 December 2023). [CrossRef]
- US Department of Agriculture, USDA; Midwest Climate Hubs. Agriculture in the Midwest. 2020. Available online: https://www.climatehubs.usda.gov/hubs/midwest/topic/agriculture-midwest (accessed on 18 May 2022).
- Kolady, D.E.; Van der Sluis, E.; Uddin, M.M.; Deutz, A.P. Determinants of adoption and adoption intensity of precision agriculture technologies: Evidence from South Dakota. Precis. Agric. 2021, 22, 689–710. [Google Scholar] [CrossRef]
- Erickson, B.; Lowenberg-DeBoer, J.; Bradford, J. Precision Agriculture Dealership Survey 2017; Purdue University: West Lafayette, IN, USA, 2017; Available online: https://ag.purdue.edu/digitalag/_media/croplife-precision-agriculture-report-2017.pdf (accessed on 20 October 2020).
- Erickson, B.; Lowenberg-DeBoer, J.; Bradford, J. Precision Agriculture Dealership Survey 2019; Purdue University: West Lafayette, IN, USA, 2019; Available online: https://ag.purdue.edu/digitalag/_media/croplife-precision-agriculture-report-2019.pdf (accessed on 20 October 2020).
- Pew Research Center. Some Digital Divides Persist between Rural, Urban and Suburban America. Survey of U.S. Adults Conducted Jan. 25–Feb. 8, 2021. Available online: https://www.pewresearch.org/fact-tank/2021/08/19/some-digital-divides-persist-between-rural-urban-and-suburban-america/ (accessed on 8 May 2022).
- Acharya, A.S.; Prakash, A.; Saxena, P.; Nigam, A. Sampling: Why and how of it. Indian J. Med. Spec. 2013, 4, 330–333. [Google Scholar] [CrossRef]
- Etikan, I.; Musa, S.A.; Alkassim, R.S. Comparison of convenience sampling and purposive sampling. Am. J. Theor. Appl. Stat. 2016, 5, 1–4. [Google Scholar] [CrossRef]
- Littlejohn, S.W.; Foss, K.A.; Oetzel, J.G. Theories of Human Communication, 12th ed.; Waveland Press: Long Grove, IL, USA, 2021. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). The Future of Food and Agriculture—Trends and Challenges; FAO: Rome, Italy, 2017; Available online: https://www.fao.org/3/i6583e/i6583e.pdf (accessed on 11 October 2023).
- US Department of Agriculture. United States Census of Agriculture; USDA: Washington, DC, USA, 2017. [Google Scholar]
- IBGE, Instituto Brasileiro de Geografia e Estatística. Censo Agropecuário; IBGE: Brasília, Brazil, 2017. [Google Scholar]
- Lowenberg-DeBoer, J.; Erickson, B. Setting the record straight on precision agriculture adoption. Agron. J. 2019, 111, 1552–1569. [Google Scholar] [CrossRef]
- Sonka, S.T.; Lins, D.A.; Schroeder, R.C.; Hofing, S.L. Production agriculture as a knowledge creating system. Int. Food Agribus. Manag. Rev. 1999, 2, 165–178. [Google Scholar] [CrossRef]
- Pathak, H.S.; Brown, P.; Best, T. A systematic literature review of the factors affecting the precision agriculture adoption process. Precis. Agric. 2019, 20, 1292–1316. [Google Scholar] [CrossRef]
- Schimmelpfennig, D.; Ebel, R. Sequential adoption and cost savings from precision agriculture. J. Agric. Resour. Econ. 2016, 41, 97–115. [Google Scholar]
- IHS Markit. Um Estudo Sobre a Percepção e uso Destas Ferramentas Durante a Pandemia. Mercado Brasileiro Agricultura de Precisão/Digital, São Paulo, SP. 2021. Available online: https://cdn.ihsmarkit.com/www/pdf/0122/ihs_markit_agric_precisao_2021_asbraap_teaser_v2.pdf (accessed on 7 July 2022).
- Tey, Y.S.; Brindal, M. Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precis. Agric. 2012, 13, 713–730. [Google Scholar] [CrossRef]
- Fatoretto, J.C.; Michel, A.P.; Silva Filho, M.C.; Silva, N. Adaptive potential of fall armyworm (Lepidoptera: Noctuidae) limits Bt trait durability in Brazil. J. Integr. Pest Manag. 2017, 8, 17. [Google Scholar] [CrossRef]
- Da Silva, V.P.; van der Werf, H.M.; Spies, A.; Soares, S.R. Variability in environmental impacts of Brazilian soybean according to crop production and transport scenarios. J. Environ. Manag. 2010, 91, 1831–1839. [Google Scholar] [CrossRef] [PubMed]
- Easley, D.; Kleinberg, J. Networks, Crowds, and Markets: Reasoning about a Highly Connected World; Cambridge University Press: Cambridge, UK, 2010; Volume 1. [Google Scholar]
- Rust, N.A.; Stankovics, P.; Jarvis, R.M.; Morris-Trainor, Z.; de Vries, J.R.; Ingram, J.; Mills, J.; Glikman, J.A.; Parkinson, J.; Toth, Z.; et al. Have farmers had enough of experts? Environ. Manag. 2022, 69, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Statista. WhatsApp—Statistics Facts. Statista Research Department. 8 February 2022. Available online: https://www.statista.com/study/20494/whatsapp-statista-dossier (accessed on 13 April 2022).
- O’Donoghue, C.; Heanue, K. The impact of formal agricultural education on farm level innovation and management practices. J. Technol. Transf. 2018, 43, 844–863. [Google Scholar] [CrossRef]
- Deichmann, U.; Goyal, A.; Mishra, D. Will digital technologies transform agriculture in developing countries? Agric. Econ. 2016, 47, 21–33. [Google Scholar] [CrossRef]
- Maertens, A.; Barrett, C.B. Measuring social networks’ effects on agricultural technology adoption. Am. J. Agric. Econ. 2013, 95, 353–359. [Google Scholar] [CrossRef]
- Béné, C.; Fanzo, J.; Prager, S.D.; Achicanoy, H.A.; Mapes, B.R.; Alvarez Toro, P.; Bonilla Cedrez, C. Global drivers of food system (un) sustainability: A multi-country correlation analysis. PLoS ONE 2020, 15, e0231071. [Google Scholar] [CrossRef]
Brazil | United States | |
---|---|---|
Use of Digital Technologies | Means | Means |
Guidance/Autosteer | 3.56 *** | 4.23 *** |
Yield monitors | 2.92 *** | 4.31 *** |
Satellite/drone imagery | 2.99 ns | 2.94 ns |
Soil electrical conductivity mapping | 1.50 *** | 1.81 *** |
Wired or wireless sensor networks | 2.10 ** | 2.36 ** |
Electronic records/mapping for traceability | 2.09 *** | 3.26 *** |
Sprayer control systems | 1.98 *** | 3.93 *** |
Automatic rate control telematics | 2.11 *** | 3.36 *** |
Brazil | United States | |
---|---|---|
Making Decisions | Means | U.S. Means |
NPK fertilization and liming application | 3.64 *** | 3.93 *** |
Overall hybrid/variety selection | 3.49 ns | 3.53 ns |
Overall crop planting rates | 3.44 ns | 3.45 ns |
Variable seeding rate prescriptions | 2.38 *** | 2.72 *** |
Pesticide selection (herbicides, insecticides or fungicides) | 3.26 *** | 2.91 *** |
Cropping sequence/rotation | 3.12 *** | 2.69 *** |
Irrigation | 2.02 *** | 1.41 *** |
Brazil | United States | |
---|---|---|
Benefits | Means | Means |
Increased crop productivity/yields | 3.70 ** | 3.92 ** |
Cost reductions | 3.63 ns | 3.78 ns |
Purchase of inputs | 3.38 ns | 3.40 ns |
Marketing choices | 3.31 *** | 2.96 *** |
Time savings (paper filing to digital) | 3.51 *** | 3.17 *** |
Labor efficiencies | 3.57 *** | 3.30 *** |
Lower environmental impact | 3.34 *** | 2.99 *** |
Autosteer (less fatigue/stress) | 3.54 *** | 4.18 *** |
Brazil | United States | |
---|---|---|
Mass Media | Means | Means |
Newspaper | 1.75 *** | 2.11 *** |
Magazine | 2.11 *** | 2.78 *** |
Radio | 2.17 ** | 2.40 ** |
Television | 2.15 ns | 2.10 ns |
Website and blog | 3.38 ns | 3.41 ns |
Cable television | 2.41 *** | 1.55 *** |
Social Media | Means | Means |
YouTube | 3.17 *** | 2.52 *** |
3.65 | - | |
2.40 *** | 1.74 *** | |
- | 1.89 | |
2.03 *** | 1.47 *** | |
2.61 *** | 1.26 *** | |
Snapchat | - | 1.26 |
Messenger | 1.71 | - |
Interpersonal Meetings | Means | Means |
Field days | 3.87 *** | 3.51 *** |
Conferences, forums, seminars | 3.86 *** | 3.53 *** |
Extension agents | 3.63 ns | 3.50 ns |
Retailers | 3.20 *** | 3.50 *** |
Peer groups | 3.42 ns | 3.41 ns |
Conversations with neighbors | 3.62 ** | 3.40 ** |
(a) | ||
Brazil | United States | |
Digital Technologies | Communication Channels (Spearman’s Rank Correlation Coefficient ρS) | Communication Channels (Spearman’s Rank Correlation Coefficient ρS) |
Guidance/Autosteer | 1st Conversation with neighbors (ρS 0.209) | 1st YouTube (ρS 0.208) |
2nd Conferences, forums, seminars (ρS 0.120) | 2nd Twitter (ρS 0.159) | |
3rd Field days (ρS 0.096) | 3rd Website and blog (ρS 0.154) | |
Yield monitors | 1st LinkedIn (ρS 0.178) | 1st YouTube (ρS 0.181) |
2nd Conversation with neighbors (ρS 0.170) | 2nd Peer groups (ρS 0.163) | |
3rd Cable television (ρS 0.145) | 3rd Website and blog (ρS 0.145) | |
Satellite/drone imagery | 1st LinkedIn (ρS 0.253) | 1st Website and blog (ρS 0.225) |
2nd Conferences, forums, seminars (ρS 0.246) | 2nd Twitter (ρS 0.180) | |
3rd Instagram (ρS 0.226) | 3rd YouTube (ρS 0.165) | |
Soil electrical conductivity map | 1st LinkedIn (ρS 0.228) | 1st Cable Television (ρS 0.199) |
2nd Instagram (ρS 0.183) | 2nd YouTube (ρS 0.163) | |
3rd Messenger (ρS 0.182) | 3rd Peer groups (ρS 0.141) | |
Wired or wireless sensor networks | 1st LinkedIn (ρS 0.261) | 1st Instagram (ρS 0.271) |
2nd Instagram (ρS 0.208) | 2nd YouTube (ρS 0.231) | |
3rd Conferences, forums, seminars (ρS 0.183) | 3rd Twitter (ρS 0.209) | |
Electronic records/mapping for traceability | 1st LinkedIn (ρS 0.224) | 1st Website and blog (ρS 0.252) |
2nd Instagram (ρS 0.180) | 2nd YouTube (ρS 0.190) | |
3rd Conferences, forums, seminars (ρS 0.148) | 3rd Facebook (ρS 0.158) | |
Sprayer control systems | 1st LinkedIn (ρS 0.221) | 1st YouTube (ρS 0.165) |
2nd Cable television (ρS 0.189) | 2nd Website and blog (ρS 0.164) | |
3rd WhatsApp (ρS 0.151) | 3rd Retailers and extension agents (ρS 0.133) | |
Automatic rate control telematics | 1st LinkedIn (ρS 0.246) | 1st YouTube (ρS 0.238) |
2nd Instagram (ρS 0.186) | 2nd Website and blog (ρS 0.204) | |
3rd Peer groups (ρS 0.135) | 3rd Facebook (ρS 0.145) | |
(b) | ||
Brazil | United States | |
Mass Media | Number of times listed | Number of times listed |
Website and blog | 0 | 6 |
Cable television | 2 | 1 |
Total | 2 | 7 |
Social Media | Number of times listed | Number of times listed |
YouTube | 0 | 8 |
7 | 0 | |
5 | 1 | |
0 | 3 | |
0 | 2 | |
1 | 0 | |
Messenger | 1 | 0 |
Total | 14 | 14 |
Interpersonal Meetings | Number of times listed | Number of times listed |
Conferences, forums, seminars | 4 | 0 |
Conversation with neighbors | 2 | 0 |
Peer groups | 1 | 2 |
Field days | 1 | 0 |
Retailers and extension agents | 0 | 1 |
Total | 8 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colussi, J.; Sonka, S.; Schnitkey, G.D.; Morgan, E.L.; Padula, A.D. A Comparative Study of the Influence of Communication on the Adoption of Digital Agriculture in the United States and Brazil. Agriculture 2024, 14, 1027. https://doi.org/10.3390/agriculture14071027
Colussi J, Sonka S, Schnitkey GD, Morgan EL, Padula AD. A Comparative Study of the Influence of Communication on the Adoption of Digital Agriculture in the United States and Brazil. Agriculture. 2024; 14(7):1027. https://doi.org/10.3390/agriculture14071027
Chicago/Turabian StyleColussi, Joana, Steve Sonka, Gary D. Schnitkey, Eric L. Morgan, and Antônio D. Padula. 2024. "A Comparative Study of the Influence of Communication on the Adoption of Digital Agriculture in the United States and Brazil" Agriculture 14, no. 7: 1027. https://doi.org/10.3390/agriculture14071027
APA StyleColussi, J., Sonka, S., Schnitkey, G. D., Morgan, E. L., & Padula, A. D. (2024). A Comparative Study of the Influence of Communication on the Adoption of Digital Agriculture in the United States and Brazil. Agriculture, 14(7), 1027. https://doi.org/10.3390/agriculture14071027