Next Article in Journal
Phenolic Compounds and Antioxidant Activity of Sprouts from Seeds of Citrus Species
Previous Article in Journal
Greenhouse Gas Emissions from Cut Grasslands Renovated with Full Inversion Tillage, Shallow Tillage, and Use of a Tine Drill in Nasu, Japan
Open AccessArticle

Pseudomonas fluorescens MZ05 Enhances Resistance against Setosphaeria turcica by Mediating Benzoxazinoid Metabolism in the Maize Inbred Line Anke35

1
Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology University, Bengbu 233100, China
2
Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
*
Authors to whom correspondence should be addressed.
Agriculture 2020, 10(2), 32; https://doi.org/10.3390/agriculture10020032
Received: 19 December 2019 / Accepted: 22 January 2020 / Published: 26 January 2020
Beneficial rhizobacteria can inhibit foliar pathogen infection by activation of defense responses, yet it the mechanisms of rhizobacteria-induced disease resistance remain largely unknown. Here, inoculation of susceptible maize plants with Pseudomonas fluorescens MZ05 significantly reduced disease occurrence caused by the leaf pathogen Setosphaeria turcica. Gene expression profiles of MZ05-inoculated plants were investigated by RNA-sequencing analyses, showing that several differentially expressed genes were positively associated with the metabolic processes of benzoxazinoids. Accordantly, the inoculation with P. fluorescens MZ05 resulted in a significant increase in the levels of 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) in the maize leaves. Furthermore, pre-inoculation with P. fluorescens MZ05 enhanced the transcription of two defense-related marked genes PAL and PR2a, as well as BX2 and GLU2, which are involved in DIMBOA biosynthesis, in pathogen-infected leaves. Defense responses in the inoculated plants were also greatly stronger and quicker than that in non-inoculated plants after pathogen attacks. However, virus-mediated silencing of BX2 or GLU2 remarkably attenuated the MZ05-induced effects, as evidenced by more disease occurrence and lower transcription of PAL and PR2a. Collectively, these findings indicated that the MZ05-induced increases of DIMBOA levels participated in the mediation of priming, which was the key mechanism in the rhizobacteria-induced host resistance.
Keywords: beneficial rhizobacteria; induced disease resistance; benzoxazinoid; Setosphaeria turcica; DIMBOA beneficial rhizobacteria; induced disease resistance; benzoxazinoid; Setosphaeria turcica; DIMBOA
MDPI and ACS Style

Zhou, C.; Ma, Z.; Lu, X.; Zhu, L.; Yan, C. Pseudomonas fluorescens MZ05 Enhances Resistance against Setosphaeria turcica by Mediating Benzoxazinoid Metabolism in the Maize Inbred Line Anke35. Agriculture 2020, 10, 32.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop