Dependency of Long-Term Soil Quality Controls on Summer Fallow Tillage and Soil Layers for Dryland Winter Wheat in Loess Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Soil Sampling and Analysis
2.3. The Assessment of SQI
2.4. Statistical Analysis
3. Results
3.1. Variation of Soil Indicators
3.2. Assessment of SQI by PCA and RDA
3.3. Comprehensive Evaluation of Soil Quality by SQI and Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Notaris, C.D.; Jensen, J.L.; Olesen, J.E.; Silva, T.S.D.; Rasmussen, J.; Panagea, I.; Rubæk, G.H. Long-term soil quality effects of soil and crop management in organic and conventional arable cropping systems. Geoderma 2021, 403, 115383. [Google Scholar] [CrossRef]
- McBride, R.A.; Schjønning, P.; Keller, T.; Obour, P.B. Predicting soil particle density from clay and soil organic matter contents. Geoderma 2017, 286, 83–87. [Google Scholar] [CrossRef]
- Li, F.; Wang, Z.; Dai, J.; Li, Q.; Xue, C.; Zhao, H.; Wang, X.; Olesen, J.E. Summer fallow soil management—Impact on rainfed winter wheat. Acta Agric. Scand. Sect. B Soil Plant Sci. 2014, 64, 398–407. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Vigil, M.F. Precipitation storage efficiency during fallow in wheat-fallow systems. Agron. J. 2010, 102, 537–543. [Google Scholar] [CrossRef]
- Dai, Z.; Hu, J.; Fan, J.; Fu, W.; Wang, H.; Hao, M. No-tillage with mulching improves maize yield in dryland farming through regulating soil temperature, water and nitrate-N. Agric. Ecosyst. Environ. 2021, 309, 107288. [Google Scholar] [CrossRef]
- Felter, D.G.; Lyon, D.J.; Nielsen, D.C. Evaluating crops for a flexible summer fallow cropping system. Agron. J. 2006, 98, 1510–1517. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, Z.; Liang, Z.; Li, Z.; Yang, X.; Wang, Z.; Coulter, J.A.; Shen, Y. Replacing summer fallow with annual forage improves crude protein productivity and water use efficiency of the summer fallow-winter wheat cropping system. Agric. Water Manag. 2020, 230, 105980. [Google Scholar] [CrossRef]
- Sharratt, B.; Wendling, L.; Feng, G. Surface characteristics of a windblown soil altered by tillage intensity during summer fallow. Aeolian Res. 2012, 5, 1–7. [Google Scholar] [CrossRef]
- Li, H.; Xue, J.; Gao, Z.; Xue, N.; Yang, Z. Response of yield increase for dryland winter wheat to tillage practice during summer fallow and sowing method in the Loess Plateau of China. J. Integr. Agric. 2018, 17, 817–825. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Z.; Xue, J.; Lin, W.; Sun, M. Subsoiling during summer fallow in rainfed winter-wheat fields enhances soil organic carbon sequestration on the Loess Plateau in China. PLoS ONE 2021, 16, e0245484. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, P.; Wang, W.; Ren, A.; Noor, H.; Zhang, R.; Gao, Z.; Sun, M. Deep ploughing in the summer fallow season and optimizing nitrogen rate can increase yield, water, and nitrogen efficiencies of rain-fed winter wheat in the Loess Plateau region of China. Peer J. 2022, 10, e14153. [Google Scholar] [CrossRef] [PubMed]
- Aziz, I.; Mahmood, T.; Islam, K.R. Effect of long term no-till and conventional tillage practices on soil quality. Soil Tillage Res. 2013, 131, 28–35. [Google Scholar] [CrossRef]
- Islam, K.R.; Weil, R.R. Soil quality indicator properties in mid-Atlantic soils as influenced by conservation management. J. Soil Water Conserv. 2000, 55, 69–78. [Google Scholar] [CrossRef]
- de Oliveira, J.A.T.; Cássaro, F.A.M.; Pires, L.F. Estimating soil porosity and pore size distribution changes due to wetting-drying cycles by morphometric image analysis. Soil Tillage Res. 2021, 205, 104814. [Google Scholar] [CrossRef]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.J. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Guber, A.K. Soil pores and their contributions to soil carbon processes. Geoderma 2017, 287, 31–39. [Google Scholar] [CrossRef]
- Bai, Z.; Caspari, T.; Gonzalez, M.R.; Batjes, N.H.; Mäder, P.; Bünemann, E.K.; de Goede, R.; Brussaard, L.; Xu, M.; Ferreira, C.S.S.; et al. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agric. Ecosyst. Environ. 2018, 265, 1–7. [Google Scholar] [CrossRef]
- Xue, J.; Ren, A.; Li, H.; Gao, Z.; Du, T. Soil physical properties response to tillage practices during summer fallow of dryland winter wheat field on the Loess Plateau Environ. Sci. Pollut. Res. 2018, 25, 1070–1078. [Google Scholar] [CrossRef]
- Li, Y.; Shao, M. Change of soil physical properties under long-term natural vegetation restoration in the Loess Plateau of China. J. Arid. Environ. 2006, 64, 77–96. [Google Scholar] [CrossRef]
- Hong, Y.; Zhao, D.; Zhang, F.; Shen, G.; Yuan, Y.; Gao, Y.; Yan, L.; Wei, D.; Wang, W. Soil water-stable aggregates and microbial community under long-term tillage in black soil of Northern China. Ecotoxicology 2021, 30, 1754–1768. [Google Scholar] [CrossRef]
- Li, X.; Xu, S.; Neupane, A.; Abdoulmoumine, N.; Jagadamma, S. Co-application of biochar and nitrogen fertilizer reduced nitrogen losses from soil. PLoS ONE 2021, 16, e0248100. [Google Scholar] [CrossRef] [PubMed]
- Beretta-Blanco, A.; Pérez, O.; Carrasco-Letelier, L. Soil quality decrease over 13 years of agricultural production. Nutr. Cycl. Agroecosyst. 2019, 114, 45–55. [Google Scholar] [CrossRef]
- Tian, H.; Qiao, J.; Zhu, Y.; Jia, X.; Shao, M. Vertical distribution of soil available phosphorus and soil available potassium in the critical zone on the Loess Plateau, China. Sci. Rep. 2021, 11, 3159. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yin, X.; Liu, Z.; Gu, Z.; Niu, J. Reaction yield model of nitrocellulose alkaline hydrolysis. J. Hazard. Mater. 2019, 371, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.C. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Gu, C.; Zhang, S.; Han, P.; Hu, X.; Xie, L.; Li, Y.; Brooks, M.; Liao, X.; Qin, L. Soil enzyme activities in soils subjected to flooding and the effect on nitrogen and phosphorus uptake by Oilseed Rape. Front. Plant Sci. 2019, 10, 368. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S.S.; Carroll, C.R. Designing a soil quality assessment tool for sustainable agroecosystem management. Ecol. Appl. 2001, 11, 1573–1585. [Google Scholar] [CrossRef]
- Andrews, S.S.; Mitchell, J.P.; Mancinelli, R.; Larlen, D.L.; Hartz, T.K.; Horwarth, W.R.; Pettygrove, G.S.; Scow, K.M.; Munk, D.S. On farm assessment of soil quality in California’s Central Valley. Agron. J. 2002, 94, 12–23. [Google Scholar] [CrossRef]
- Liebig, M.A.; Varvel, G.; Doran, J. A simple performance-based index for assessing multiple agroecosystem function. Agron. J. 2001, 93, 102–105. [Google Scholar] [CrossRef]
- Mandal, U.K.; Warrington, D.N.; Bhardwaj, A.K.; Bar-Tal, A.; Kautsky, L.; Minz, D.; Levy, G.J. Evaluating impact of irrigation water quality on a calcareous clay soil using principal component analysis. Geoderma 2008, 144, 189–197. [Google Scholar] [CrossRef]
- Andrews, S.S.; Flora, C.B.; Mitchell, J.P.; Karlen, D.L. Grower’s perceptions and acceptance of soil quality indices. Geoderma 2003, 114, 187–213. [Google Scholar] [CrossRef]
- Lima, A.C.R.; Brussaard, L.; Totola, M.R.; Hoogmoed, W.B.; de Goede, R.G.M. A functional evaluation of three indicator sets for assessing soil quality. Appl. Soil Ecol. 2013, 64, 194–200. [Google Scholar] [CrossRef]
- Linn, D.M.; Doran, J.W. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci. Soc. Am. J. 1984, 48, 1267–1272. [Google Scholar] [CrossRef]
- Liu, S.; Yan, C.; He, W.; Chen, B.; Zhang, Y.; Liu, Q.; Liu, E. Effects of different tillage practices on soil water-stable aggregation and organic carbon distribution in dryland farming in Northern China. Acta Ecologica Sinica 2015, 35, 65–69. [Google Scholar] [CrossRef]
- Quintino, A.; Dario, A.; Guilherme, L.; José, F.; Cinira, F.; Virupax, B. Soil quality index for cacao cropping systems. Arch. Agron. Soil Sci. 2018, 64, 1892–1909. [Google Scholar] [CrossRef]
- Fernández, M.P.; Keshavarzi, A.; Rodrigo-Comino, J.; Schnabel, S.; Contador, J.F.L.; Gutiérrez, A.G.; Parra, F.J.L.; González, F.B.; Torreño, A.A.; Cerdà, A. Developing scoring functions to assess soil quality at a regional scale in rangelands of SW Spain. Rev. Bras. Cienc. Solo 2020, 44, e0200090. [Google Scholar] [CrossRef]
- Shi, Z.; Bai, Z.; Guo, D.; Chen, M. Develop a soil quality index to study the results of Black Locust on soil quality below different allocation patterns. Land 2021, 10, 785. [Google Scholar] [CrossRef]
- Qiao, L.; Wang, X.; Smith, P.; Fan, J.; Lu, Y.; Emmett, B.; Li, R.; Dorling, S.; Chen, H.; Liu, S.; et al. Soil quality both increases crop production and improves resilience to climate change. Nat. Clim. Chang. 2022, 12, 574–580. [Google Scholar] [CrossRef]
- Mei, N.; Yang, B.; Tian, P.; Jiang, Y.; Sui, P.; Sun, D.; Zhang, Z.; Qi, H. Using a modified soil quality index to evaluate densely tilled soils with different yields in Northeast China Environ. Sci. Pollut. Res. 2019, 26, 13867–13877. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Cui, S.; Zhang, Q. Trade-off between soil pH, bulk density and other soil physical properties under global no-tillage agriculture. Geoderma 2020, 361, 114099. [Google Scholar] [CrossRef]
- Unger, P.W.; Jones, O.R. Long-term tillage and cropping systems affect bulk density and penetration resistance of soil cropped to dryland wheat and grain sorghum. Soil Tillage Res. 1998, 45, 39–57. [Google Scholar] [CrossRef]
- López-Fando, C.; Pardo, M.T. Changes in soil chemical characteristics with different tillage practices in a semi-arid environment. Soil Tillage Res. 2009, 104, 278–284. [Google Scholar] [CrossRef]
- Salem, H.M.; Valero, C.; Muñoz, M.Á.; Rodríguez, M.G.; Silva, L.L. Short-term effects of four tillage practices on soil physical properties, soil water potential, and maize yield. Geoderma 2015, 237–238, 60–70. [Google Scholar] [CrossRef]
- Sun, L.; Feng, Y.; Dyck, M.F.; Puurveen, D.; Chang, S.X. Tillage reversal did not reverse N fertilization enhanced C storage in a Black Chernozem and a Gray Luvisol. Geoderma 2020, 370, 114355. [Google Scholar] [CrossRef]
- Polakowski, C.; Sochan, A.; Ryżak, M.; Beczek, M.; Mazur, R.; Majewska, K.; Turski, M.; Bieganowski, A. Measurement of soil dry aggregate size distribution using the laser diffraction method. Soil Tillage Res. 2021, 211, 105023. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, C.; Wang, J.; Meng, Q.; Yuan, Y.; Ma, X.; Liu, X.; Zhu, Y.; Ding, G.; Zhang, J.; et al. Soil aggregates stability and storage of soil organic carbon respond to cropping systems on Black Soils of Northeast China. Sci. Rep. 2020, 10, 265. [Google Scholar] [CrossRef]
- Neu, T.R.; Kuhlicke, U. Fluorescence Lectin bar-coding of glycoconjugates in the extracellular matrix of biofilm and bioaggregate forming microorganisms. Microorganisms 2017, 5, 5. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Z.; Obalum, S.E.; Liang, C.; Han, K.; Han, H. Effects of subsoiling depth on soil aggregate stability and carbon storage in a clay-loam soil. J. Soil Sci. Plant Nutr. 2023, 23, 3302–3312. [Google Scholar] [CrossRef]
- Song, K.; Zheng, X.; Lv, W.; Qin, Q.; Sun, L.; Zhang, H.; Xue, Y. Effects of tillage and straw return on water-stable aggregates, carbon stabilization and crop yield in an estuarine alluvial soil. Sci. Rep. 2019, 9, 4586. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Gao, T.; Liu, Z.; Ning, T. Rotary and subsoiling tillage rotations influence soil carbon and nitrogen sequestration and crop yield. Plant Soil Environ. 2022, 68, 89–97. [Google Scholar] [CrossRef]
- Das, B.; Chakraborty, D.; Singh, V.K.; Aggarwal, P.; Singh, R.; Dwivedi, B.S. Effect of organic inputs on strength and stability of soil aggregates under rice-wheat rotation. Int. Agrophys. 2014, 28, 163–168. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Li, J.; Bai, W. Effects of tillage rotation and fertilization on soil aggregates and organic carbon content in corn field in Weibei Highland. Chin. J. Appl. Ecol. 2015, 25, 759–768. Available online: http://www.cjae.net/EN/Y2014/V25/I3/759 (accessed on 25 May 2024).
- Yan, L.; Jiang, X.; Ji, X.; Zhou, L.; Li, S.; Chen, C.; Li, P.; Zhu, Y.; Dong, T.; Meng, Q. Distribution of water-stable aggregates under soil tillage practices in a black soil hillslope cropland in Northeast China. J. Soils Sediments 2020, 20, 24–31. [Google Scholar] [CrossRef]
- Osunbitan, J.A.; Oyedele, D.J.; Adekalu, K.O. Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria. Soil Tillage Res. 2005, 82, 57–64. [Google Scholar] [CrossRef]
- Mu, X.; Chen, Y. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol. Bioch. 2021, 158, 76–82. [Google Scholar] [CrossRef]
- Huang, P.; Zhang, J.; Zhu, A.; Li, X.; Ma, D.; Xin, X.; Zhang, C.; Wu, S.; Garland, G.; Pereira, E.I.P. Nitrate accumulation and leaching potential reduced by coupled water and nitrogen management in the Huang-Huai-Hai Plain. Sci. Total Environ. 2018, 610–611, 1021–1028. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Yu, Q.; Zhang, Y.; Wang, R.; Li, J.; Wang, X. No tillage increases soil organic carbon storage and decreases carbon dioxide emission in the crop residue-returned farming system. J. Environ. Manag. 2020, 261, 110261. [Google Scholar] [CrossRef]
- Kushwa, V.; Hati, K.M.; Sinha, N.K.; Singh, R.K.; Mohanty, M.; Somasundaram, J.; Jain, R.C.; Chaudhary, R.S.; Biswas, A.K.; Patra, A.K. Long-term conservation tillage effect on soil organic carbon and available phosphorous content in vertisols of central India. Agric. Res. 2016, 5, 353–361. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J. No-tillage and soil physical environment. Geoderma 2018, 326, 164–200. [Google Scholar] [CrossRef]
- Strudley, M.; Green, T.R.; Ascough, J. Tillage effects on soil hydraulic properties in space and time: State of the science. Soil Tillage Res. 2008, 99, 4–48. [Google Scholar] [CrossRef]
- Attademo, A.M.; Sanchez-Hernandez, J.C.; Lajmanovich, R.C.; Repetti, M.R.; Peltzer, P.M. Enzyme activities as indicators of soil quality: Response to intensive soybean and rice crops. Water Air Soil Pollut. 2021, 232, 295. [Google Scholar] [CrossRef]
- Su, Y.; Gabrielle, B.; Makowski, D. A global dataset for crop production under conventional tillage and no tillage systems. Sci. Data 2021, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Ren, A.; Gao, Z.; Wang, P.; Mo, F.; Xue, L.; Lei, M. Long-term evaluation of tillage methods in fallow season for soil water storage, wheat yield and water use efficiency in semiarid southeast of the Loess Plateau. Field Crop. Res. 2018, 218, 24–32. [Google Scholar] [CrossRef]
- Xue, L.; Khan, S.; Sun, M.; Anwar, S.; Ren, A.; Gao, Z.; Lin, W.; Xue, J.; Yang, Z.; Deng, P. Effects of tillage practices on water consumption and grain yield of dryland winter wheat under different precipitation distribution in the loess plateau of China. Soil Tillage Res. 2019, 191, 66–74. [Google Scholar] [CrossRef]
Year | PF (mm) | PG (mm) | PT (mm) | |
---|---|---|---|---|
1st year | 283.7 | 126.8 | 63.7 | 474.2 |
2nd year | 365.6 | 133.5 | 17.6 | 516.7 |
3rd year | 165.4 | 195.9 | 53.4 | 414.7 |
4th year | 94.7 | 172.7 | 125.6 | 393.0 |
Soil Layers | 0–10 cm | 10–20 cm | 20–30 cm | 30–40 cm | 40–50 cm | |
---|---|---|---|---|---|---|
Kaiser–Meyer–Olkin Measure of Sampling Adequacy | 0.616 | 0.607 | 0.586 | 0.700 | 0.658 | |
Bartlett’s Test of Sphericity | Approx. Chi-Square | 1436.643 | 1387.412 | 1466.251 | 1902.125 | 1393.412 |
df | 231 | 231 | 231 | 231 | 231 | |
Sig. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Soil Layers | 0–10 cm | 10–20 cm | 20–30 cm | 30–40 cm | 40–50 cm | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Principal Components | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 |
% of Variance | 66.556 | 19.865 | 7.126 | 66.297 | 17.318 | 8.675 | 58.433 | 18.721 | 12.268 | 58.761 | 18.209 | 16.44 | 57.831 | 21.098 | 15.581 |
Cumulative % | 66.556 | 86.421 | 93.547 | 66.297 | 83.615 | 92.29 | 58.433 | 77.154 | 89.422 | 58.761 | 76.97 | 93.41 | 57.831 | 78.929 | 94.51 |
Eigenvalues | 14.642 | 4.370 | 1.568 | 14.585 | 3.81 | 1.908 | 12.855 | 4.119 | 2.699 | 12.927 | 4.006 | 3.617 | 12.723 | 4.642 | 3.428 |
Gravimetric water content (θg) | 0.996 | −0.055 | 0.005 | 0.962 | 0.238 | 0.033 | 0.961 | −0.068 | 0.263 | 0.960 | −0.121 | −0.239 | 0.935 | −0.224 | −0.133 |
Bulk density (ρb) | −0.874 | 0.334 | 0.304 | −0.966 | 0.099 | 0.185 | −0.969 | 0.098 | 0.180 | −0.916 | 0.335 | −0.104 | −0.955 | 0.214 | −0.160 |
Capillary porosity (Pc) | 0.902 | −0.412 | −0.062 | 0.985 | 0.030 | −0.131 | 0.958 | −0.195 | 0.076 | 0.927 | −0.313 | −0.039 | 0.960 | −0.226 | 0.058 |
Total porosity (Pt) | 0.976 | 0.039 | −0.118 | 0.904 | 0.347 | −0.128 | 0.861 | 0.306 | 0.300 | 0.837 | 0.111 | −0.297 | 0.832 | 0.085 | −0.355 |
Soil particle size of >5 mm | −0.190 | −0.863 | 0.423 | −0.848 | 0.458 | 0.239 | −0.606 | 0.576 | 0.487 | 0.715 | 0.667 | 0.097 | 0.321 | 0.931 | 0.095 |
Soil particle size of 1–5 mm | 0.239 | 0.958 | −0.053 | −0.563 | 0.616 | −0.484 | −0.121 | −0.126 | 0.931 | −0.575 | 0.622 | −0.471 | −0.947 | 0.137 | −0.161 |
Soil particle size of 0.25–1 mm | 0.701 | 0.623 | −0.291 | 0.935 | −0.211 | 0.097 | 0.909 | 0.051 | −0.302 | −0.259 | −0.468 | 0.770 | 0.460 | 0.694 | 0.440 |
Soil water-stable aggregates of 1–5 mm | 0.503 | 0.773 | −0.230 | 0.355 | 0.892 | −0.194 | 0.326 | 0.868 | −0.270 | 0.589 | 0.518 | 0.610 | 0.692 | 0.695 | 0.143 |
Soil water-stable aggregates of 0.25–1 mm | 0.928 | 0.217 | 0.261 | 0.670 | 0.668 | 0.256 | 0.724 | 0.225 | 0.629 | 0.607 | 0.764 | −0.169 | 0.515 | 0.594 | −0.612 |
Mean weight diameter (MWD) | 0.790 | 0.237 | 0.468 | 0.656 | −0.272 | 0.332 | 0.530 | 0.770 | −0.231 | 0.747 | 0.219 | 0.617 | 0.699 | 0.473 | 0.496 |
Geometric mean diameter (GMD) | 0.785 | 0.304 | 0.458 | 0.732 | −0.270 | 0.391 | 0.607 | 0.757 | −0.176 | 0.809 | 0.316 | 0.459 | 0.792 | 0.482 | 0.329 |
Soil nitrate nitrogen content | 0.913 | −0.251 | 0.295 | 0.920 | 0.091 | 0.373 | 0.930 | 0.258 | 0.206 | 0.948 | 0.135 | 0.066 | 0.926 | −0.265 | 0.017 |
Soil ammonium nitrogen content | 0.957 | 0.128 | −0.081 | 0.695 | 0.408 | −0.352 | 0.521 | −0.450 | −0.357 | −0.292 | −0.636 | 0.591 | −0.211 | −0.204 | 0.936 |
Soil organic carbon content | 0.844 | −0.141 | 0.373 | 0.707 | 0.350 | 0.506 | 0.767 | 0.428 | 0.300 | 0.743 | 0.376 | 0.451 | 0.874 | 0.280 | −0.105 |
Soil available phosphorus content | 0.866 | −0.476 | −0.061 | 0.979 | −0.090 | 0.002 | 0.983 | −0.049 | 0.034 | 0.966 | −0.218 | 0.107 | 0.993 | −0.091 | −0.011 |
Soil alkali-hydrolyzable nitrogen content | 0.917 | −0.173 | −0.192 | 0.910 | 0.099 | 0.313 | 0.817 | 0.284 | 0.216 | 0.910 | −0.389 | 0.002 | 0.812 | −0.386 | 0.307 |
pH | −0.906 | 0.252 | −0.015 | −0.909 | 0.237 | −0.005 | −0.587 | −0.327 | 0.417 | −0.747 | −0.241 | −0.239 | −0.949 | −0.207 | 0.127 |
Soil microbial biomass carbon content | 0.940 | −0.213 | −0.254 | 0.931 | 0.144 | −0.315 | 0.872 | −0.464 | 0.145 | 0.848 | −0.386 | −0.350 | 0.757 | −0.526 | −0.377 |
Soil catalase activity | 0.242 | −0.771 | −0.509 | 0.689 | −0.440 | −0.574 | 0.708 | −0.180 | −0.255 | 0.688 | 0.415 | −0.555 | −0.155 | 0.122 | −0.925 |
Soil urease activity | 0.718 | 0.372 | 0.047 | 0.291 | 0.934 | 0.022 | 0.688 | −0.614 | 0.352 | −0.531 | 0.374 | 0.735 | −0.903 | 0.090 | 0.287 |
Soil phosphatase activity | 0.955 | −0.159 | 0.092 | 0.860 | −0.353 | −0.172 | 0.746 | −0.523 | −0.230 | 0.879 | −0.387 | −0.178 | 0.343 | −0.835 | 0.397 |
Soil invertase activity | 0.968 | 0.135 | −0.185 | 0.938 | −0.140 | −0.312 | 0.923 | −0.332 | −0.091 | 0.816 | −0.535 | −0.117 | 0.714 | −0.666 | −0.204 |
Soil Quality Indicator | Unit | Function | Lower Threshold | Upper Threshold | Reference |
---|---|---|---|---|---|
Gravimetric water content (θg) | % | M | 9.68 | 22.81 | - |
Bulk density (ρb) | g cm−3 | L | 0.80 | 1.47 | [32] |
Capillary porosity (Pc) | % | M | 15.00 | 105.00 | [33] |
Total porosity (Pt) | % | M | 20.00 | 70.00 | [33] |
Soil particle size of >5 mm | % | M | 10.84 | 18.95 | - |
Soil particle size of 1–5 mm | % | M | 22.37 | 37.82 | - |
Soil particle size of 0.25–1 mm | % | M | 32.77 | 43.77 | - |
Soil water-stable aggregates of 1–5 mm | % | M | 0.00 | 85.00 | [34] |
Soil water-stable aggregates of 0.25–1 mm | % | M | 0.00 | 85.00 | [34] |
Mean weight diameter (MWD) | mm | M | 0.76 | 0.84 | - |
Geometric mean diameter (GMD) | mm | M | 0.69 | 0.77 | - |
Soil nitrate nitrogen content | mg kg−1 | M | 12.47 | 40.72 | - |
Soil ammonium nitrogen content | mg kg−1 | M | 6.86 | 17.25 | - |
Soil organic carbon content | g kg−1 | M | 10.00 | 45.00 | [35] |
Soil available phosphorus content | mg kg−1 | M | 5.02 | 30.61 | - |
Soil alkali-hydrolyzable nitrogen content | mg kg−1 | M | 20.61 | 74.70 | - |
pH | - | L | 5.5 | 6.5 | [36] |
Soil microbial biomass carbon content | mg kg−1 | M | 75 | 700 | [33] |
Soil catalase activity | mL of (0.1 mol L−1 KMnO4) g−1 | M | 1.16 | 1.44 | - |
Soil urease activity | mg NH3–N g−1 h−1 | M | 123.30 | 234.70 | - |
Soil phosphatase activity | mg phenol g−1 h−1 | M | 71.70 | 95.09 | - |
Soil invertase activity | mg glucose g−1 h−1 | M | 257.71 | 520.65 | - |
Tillage | SQI | ||||
---|---|---|---|---|---|
0–10 cm | 10–20 cm | 20–30 cm | 30–40 cm | 40–50 cm | |
4NT | 0.18 d | 0.56 c | 0.18 c | 0.13 c | 0.50 c |
3PT + ST | 0.25 c | 0.47 d | 0.16 c | 0.12 d | 0.54 b |
PT/ST | 0.71 a | 0.64 b | 0.32 a | 0.23 a | 0.57 a |
3ST + PT | 0.45 b | 0.71 a | 0.23 b | 0.15 b | 0.53 b |
ANOVA results | |||||
Tillage | ** | ||||
Soil layers | ** | ||||
Tillage × Soil layers | ** |
Tillage | Yield | |||
---|---|---|---|---|
1 Year | 2 Year | 3 Year | 4 Year | |
NT | 3467.00 b | 3956.22 d | 4812.00 c | 2668.85 d |
3PT + ST | 4719.00 a | 5062.57 c | 5471.90 b | 4832.39 b |
PT/ST | 4760.77 a | 5559.96 b | 6009.75 a | 5091.85 a |
3ST + PT | 4875.40 a | 6176.55 a | 5719.08 ab | 3070.06 c |
ANOVA results | ||||
Tillage | ** | |||
PF (mm) | * | |||
Tillage × PF (mm) | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Dai, X.; Gao, Z. Dependency of Long-Term Soil Quality Controls on Summer Fallow Tillage and Soil Layers for Dryland Winter Wheat in Loess Plateau. Agriculture 2024, 14, 1026. https://doi.org/10.3390/agriculture14071026
Li H, Dai X, Gao Z. Dependency of Long-Term Soil Quality Controls on Summer Fallow Tillage and Soil Layers for Dryland Winter Wheat in Loess Plateau. Agriculture. 2024; 14(7):1026. https://doi.org/10.3390/agriculture14071026
Chicago/Turabian StyleLi, Hui, Xinjun Dai, and Zhiqiang Gao. 2024. "Dependency of Long-Term Soil Quality Controls on Summer Fallow Tillage and Soil Layers for Dryland Winter Wheat in Loess Plateau" Agriculture 14, no. 7: 1026. https://doi.org/10.3390/agriculture14071026
APA StyleLi, H., Dai, X., & Gao, Z. (2024). Dependency of Long-Term Soil Quality Controls on Summer Fallow Tillage and Soil Layers for Dryland Winter Wheat in Loess Plateau. Agriculture, 14(7), 1026. https://doi.org/10.3390/agriculture14071026