A Light Recipe including Far-Red Wavelength during Healing of Grafted Watermelon Seedlings Enhances the Floral Development and Yield Earliness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Grating
2.2. Healing, Light Conditions, and Acclimatization
2.3. Field Cultivation
2.4. Determinations
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, J.-M. Cultivation of Grafted Vegetables I. Current Status, Grafting Methods, and Benefits. HortScience 1994, 29, 235–239. [Google Scholar] [CrossRef]
- Olle, M.; Alsińa, I. Influence of wavelength of light on growth, yield and nutritional quality of greenhouse vegetables. Proc. Latv. Acad. Sci. 2019, 73, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Yujin, P.; Runkle, E. Far-red radiation and photosynthetic photon flux density independently regulate seedling growth but interactively regulate flowering. Environ. Exp. Bot. 2018, 155, 206–216. [Google Scholar]
- Zhen, S.; Bugbee, B. Substituting Far-Red for Traditionally Defined Photosynthetic Photons Results in Equal Canopy Quantum Yield for CO2 Fixation and Increased Photon Capture during Long-Term Studies: Implications for Re-Defining PAR. Front. Plant Sci. 2020, 11, 581156. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2021: The Physical Science Basis. Summary for Policymakers. Working Group. Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2021; p. 151. [Google Scholar]
- Bantis, F.; Panteris, E.; Dangitsis, C.; Carrera, E.; Koukounaras, A. Blue light promotes hormonal induced vascular reconnection, while red light boosts the physiological response and quality of grafted watermelon seedlings. Sci. Rep. 2021, 11, 21754. [Google Scholar] [CrossRef]
- Bantis, F.; Koukounaras, A.; Siomos, A.S.; Fotelli, M.N.; Kintzonidis, D. Bichromatic red and blue LEDs during healing enhance the vegetative growth and quality of grafted watermelon seedlings. Sci. Hortic. 2020, 261, 109000. [Google Scholar] [CrossRef]
- Brazaitytė, A.; Duchovskis, P.; Urbonaviciute, A.; Samuolienė, G.; Jankauskienė, J.; Kasiuleviciute-Bonakere, A.; Bliznikas, Z.; Novičkovas, A.; Breive, K.; Zukauskas, A. The effect of light-emitting diodes lighting on cucumber transplants and after-effect on yield. Zemdir. Agric. 2009, 96, 102–118. [Google Scholar]
- Sager, J.C.; Smith, W.O.; Edwards, J.L.; Cyr, K.L. Photosynthetic Efficiency and Phytochrome Photoequilibria Determination Using Spectral Data. Trans. ASAE 1988, 31, 1882–1889. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Luterotti, A.; Marković, K.; Franko, M.; Bicanic, D.; Madžgalj, A.; Kljak, K. Comparison of spectrophotometric and HPLC methods for determination of carotenoids in foods. Food Chem. 2013, 140, 390–397. [Google Scholar] [CrossRef]
- Scott, A.J.; Knott, M.A. Cluster analysis method for grouping means in the analysis of variance. Biometrics 1974, 30, 507–512. [Google Scholar] [CrossRef] [Green Version]
- Bantis, F.; Dangitsis, C.; Siomos, A.S.; Koukounaras, A. Light Spectrum Variably Affects the Acclimatization of Grafted Watermelon Seedlings While Maintaining Fruit Quality. Horticulturae 2021, 8, 10. [Google Scholar] [CrossRef]
- Bozokalfa, M.K. Short communication. Irrigation temperature effects on seedling growth and transplant quality of tomato, pepper and eggplant. Span. J. Agric. Res. 2008, 6, 120–124. [Google Scholar] [CrossRef] [Green Version]
- Baoying, S.; Yinian, L.; Sanqin, Z.; Weimin, D.; Na, H.; Jie, L. Effect of dark period lighting regulation on cucumber seedling morphology and comprehensive evaluation analysis and comprehensive evaluation. Trans. Chin. Soc. Agric. Eng. 2014, 30, 201–208. [Google Scholar]
- Bantis, F.; Koukounaras, A.; Siomos, A.; Menexes, G.; Dangitsis, C.; Kintzonidis, D. Assessing quantitative criteria for characterization of quality categories for grafted watermelon seedlings. Horticulturae 2019, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Ouzounis, T.; Heuvelink, E.; Ji, H.; Schouten, H.J.; Visser, R.G.F.; Marcelis, L.F.M. Blue and red LED lighting effects on plant biomass, stomatal conductance, and metabolite content in nine tomato genotypes. Acta Hortic. 2016, 1134, 251–258. [Google Scholar] [CrossRef]
- Novičkovas, A.; Brazaitytė, A.; Duchovskis, P.; Jankauskienė, J.; Samuolienė, G.; Virsilė, A.; Sirtautas, R.; Bliznikas, Z.; Zukauskas, A. Solid-state lamps (LEDs) for the short-wavelenght supplementary lighting in greenhouses: Experimental results with cucumber. Acta Hortic. 2012, 927, 723–730. [Google Scholar] [CrossRef]
- Rabara, R.C.; Behrman, G.; Timbol, T.; Rushton, P.J. Effect of Spectral Quality of Monochromatic LED Lights on the Growth of Artichoke Seedlings. Front. Plant Sci. 2017, 8, 190. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, R.; Kubota, C. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ. Exp. Bot. 2016, 121, 66–74. [Google Scholar] [CrossRef]
- Javanmardi, J.; Emami, S. Response of Tomato and Pepper Transplants to Light Spectra Provided by Light Emitting Diodes. Int. J. Veg. Sci. 2013, 19, 138–149. [Google Scholar] [CrossRef]
- Yan, Z.; He, D.; Niu, G.; Zhai, H. Evaluation of growth and quality of hydroponic lettuce at harvest as affected by the light intensity, photoperiod and light quality at seedling stage. Sci. Hortic. 2019, 248, 138–144. [Google Scholar] [CrossRef]
- Demotes-Mainard, S.; Péron, T.; Corot, A.; Bertheloot, J.; Le Gourrierec, J.; Pelleschi- Travier, S.; Crespel, L.; Morel, P.; Huché-Thélier, L.; Boumaza, R.; et al. Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 2016, 121, 4–21. [Google Scholar] [CrossRef]
- Huché-Thélier, L.; Crespel, L.; Gourrierec, J.; Le Morel, P.; Sakr, S.; Leduc, N. Light signaling and plant responses to blue and UV radiations-perspectives for applications in horticulture. Environ. Exp. Bot. 2016, 121, 22–38. [Google Scholar] [CrossRef]
- Yanovsky, M.J.; Kay, S.A. Molecular basis of seasonal time measurement in Arabidopsis. Nature 2002, 419, 308–312. [Google Scholar] [CrossRef]
- Suárez-López, P.; Wheatley, K.; Robson, F.; Onouchi, H.; Valverde, F.; Coupland, G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 2001, 410, 1116–1120. [Google Scholar] [CrossRef]
- Prisca, M.; Maarten, V.; Van Doorsselaere, J.; Bart, N.; Saeys, W.; Hytonen, T.; De Coninck, B.; Van de Poel, B. Blue and far-red light control flowering time of woodland strawberry (Fragaria vesca) distinctively via CONSTANS (CO) and FLOWERING LOCUS T1 (FT1) in the background of sunlight mimicking radiation. Environ. Exp. Bot. 2022, 198, 104866. [Google Scholar] [CrossRef]
- Craig, D.S.; Runkle, E.S. An intermediate phytochrome photoequilibria from night interruption lighting optimally promotes flowering of several long-day plants. Environ. Exp. Bot. 2016, 121, 132–138. [Google Scholar] [CrossRef]
- Riadi, M.F.; Esyanti, R.R.; Faizal, A. The Effect of Led Light on Production of Female Flowers in Cucumber (Cucumis sativus L.). Int. J. Sci. Technol. 2015, 1, 13–23. [Google Scholar]
- Palmitessa, O.D.; Durante, M.; Leoni, B.; Montesano, F.; Renna, M.; Serio, F.; Somma, A.; Santamaria, P. Enhancement of a Landrace of Carosello (Unripe Melon) through the Use of Light-Emitting Diodes (LED) and Nutritional Characterization of the Fruit Placenta. Sustainability 2021, 13, 11464. [Google Scholar] [CrossRef]
- Gajc-Wolska, J.; Kowalczyk, K.; Przybysz, A.; Mirgos, M.; Orliński, P. Photosynthetic Efficiency and Yield of Cucumber (Cucumis sativus L.) Grown under HPS and LED Lighting in Autumn–Winter Cultivation. Plants 2021, 10, 2042. [Google Scholar] [CrossRef] [PubMed]
Waveband | Light Treatment | ||||
---|---|---|---|---|---|
FL | R | B | 12B | 12B + FR | |
UV %; 380–399 nm | 0 | 0 | 0 | 0 | 0 |
Blue %; 400–499 nm | 35 | 0 | 100 | 12 | 12 |
Green %; 500–599 nm | 24 | 0 | 0 | 0 | 0 |
Red %; 600–699 nm | 37 | 100 | 0 | 88 | 83 |
Far-red %; 700–780 nm | 4 | 0 | 0 | 0 | 5 |
PPS | 0.82 | 0.89 | 0.51 | 0.89 | 0.88 |
Parameters | Light Treatments | ||||
---|---|---|---|---|---|
FL | R | B | 12B | 12B + FR | |
Length (cm) | 23.50 ± 1.26 a | 34.83 ± 2.42 a | 30.17 ± 2.17 a | 34.67 ± 0.93 a | 30.00 ± 2.02 a |
Width (cm) | 21.67 ± 0.33 a | 20.00 ± 0.29 a | 20.50 ± 0.29 a | 19.67 ± 0.67 a | 20.67 ± 0.73 a |
Rind thick. (cm) | 0.80 ± 0.10 a | 0.73 ± 0.13 a | 0.93 ± 0.07 a | 0.87 ± 0.09 a | 0.77 ± 0.07 a |
TSS (°Brix) | 11.53 ± 0.13 a | 11.87 ± 0.22 a | 11.50 ± 0.35 a | 11.27 ± 0.27 a | 11.20 ± 0.42 a |
TPC (mg/g) | 0.20 ± 0.01 a | 0.21 ± 0.01 a | 0.20 ± 0.01 a | 0.23 ± 0.01 a | 0.20 ± 0.01 a |
TCC (μg/g) | 24.45 ± 3.54 a | 24.51 ± 0.91 a | 24.20 ± 1.10 a | 25.77 ± 2.51 a | 26.88 ± 1.14 a |
LC (μg/g) | 19.11 ± 4.74 a | 17.89 ± 1.87 a | 18.88 ± 1.47 a | 20.60 ± 3.00 a | 21.26 ± 0.92 a |
FRAP (μg/g) | 87.34 ± 1.39 a | 81.46 ± 1.66 a | 76.19 ± 1.94 a | 87.88 ± 3.25 a | 79.39 ± 2.35 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bantis, F.; Gkotzamani, A.; Dangitsis, C.; Koukounaras, A. A Light Recipe including Far-Red Wavelength during Healing of Grafted Watermelon Seedlings Enhances the Floral Development and Yield Earliness. Agriculture 2022, 12, 982. https://doi.org/10.3390/agriculture12070982
Bantis F, Gkotzamani A, Dangitsis C, Koukounaras A. A Light Recipe including Far-Red Wavelength during Healing of Grafted Watermelon Seedlings Enhances the Floral Development and Yield Earliness. Agriculture. 2022; 12(7):982. https://doi.org/10.3390/agriculture12070982
Chicago/Turabian StyleBantis, Filippos, Anna Gkotzamani, Christodoulos Dangitsis, and Athanasios Koukounaras. 2022. "A Light Recipe including Far-Red Wavelength during Healing of Grafted Watermelon Seedlings Enhances the Floral Development and Yield Earliness" Agriculture 12, no. 7: 982. https://doi.org/10.3390/agriculture12070982
APA StyleBantis, F., Gkotzamani, A., Dangitsis, C., & Koukounaras, A. (2022). A Light Recipe including Far-Red Wavelength during Healing of Grafted Watermelon Seedlings Enhances the Floral Development and Yield Earliness. Agriculture, 12(7), 982. https://doi.org/10.3390/agriculture12070982